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1 Introduction

There has been some recent interest in studying stochastic partial differential equations driven by
a fractional noise (see Duncan et al., 2002; Tindel et al., 2003; Muller and Tribe 2004; Hu et al.,
2004; Maslowski and Nualart, 2005; Hu and Nualart, 2009a, 2009b; Sanz-Solé and Torrecilla,
2009; Sanz-Solé and Vailermot, 2010, among others). In this paper, we provide a structure for
developing mean-square weak-sense (generalized) and strong-sense (pointwise definition) solutions
to stochastic elliptic, hyperbolic and parabolic equations driven by fractional Gaussian noise, whose
integral is fractional Brownian motion.

Linear stochastic evolution equations driven by an additive cylindrical fractional Brownian motion
with Hurst parameter H were studied by Duncan et al. (2002) in the case H € (1/2,1). Similar
result holds when one adds nonlinearity of a special form (see Maslowski and Nualart, 2005).
Other important and relevant papers are Hu (2001) and Mueller and Tribe (2004). Hu et al. (2004)
present a white noise calculus for the d—parametric fractional Brownian motion Wy(x), x € R4,
with general d —dimensional Hurst parameter H = (Hj,...,Hy) € (0,1)¢, and separable covariance
function

d

1

E [WH(X)WH(Y)] = 2_d | | C(Hj) (|Xj|2Hj + ijIZH‘ - |xj —yjIZHf) , XyE€E ]Rd,
j=1

where . (1]
o(H) = 5 L{ SRS A, )
As illustration, they solved the stochastic Poisson problem
Aux) = —(Wy(®), x€9,
ux) = 0, x€09, (2)

where the potential (W)’ is d —parametric fractional white noise defined as

8dWH(x)

(Wy) (x) = m,

and 2 c RY is a given smooth domain. Hu and Nualart (2009a) study the stochastic heat equation
with a multiplicative Gaussian noise which is white in space, and has the covariance of a fractional
Brownian motion with Hurst parameter H € (0, 1) in time. Two types of equations are considered, in
the Ito-Skorokhod sense, and in the Stratonovich sense. An explicit chaos expansion for the equation
is obtained. The rough path analysis (see Lions and Qian, 2002, and the references therein) is also
applicable to the fractional calculus (see Gubinelle et al., 2006; Hu and Nualart, 2009b, and the
references therein). Mild solutions for a class of fractional SPDEs have been developed for elliptic
and parabolic problems by Sanz-Solé and Torrecilla (2009), and Sanz-Solé and Vuillermot (2010).
They defined the stochastic convolution integrals of the Green function with fractional noise as
Wiener integrals.

In this paper, we provide an overview of the mean-square solution of stochastic elliptic, hyperbolic
and parabolic problems driven by fractional Gaussian random fields. We interpret the correspond-
ing stochastic integrals of non-random Green functions with respect to fractional noise as Wiener
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integrals in the spectral domain. This approach gives us an opportunity, for relatively simple situa-
tions, to obtain an explicit parabolic, hyperbolic and elliptic parametric family of models involving
fractional Gaussian random fields. Fractional Gaussian random fields constitute an important area
of research in modeling homogeneous/heterogeneous fractality, as well as long-range dependence
in the self-similar case.

Elliptic fractional and multifractional Gaussian random fields have been extensively studied in the
last and a half decade (see, for example, Anh, Angulo and Ruiz-Medina, 1999; Benassi, Jaffard
and Roux, 1997; Kelbert, Leonenko and Ruiz-Medina, 2005; Ruiz-Medina, Angulo and Anh, 2002;
2003; 2006, and Ruiz-Medina, Anh and Angulo, 2004a; 2004b; 2010). The cited references pro-
vide several examples of Gaussian random fields with reproducing kernel Hilbert space (RKHS)
having inner product defined in terms of a fractional or multifractional bilinear form (defined be-
tween suitable fractional Sobolev or Besov spaces). The special case where the RKHS is isomor-
phic to a fractional/multifractional Sobolev space has been treated, in a generalized random field
framework, in Ruiz-Medina, Angulo and Anh (2002; 2003; 2006) and Ruiz-Medina, Anh and An-
gulo (2004a; 2004b; 2010). Additionally, under suitable conditions, a weak-sense elliptic frac-
tional pseudodifferential representation in terms of Gaussian white noise innovations can be de-
rived (see Ruiz-Medina, Anh, and Angulo, 2004b). The strong-sense equality, in the sample-path
sense, holds for mean-square continuous Gaussian random fields (see Adler, 1981). The mentioned
class of elliptic fractional/multifractional Gaussian random fields includes as particular cases homo-
geneous/heterogeneous fractal Gaussian random fields satisfying elliptic fractional/multifractional
pseudodifferential equations with Gaussian white noise innovations.

Parabolic fractional and multifractional Gaussian random fields have also been extensively stud-
ied in the context of Gaussian white noise and Lévy-type innovations (see Angulo, Ruiz-Medina,
Anh and Grecksch 2000; Angulo, Anh, McVinish and Ruiz-Medina, 2005; Kelbert, Leonenko and
Ruiz-Medina, 2005; Ruiz-Medina, Angulo and Anh, 2008, among others). Random evolution equa-
tions, fractional in time and in space, with random initial coditions, interpolating parabolic and
wave equations, are introduced, for instance, in Anh and Leonenko (2001). The spatial local mean
quadratic variation properties of these random fields can be characterized in terms of fractional
Holder exponents. Also, heavy-tailed behaviors of spatial covariance functions can be represented
in this framework.

Stochastic hyperbolic equations have been studied in the two-parameter diffusion process context,
e.g. Ornstein-Uhlenbeck-type random fields (see the pioneering work by Nualart and Sanz-Solé,
1979), and in the random initialized hyperbolic equation context (see, for example, Kozachenko
and Slivka, 2007). In the fractional random field framework, the structural properties of hyperbolic
fractional random fields on fractal domains have been investigated in Ruiz-Medina, Angulo and Anh
(2006), considering Gaussian white noise innovations.

In this paper, families of elliptic, parabolic and hyperbolic fractional and multifractional Gaussian
random fields are introduced, with fractional Brownian motion type innovations. Specifically, the
spectral analysis of the solution to elliptic, parabolic and hyperbolic equations, with random innova-
tions defined in terms of the weak-sense derivatives of fractional Brownian motion, is undertaken.
Exact formulae in the temporal and spatial domains are also established in some special cases. The
generalized random field framework and the RKHS theory are used to formulate suitable conditions
for the definition of the solution. Some extensions related to fractional and multifractional pseudod-
ifferential equations are established, including the case of random initial conditions in the parabolic
and hyperbolic cases.
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For other approaches to stochastic integration with respect to fractional noise, see the recent books
by Biagini, Hu, @ksendal and Zhang (2008) or Mishura (2008), and the references therein. New
Green functions for the case of the heat equation with quadratic potential were constructed in
Leonenko and Ruiz-Medina (2006, 2008).

2 Fractional Brownian motion and stochastic integration

We start with the one-dimensional case. Let Wy be a stochastic process defined as fractional Brow-
nian motion (FBM), i.e., we consider that {Wy(x), x € R} is a zero-mean Gaussian process with
covariance function

H
By, (x,y) = E[Wy(x)Wg(y)] = % (IxP* +1y P = 1x = yI*), He(o,1),

and c(H) is defined as in . When H = 1/2, Wy(x) = Wy 5(x) is Brownian motion. The spectral
representation of the process Wy is given by (see Taqqu, 1979, 2003)

Wy (x) =f %(m)—f{“”zum, (3)
R

where Z(-) is a complex Gaussian white noise spectral measure such that Z(dA) = Z(—dA), and

1
E|Z(dA))? = —dA.
27

Its temporal domain representation is

1 0 X
Wy (x) = RNCESTD) J_Oo [Ge= )72 = (=) dB(y) +Jo (x—y)*2dB(y), @

with B being standard Brownian motion. From (3)), we obtain the following weak-sense definition
of the derivative process, i.e, the following definition in the generalized random field sense. Thus,

dWy(x)

= W) = f exp(iAx)(iA) 122 (d2) (5)

R

where = denotes the weak-sense identity, that is,
W.S.

(Wi () = f (Wyr) () (x)dx = V21 f POINAH22(dR), € [,y T
R R

where [Ay, y]" = [#4w,]" denotes the dual of the RKHS s, of process (Wy)  expressed as
dWy.

Remark 1. Note that the functions in the RKHS 4y, of dWy are not continuous. Thus, the process
dWy, is not continuous in the mean-square sense, and, since we are in the Gaussian case, its trajectories
are not continuous (see Adler, 1981). Therefore, the identity cannot be established in the strong-
sense (pointwise), and it must be established in the weak sense, as an integral with respect to a suitable
test function .
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The integration of a non-random function G(x) with respect to (Wy(x))’ = dWy is then defined as
follows. First, formally,

f G(x)dWy(x) = f G (W) (x)dx = f
R R

R

[ f exp(i/xx)c(x)dx] (A HH2Z(d).

R

The precise meaning of the above identities can be obtained from the following definition (see Igldi
and Terdik, 1999).

Definition 1. Let G: R — R, G € L*(R), and

)

f G(x)dWH(x)zf U exp(i)Lx)G(x)dxi| GA)HH2Z(dA) = V2r f GV THH2Z(d ),
R R R R
(6)

where G(A) denotes the Fourier transform of G in the sense of tempered distributions, i.e., G(A) is given
by

2
A2 42, < oo.

f exp(iAx)G(x)dx
R

Then,

G(¢) =G(®),
for all test function ¢ € &, with & denoting the Schwartz function space, and § the Fourier transform
of v, in the ordinary sense (see, for example, Dautray and Lions, 1985a).

)

means that function G belongs to the dual [y, ]* of the RKHS of the process dWy;. Thus,

Remark 2. The condition
2

f exp(iAx)G(x)dx| |A|72HTdA < o0
R

J G(x)p(x)dx < o0,
R

for all function ¢ € Hyy,,, L.e., for all function ¢ satisfying that
J [BMPIAPAdA < oo,
R

where $ denotes the Fourier transform of ¢.

Note also that, asymptotically in the spectral domain, the decay velocity of the Fourier transform of func-
tions in the space [y, ]* coincides to the one of functions in the fractional Sobolev space H H+1/2(R).

In the two-dimensional case, fractional Brownian motion is introduced as a zero-mean Gaussian
random field with covariance function

2

1
By, (x,¥) = EWGOW ()] = o5 [ [eCt) (1P + Ly, P = Ix; - y,20)
j=1
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Similarly, the two-dimensional fractional Brownian motion can be defined in the spectral domain as
follows:

WH(xuy):f

|:exp(iklx) — 1} [exp(il2y) -1
" - -

l)tl lAZ
for0O<H, <1,0<H, <1, H=(H{,H,), where Z is a complex Gaussian white noise satisfying
that

} (i7L1)_Hl+1/2(Mz)_HZH/ZZ(dM> dAy), (7)

1
ElZ(dkl, dl2)|2 == —dkldkz.

(2m)?

Consider then the generalized random field

aZWH _ : . cq \—H{+1/2:9 \—H,y+1/2

e N = J}Rzexpmlxmzy)ml) U i3,) 7 (A0 dR). (8)
That is,

2wy 2wy

Ty ) = fRz Sray (oY NCe Y )dxdy

= 21 | (A, A)(id) I FR(A,) 22 (d 2y, d ), ©)
R2

for all o) € [z, 1"
The local regularity properties of the square-integrable functions belonging to the RKHS 2y,
coincide, for H; > 1/2, i = 1,2, with the ones displayed by functions in anisotropic fractional

Bessel potential spaces H;*(R?) = Hsz/ 3(IR?) (see, for example, Dachkovski, 2003). These spaces are
defined in the Appendix. In particular, the parameters s and a = (a;,a,) are given as follows (see
Proposition [1]in the Appendix):

2(H; —1/2)(H, —1/2)

Hy+Hy,—1
2(Hy —1/2)
aq = ——
Hy+Hy,—1
2(Hy —1/2
a, = M (10)
Hy+Hy—1

The following definition provides a stochastic integration formula, in the mean-square sense, with
respect to 82Wy,, for functions in the space [ 7

Definition 2. Let G : R? — R, with G € L?>(R?), and
22wy

G113 =J |G (21, 22) P12 20 2] 22 ¥1d A1 d 2y < 0.
R2

Thatis, G € [%”azWH]*, with the Fourier transform G of G, as before, to be interpreted in the dual sense,
i.e., in the sense of tempered distributions. Then,

J G(X,J’)dWH(X,J’)ZZTCJ @(Al,Az)(ikl)_HlH/Z(MZ)_HZH/ZZ(C{/M,dkl)-
R? R?
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3 The elliptic, hyperbolic and parabolic cases

We first consider the fractional stochastic differential equation defined by

2

(2 2 V=2 ), () e R an
ax>ay Ux:.)’ _axay x;y; X:y B

where H = (H,,H,) € (0,1) x (0, 1). The elliptic, hyperbolic and parabolic cases will be introduced
in terms of some special cases of operator Z.

e (i) Elliptic case:

gaa_az+az 2 >0 (12)
ox’ 3y ) ax% ay> e =

or, in a more general form

gaa_1az+1az 1 (13)
ox’ 3y ) a%20x2 b2ay?

The fractional pseudodifferential case can be studied, for example, in terms of the following
equation:
4 (i, i) = f(U - 2P,
dx dy

where f is a continuous function, and (I — A)?/? is the pseudodifferential operator defined in
terms of the inverse of the Bessel potential of order § € (0,2), with, as usual, (—A) denoting
the negative Laplacian operator. It is well-known that operators (I — A)#/2, B € R, generate
the norm of isotropic fractional Bessel potential spaces, where solutions of elliptic fractional
pseudodifferential equations can be found (see Appendix). Non-linear continuous transfor-
mations f of these operators can also be defined via the Spectral Representation Theorem
for self-adjoint operators (see, for example, Dautray and Lions, 1985b). In fact the operator
(I — A)P/2 can be replaced in the above equation by a fractional pseudodifferential operator
with continuous spectrum given in terms, for instance, of a positive elliptic fractional rational
function (see Ramm, 2005).

e (ii) Hyperbolic case:

4 = i + 0 +6 + 0,6 6,>0,0,>0 (14)
5 ’9}/ Z) ay 15 Zay 192> 1 > Y2 P

4 = +a +[5’ +}/2 a>0 [3>0 }f>0 (15)
ax’ay ax 3y ’ ’ ’ ’

e (iii) Parabolic case (y =t), t > 0, where t can be interpreted as time:
< 9 9\_° 982+9 6; >0 (16)
ot’ox ) ot ltoxz ¥ T
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In this case, fractional versions of the above equation can also be considered, for example, in
terms of fractional powers of the negative Laplacian, i.e.,

T A
(-A) 5| - Fe@,

o 0 ) 92 \ P2
< (E,a) = 54‘91 (_ﬁ) +92, 91 > 0.

The Green function G(x, y) of the corresponding deterministic problem, in equation (11)), satisfies
the identity

that is,

J 0
< (a_’ —) G(x,y)=06(x)o(y), a7
x 0y

where & denotes the Dirac delta distribution. Therefore, since the Green function is a distribution,
its Fourier transform

~ 1
G(A1,A5) = %J exp(—iA;x —idyy)G(x,y)dxdy.
RZ

is interpreted in the weak sense. Thus, the general solution to is formally given by
U(X>}’) = J G(x_u;y_v)dWH(le)
RZ

= 2nJ exp(idx +i2yy)G(Ay, A)(iA) " HH2(i0,) 2t 2 Z(d Ay, dAy).
RZ
(18)

Its distributional and strong-sense definitions, in term of anisotropic fractional Bessel potential
spaces, is provided in the Appendix.

The covariance function of u is then formally given by

B,(x,y;x',y") = Cov (u(x,y),u(x’,y")) J exp(i(A1(x —x )+ A,(y — ¥')))
RZ

—2H,+1

X|G(A1, A)2 (2727 |2y d2,dA,

2
161, -

for H; €(0,1) and 1 —2H; € (—1,1), withi = 1,2.

The corresponding spectral density is
FAL,A9) =G (Mg, AP | T2IF T Ay 725 (A, 45) € R?,

which can be interpreted as the spectral density of a continuous stationary Gaussian random field
u under the conditions stated in the Appendix. When these conditions do not hold, the Fourier
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transform of the covariance function is interpreted in the sense of distributions, as well as B,,, which
is defined as

B, (¥, ) = E[u(yu(p)] = | (x,y)B,(x —u,y —v)e(u,v)dudvdxdy,
RZ

for ¢ and ¢ in a suitable test function family related to the anisotropic fractional Bessel potential
space H, bl b(]RZ) (see Appendix). Thus, the generalized random field framework must be considered
in the derivation of a formal solution.

4 Elliptic fractional Brownian field

For the elliptic model given in equation (12)), the Green function of the corresponding deterministic
problem (see Heine, 1955; Mohapl, 1999) is of the form

-1 ———
Gy(x7y): 2_KO(_Y x2+y2)5

T

while for the operator (13)), the Green function is defined as

-1 ——
Ga,b(xz }’) = Z_KO(_}/ a2x2 + bzyz)z

T

with K denoting the modified Bessel function of second kind and order zero. Its Fourier transform

(Matérn class) is of the form

~ 1
G,(A, ) = ——F—,
(A1, 22) 2+ A3+ 25

which is not integrable. Thus, in view of (8)), the elliptic fractional Brownian motion field can be
written in the space and spectral domains as

-1
u(x,y) = f Ko (—rV/(x —wP + (0 = v1?) dWi(,v)
R2

1
= 27mc exp(i(A;x + A _
(r) . p(i(A, 2yD(7L§+7L§+y2)
x(iA)THFY2(i )42 7(d 2y, dAy),
with covariance function
1 2

Cov (u(x, y)u(x',y’ = c? exp (i(A{(x —x")+ A -y’ _
(uCx, yJulx’, ) (r) . p (i(A1(x = x") + 22(y = ¥")) R

% |A1|_2H1+1|7L2|_2H2+1d7tld2.2.

(19)

If H, €(1/2,1) and H, € (1/2,1), then —2H; + 1 € (—1,0), for i = 1, 2. Thus, the spectral density
1 2
A ,A :CZ - A —2H,+1 A —2H,+1 GLZ ]RZ )
f(A1,22) (Y)(A%+7L§+y2) |24 |2 (R%)
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For H; = 1/2 and H, = 1/2, the Heine (1955)’s formula provides the solution (see also Mohapl,
1999)

u(x,y) = o~ f Ko (=7 (e —w? + (0 —)?) 2(du,dv),
RZ

with covariance function

1
R(x,y)= m x% + y?K, (Y x2+y2) ,

where K; denotes the modified Bessel function of the second kind and order one, and the corre-
sponding spectral density of Matérn class

2
1
f,A2) = 3(y) (—) ,
Y2+ A2+ A2

which is absolutely integrable.
For H; € (1/2,1), i = 1,2, the square-integrable functions in the RKHS ., of the solution u belong
to the anisotropic fractional Bessel potential space Hg / I)(IRZ) with

_ 2(Hy+3/2)(Hy+3/2)
po= Hy,+H;+3
o 2(H, +3/2)
' 7 H,+H;+3
b, = 2(H; +3/2) 20)
Hy,+H;+3

(see Proposition (ii) in the Appendix). Similar formulae can be obtained for (see Guyon,
1987) for the case H; =1/2, fori =1, 2.

5 Hyperbolic fractional Brownian field

For the operator given in equation (15]), the Green function in (17) is defined as (see Heine, 1955)

G(x,y) = Gy(x, y) = exp(—alx| = Bly[)Jo (ZY\/ Ixyl) (e y)eR?, 2D
where a > 0, # > 0, and
o] X2n
Jo(x) =;)(—1) o (22)

is the Bessel function of the first kind and zero order. In particular, for y = 0, we have an Ornstein-
Uhlenbeck covariance structure

GO(XJJ’):GXP(_OC|X|_[5|J’|): (X;J’)G]Rz,
which has Fourier transform

aff
m2(a? 4+ 2A3)(B2+ 7A2)’

@O(Al: Ay) = (A1,45) € R?.
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Equivalently, from the above equations, hyperbolic fractional Brownian motion can be formally
defined as

u(x,y)=2n J exp(i(Ax + Az}’))/G\y(Aln A)(id) FV2(i2,) Ha 2 Z(d Ay, dAy),
IRZ
and for y = 0, we have
afp
+A2) (B2 +22)
x(id) Y23 ,) 12 7(d Ay, d D). (23)

u(r,y) = 27 f exp(i(A1x + 22y
R2 e (a

Thus, the covariance function of hyperbolic fractional Brownian motion is then given by

Cov(u(x, y),u(x’,y)) = f exp (i(2A;(x —x) + 2,0y — y)))
R2

~ 2 _ —
><|Gy(7t1>lz)| 2172 g2 AR d 2,

= J exp (l(kl(x - X/) + A’2(,)/ - y/)))
RZ

(24)

X |_A'12'2 +B(iA) + a(idy) + aff + 72 |_2 A4 72 25|72 d 2 d A,

= f exp (i(A(x —x) + 2A2(y = ¥)))
]RZ
|A,1|_2H1+1|AZ|_2H2+1
X 2 2 292 242 2 zdlldlz'
(A12A2)° +2(af +72)A Ay + B2AT + a?A5 + 20341 Ay + (aff +77)

(25)

Therefore, for H; € (1/2,1), i = 1,2, the spectral density of u is absolutely integrable, i.e., u is a
Gaussian stationary random field. While for H; € (0,1/2), i = 1,2, random field u is introduced as
a generalized random field, which can be defined on a subspace of ¥ (H™/2(R2)), with parameters
s and a given as in equation (10)), and £ being the hyperbolic operator (see Proposition [3|(iii)
in the Appendix). Moreover, in the ordinary case (H; € (1/2,1), i = 1,2), the square integrable
functions in the RKHS %, also belong to the anisotropic fractional Bessel potential space Hg/ “(R2),
with v and ¢ = (cy, ¢;) as follows (see Proposition [3|(ii) in the Appendix)

2(H, +1/2)(H, +1/2)

H +H,+1
2(H, +1/2)

g = ———

! Hy+H,+1
2(Hy +1/2

¢ = 2H, +1/2) /). (26)
Hy+H,+1

1144



For y = 0, we have

aff
m2(a? 4+ A2) (B2 +22)

Cov(u(x, y),u(x’,y)) = J exp (i(2;(x —x) + A2y = ¥)))
R2

x M’l |—2H1+1 |),2|_2H2+1d),1d7(,2.

For the particular case, H; = 1/2, for i = 1,2 (see Heine, 1955 and Guyon, 1987), the following
expression is obtained for the covariance function of u :

Cov(u(0,0),u(x,y)) =exp (—alx| — Blyl)

X J exp (—ou)J, (Zy(x + ucos(@))l/z) (y +usin(6))"?du, 27)
0

where & = 2af(a? + 2)71/2; tan(6) = 43, and where J, is given in ll

Our main interest relies on the definition of exact and asymptotic formulae of the Fourier transform
of the Green function. Specifically, from equation (21)), one can compute the Fourier transform of
G:

1

G, 2) = 5| exp(—idax— ity —alx| = Blyl) So (2rV/Ixyl) dxdy
RZ
IS . . (=1)"2y)*"|xy|"
= %;I)JRZ exp (—idix —idyy — alx| — Blyl) ] dxdy

1 o0 2 2n _1 n
1@ty [ f exp (—x — alx]) |x|ndx}
27 = 2"n!
n=0 R

X UR exp (—idy — Blyl) IyI”dy}

0 . n+1 . n+1
_ izz’”l(—l)”(}f)z"n! (a—ir)"" + (a+iAg) y
27 15 (az + Af)nﬂ
(B =i20)"™ + (B+i20)™ 28)
(az n Az)n-i-l ’
2

which is defined in the sense of distributions, over the space of infinitely differentiable functions
with compact support contained in R2.

Mohapl (1999, equation (55)) provides, for the model

0xdy Jy dx 0xdy

the following solution:

K 0 Vol J2W.
( + 0=+ 60— + 9192) uCx,y) = ——222(x, y), (29)

q1 exp(—01x) + qo exp(—0,y) + g3 exp(— 6, x — 0,y)
x ry

+ Yf f exp(—6;(y —v) — 05(x —u))Z(du,dv), (30)
o Jo

u(x,y)
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with covariance function
1
R(x,y) = ————exp(—06;[x| = 65| y]),
419261 6>
where q;, i = 1,2, are i.i.d. Gaussian random variables with zero mean and variance 1/(6,6,).

6 Parabolic fractional Brownian field

In the simplest case, for y =t > 0, and for 8 > 0, we have the classical heat equation:

2 02 Vuttm =L,y (31)
ot ax2) T Grax
where H; € (0,1), j = 1,2. Its solution can be expressed as
t
u(t,x) = \/sz exp(ix?L)J exp (—0(t —)|AP?) (iA)"2F12Z(d ), (32)
R 0
where H, denotes the Hurst index in space, and
oW,
Het,x)= | exp(irx)(ir) 212z, (dn). (33)
Jtdx R

Thus, Z,(d2) is defined, in the Gaussian context, as a generalized random field, in the temporal
domain, and as a random white noise measure, in the spatial spectral domain, satisfying

1
E[Z(dw)Z,(dA)] = B'(s,t)=—5&(w — A)dsd2, (34)

t—w.s. 27

with ) (
d c(Hy)
/ _ 2H 2H, _ |o _ +|2H
B0, 5, 57 (g (P e s =) )

defined in terms of the temporal Hurst index H;. Here, = stands for the weak-sense identity in

the temporal parameters s and t, that is, for the 1dent1ty in the sense of tempered distributions in
time, i.e.,

fO = 80) = | g©eEds=| fEE)s,

R, R,

B(.’ )

st—w.s.

K(-,) < B(s,t)¢ (s, t)dsdt = J K(s,t)p(s,t)dsdt,

Ry xR, Ry xR,
for all test function ¢ in the dual Hilbert space H* of H (respectively, in the dual of H ® H), the
Hilbert space where f and g belong to (respectively, where B and K belong to).

In the spatiotemporal domain, the Green function G of the corresponding deterministic problem is
given by

1 |x|?
G(t,x)=mexp ~20: |
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Therefore, the solution u to problem can also be formally expressed as
x — yI?

‘ 1
W60 = J;) J]R \/4nO(t —s) =P (_49(t =)

In the more general case (Mohapl, 1999)

9 0 a2+9 (t )—EZWH(t )
ot lgxz V2 |ULX)E G b

) %Wy (ds,dy). (35)

the Green function is defined as

G(t,x) = —— ( <~ t)
,X)= ———exp| ——— — :
\/4mo;t 40,6 °
Then,

G(t,2) =exp (=0, t|A> = 6,t), t>0.

In Mohapl (1999), the associated covariance function for the case H; = 1/2, for i = 1,2, is obtained
as

(x —y)?
————— — 6yt | p(y)dy,

1
pp— exp
\/ 47T91t J;R/ ( 401t

=2 | |,/92
= ———eX — —_— .
POI=7 oo pl-vly 5

The above derivation of an explicit solution of equation (31)), given by (32), in the spatial spectral
domain, and by (35)), in the spatiotemporal domain, is based on the semigroup approach. Under this
approach, from the differential geometry of the random string processes, Wu and Xiao (2006) also
obtain the characterization of the sample path properties of the solution of equation (31), randomly
initialized, for the case H; = 1/2, for i = 1,2. The book by Chow (2007) provides an overview on
the treatment of stochastic partial differential equations, and, in particular, on stochastic parabolic
equations, under the semigroup approach, including the case of bounded domains where the point
spectra approximation can be considered.

B(t,x) =

where

Alternatively to the semigroup approach, a stationary increment solution can also be explicitly de-
rived on R?, for H;=1/2,i=1,2,and 6; = 1, 6, = 0, as follows (see, for example, Robeva and
Pitt, 2007):

[exp (i (¢, x),(w,A))) — 1]
R2 iw—+ A2

w? + A2 1 deodd
<00
re 1+ @+ A% w2 +24 ©

u(t,x)=2m

Z(dw,d2),

since

(see Yaglom, 1957). Here, {(t,x),(w,A)) = tw + xA and Z represents a Gaussian white noise
measure. For H; #1/2,i=1,2,and 6, =1, 6, = 0, a stationary increment solution can be defined

as
u(t, X) — ZﬂfJ [eXP(l ((t,X), (a)z) A'))) - 1] (ia))_Hl+1/2(il)_H2+1/22(d0), d)(,),
R2 iw+A
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in the generalized random field sense, on the space of infinitely differentiable functions which van-
ish, together with all their derivatives, outside of a compact domain (see Yaglom, 1986, pp.437-438,
on generalized locally homogeneous fields). Specifically, for H; and H, such that there exists an
integer p with

2 (14+ w2+ A2)P+H 2 + 24
the solution can be derived in the generalized random field setting stated in Yaglom (1986). Within
this generalized random field solution framework, in the Gaussian innovation case (see, for example,
Kelbert, Leonenko and Ruiz-Medina, 2005), the scale of anisotropic Bessel potential spaces also
provides a suitable context for the definition of the weak-sense solution of the heat equation (31)
on RR? as follows:

2, 42
f w”+A 1 w2 ~2Ha 1 9 < oo,
R

U@)=2m | ¢(t,x) | exp(i{(t,x),(w, 1)) (i) Hit1/2(12) 2412 7(d e dN)d td x,
RZ

R2 iw + A’Z
_ _ -1
for 8 =1, and for every ¢ € 9 ([(% — aa_;) (E%)Hl 1/2 (aa_x)Hz 1/2] ) , i.e., for any function
¢ in the domain of operator

P 52 o \Hi—1/2 ;5 \Ho-1/2 -1
(G2 @) ()]

on R2. Specifically, we can select a subspace of Z(H™*/2(IR?)) as test function space for the gener-
alized random field solution, with parameters s and a given as in equation (10), and £ being the
parabolic operator defining equation (see Proposition [4](iii) in the Appendix). Furthermore, for
H; € (1/2,1), i = 1,2, the square integrable functions in the RKHS 5%, belong to the anisotropic
fractional Bessel potential space H,, r/ ¢(R?), where parameter r and e are given by (see Proposition
[|(ii) in the Appendix)

2(H, +1/2)(Hy +3/2))

r‘ =
Hy+Hy+2
2(H,+3/2)
e = ———
! Hy+Hy+2
2(H,+1/2
ey = M (36)
Hy+Hy+2

Similar arguments can be applied to the multidimensional case, that is, to the case where the fol-
lowing parabolic equation is considered:

d+1

"y (t,x) = o7 Wi (t,%) (37)
ot = Staxy.. 0%,

where & is an elliptic operator with constant coefficients on R¢. In this case, the Gaussian general-
ized random field solution is defined as

_ (d+1)/2 :
Uu(¢) = (2n) Rd+l¢(t’x) Rdﬂe"p(l((t’x)’(‘”’”))iw T
X (i) H+1/2(2,) et 1/2 . (12 ) P12 7 (d w, dA)d tdx,

(38)
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with & denoting the characteristic polynomial of operator ¢, Z being a Gaussian white noise
measure on RY*!, and ¢ representing, as before, a suitable test function in the domain of operator

2 2 \Hi—1/2 ; g ~\Ha-1/2 o\ Hin—1/2 -1
G)E) ) -G

on R4*!. The scale of anisotropic fractional Bessel potential spaces again provides an appropriate
functional space scale, in the selection procedure of the space where the test functions lie for deriva-
tion of a generalized random field solution. An element of this scale is chosen according to the order
of the characteristic polynomial of ¥ with respect to each independent spatial variable.

Note also that, under the above general setting, a stationary increment Gaussian solution on R?,

[exp(i{(t,x),(w,A)))—1] = __
_ (d+1)/2 Hg1+1/2
u(t,x) = (2m)d+ JRM o P (1) (i) Pan™

x(id) Y2 (i, 2 Z(dw, dA)

can be defined under the assumption that ¢ has characteristic polynomial & such that the following
condition holds (see Yaglom, 1957):

@ +||Z'||2 1 —2H441+1 —2H —
+1 )L 1+1 . A 2Hd+1d dl< )
Lw 1+ @ + AR & + [P (1) (%) wdA < oo

7 Parabolic equations with a spatial diffusion operator with variable
coefficients

Interesting alternative examples of parabolic equations can be introduced in terms of the
d—dimensional equation

d+1

H d
_¢ M RY, >0 3
Gtax, .. oxg X XSRL >0, (39

ol
[E + Z(t,x)} u(t,x) =

when some special cases of operator £(t, x) are considered, including the case of temporal variable
coefficients, continuous functions of the negative Laplacian operator, and multifractional elliptic
operators.

1. We first suppose that £ (t,x) = £(t), that is, consider

d
2()== Y aul)5—5— +Zbk(r)— +c(t),

jk=1

H=(Hy,...,Hyq) € (0,1)4

and the d + 1-dimensional fractional Brownian motion can be defined in the spatial spectral domain
as follows:
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d [exp(iljxj) -1

l)\.]

WH(tJ X5 eees Xd) = J

(ilj)_HfH/z] Z(d2Ay, ..., dAq),
Rd+1 j=1

where, for each t € R,, Z; is a complex Gaussian white noise on the d —dimensional spatial spectral
domain satisfying

1
ElZs(dwl, cees d(x)d)Zt(dll, ooy dkd)l t—?v.& B,(S, t)wdkl....dkd,

with, as before,

22 (c(Hgyp)
/ — +1 2H, 2Hg11 _ e _ +|2H
B'(s,0) = Mt( o (IsfPFert e PHas s — ] )) (40)

The coefficients {a;;(t)}, {bi(t)}, c(t) of £(t) are assumed to be continuous functions on the
half-line [0, 00), and

a; i (t) = ay ;(t).
We assume local parabolicity of the equation, that is, for every T > 0, there exists a K+ > 0 such

that
d

2
Re Zaj’k(t)zjzz > Ky |z
jk=1

for any t € [0, T] and z = (2, ...34) € C4.

In addition, we shall assume that the following oscillation condition holds: for some A > 0

det (Im (J aj’k(s)ds))
0

J [Re (a;(0)) | dt < 00, jk=1,....d; J [Re (c(6))]dt < oo.
0

0

>Alt]¢, t € [0,00).

We shall also assume that

Under the above assumptions, the Green function of the equation

o
[E +$(t)} u(t,x)=0

is of the form

G(t,x) = (2m)/? f exp (i (A,x) —A(t,4))dA,
]Rd

d t d t t
A(t,l)zZAjAkJ ajk(s)ds—iZAkf bk(s)ds+J c(s)ds,
J-k 0 k=1 0 0
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and satisfies
IG(t,x)|<c't742, t>0, xeRq,

2
x
IDT'G(t,x)| < cT,mt’(d*'mD/2 exp (—cd%) , te[0,T], xeR%

Thus, G can be defined in the spectral domain as

G(t,)) =exp{—A(t,A)} = J exp (—i (A, %)) G(t,x)dx.
Rd

(277:)‘1/2

Moreover, under the above conditions,

t t d
u(t,x) = J (2m)4/2 f exp (i (x,A))exp {— f Alu, l)du} l_[(ikj)_Her%ZS(d?Ll, o dAg).
0 R4 s j

j=1
and

Cov(u(t,x),uls,y)) = f exp (i ({(x —y,2))) exp (—f A(E,Z)di)
R4 u

Vv

s [ 1125172518 (u, v)d Ay ...d Ay, 41)

d
1

J

where u V v denotes the maximum of u and v, and t A s denotes the minimum of t and s. Here, the
temporal covariance function B’ is defined in the weak-sense as in equation (40)).

2. Extensions of equation (31 can also be defined considering as spatial diffusion operator, a
continuous function of the negative Laplacian operator on RY, i.e.,

O pea))ult = M 42)
(81“ f )”t’x T dtox, ... axg
where, for example,
f(-A)= P(=4) (43)
- Q(-Aa)

Here, P and Q denote positive elliptic polynomials of respective fractional orders p and q, with
P,q € R,. One may also consider f (—A) = (—A)Y2(I — A)P/2 a, B > 0. The parabolic equation
with this spatial diffusion operator has been studied in detail in Angulo, Ruiz-Medina, Anh and
Grecksch (2000), for the case H; = 1/2, for i = 1,2. Alternatively, for the same case H; = 1/2,
for i = 1,2, in Kelbert, Leonenko and Ruiz-Medina (2005), fractional extensions of equation
are formulated in terms of fractional powers of operator (% +60,(—A)+ 92) , i.e., considering the
fractional Helmholtz equation

8 v
(E+91(_A)+92) u(t,x) =e¢(t,x), v >0,

where ¢ denotes spatiotemporal white noise.
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The solution to equation (42)) is defined as

t d
u(t,x) = (2m)%/2 f exp (i (x, M)J exp (—(¢ = )F (IAIM) [ Jaa) 12z (dA,, ...d2y),
R4 0 j=1
(44)
where Z(dAy,...dA4) is given as in equations (33)-(34), considering, in the spectral domain, a

d—dimensional white noise measure.

3. The case where ¢ is an elliptic multifractional pseudodifferential operator is now studied. Specif-
ically, in the equation

0 P 3 3d+1WH
(302w = g o
operator ¢ is defined as
Z(P)x)=2(¢p)x) = (2ﬂ)d/2f exp (i (x,4)) p(x, A)$(A)dA, (45)
R4

where & is a pseudodifferential operator of variable order (see, for instance, Jacob, 2005 and
Leopold, 1991) with symbol p in the space of C* functions whose derivatives of all orders are
bounded, and satisfying, for any multi-indices a and f3, that there exists a positive constant C, g
such that

IDEDY p(x, )| < C, p (A)TE-PIIIBL (46)

where 0 < 6§ < p < 1, and o is a real-valued function in B®(R?), the set of all C*®—functions
whose derivatives of all orders are bounded. Here,

(A) = (1 + 1A, (47)

The solution is then defined as (see Ruiz-Medina, Angulo and Anh, 2008, for the case H; = 1/2, for
i=1,...,d+1)

u(t,x) = (2m)%? f

t d
exp (i (x,4)) J exp (—(t —)p(x, ) [ [(ia)) it 22(dA,y,...d2g), (48)
R4 0 j=

j=1
where Z,(dA) is given as in equations (33)-(34), considering the d—dimensional spatial spectral

case.

4. An alternative mutifractional version of equation (42]) is obtained when time-dependent pseudod-
ifferential operators are studied. Explicitly, the following multifractional operator can be considered:

£()x) = 2($)(t,x) = (2m)"/? J exp (i (x,4))p(t, A)p(A)dA,

R4
where the symbol p is again in the space of C* functions whose derivatives of all orders are

bounded, and satisfies similar regularity conditions, as above, with respect to the independent vari-
ables t and A. The solution is then defined as

t t d
u(t,x) = (2m)4/? J J exp (i (x, A)) exp (— J p(u,l)du) ]_[(mj)—Hf“/Zzs(d/xl,...dxd). (49)
R Jo s il

j=1
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In particular, we can consider the multifractional heat-type (temporal-multifractional Riesz-Bessel)
equation defined as

0 odtlw
— 4 (] = ABW@W2e_ Ayr(©)/2 —_ - 'H
(at U= AR WX = S g,

where the symbol p defining the multifractional pseudodifferential operator is given by

p(t,A) = (1 + [ AIPPO2 A

8 Fractional both in time and in space equations

Let us now consider the equation

3[3’ ad-i—l

2 (6,%) = —u(l — A=A 2u(t,x) +
’ ’ dtdx,

t,Xx), t>O,x€Rd,
it (t,%x)

where 8 € (0,2], y = 0, a > 0 are fractional parameters. The fractional derivative in time is taken
in the Caputo-Djrbashian sense:

aﬁu_ %) ﬁzme{l’z}J

ath s ﬁ)f (t—m)m P18 gr m—1<p<m, mefl,2}.

Here, A is the d-dimensional Laplace operator, and the operators — (I — A)Y/ 2 y > 0, and (—A)“/ 2,
a > 0, are interpreted as inverses of the Bessel and Riesz potentials respectively. Both Bessel and
Riesz potentials are considered to be defined acting on the tempered distributions in the frequency
domain, as it is usual, in the framework of fractional Bessel potential spaces (see Triebel, 1978).

The spatial Fourier transform of the Green function of the corresponding deterministic problem is
defined as
G(t,A) = Eg (—utPIIAI*(1+IA12)"?),

where

(—1)x]
Ep(=x)= Zr(mﬂ)

is the Mittag-Leffler function, and

G(t,x)= (27‘[)d/2f exp (i (A, %)) Eg (—ufﬁ”lﬂa(l + ”M|2)y/2) da.
Rd
Note that

R s e

X

when x — oo.
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The solution then is

u(t,x) = (2m)¥? J exp (i (x,4)) f Ep (=t —s)P A + 1A112)772)
R4 0
d
<[ Jaa) 12z (A, ...d2ay), (50)

j=1

where, for each s € R, Z; is defined as in the previous section. The anisotropic fractional Bessel po-
tential spaces can also be considered here to characterize, under suitable conditions (see Appendix),
the mean smoothness index s of the functions in the RKHS of the solution u, as well as their direc-
tional smoothness indexes. Specifically, for H; € (1/2,1), i = 1,...,d + 1, the square-integrable
functions in the RKHS #, of the solution u have mean smoothness index s given from the formula

1 1 1 d 1

= + ,
S d‘l‘]. Hd+1_1/2+/5 i=1Hi_1/2+a+Y

where the temporal smoothness index is Hy,; — 1/2 + 8, and the spatial smoothness indexes are
H,—1/24+a+y,fori=1,...,d.
Fractional interpolation is possible from the equation

aﬁu ad-{-l

14%
= —u=AyPu= .

ET: Ttax, . ax,

with formal solution

u(t,x) = (2n)d/2f

t d
exp (i {x, 4)) f Ep (—u(e =V IAI7) [ Jaa) 422 (dAs, ... dAy),
R4 0 .

j=1
since for 0 < 3 < 1, we have a fractional parabolic equation, for 1 < 8 < 2, we have fractional

parabolic-hyperbolic equation, and for = 2, the hyperbolic case is recovered. Note that for § =0,
we have the elliptic equation.

9 General cases

We now consider, in equation (31)), the case where the initial behavior of the solution u is defined
in terms of a spatial stationary process. Specifically, the following problem is studied:

o 92 Wy R 0 .
3 92 u(t,x) = atax(t,x), xeR, t>0, (5D
u(0,x) = h(x)=v2n J exp(iAx)y/ fu(A)Zp(d2), (52)

R
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with formal solution (see ([32)) given by
t
u(t,x) = f G(t,x —y)h(y)dy +j j G(t —s;x — y)2*Wy(ds,dy),
R 0 JR
= w/27‘cJ exp(idx)exp(—tA2)/ f(A)Z,(d )
R

+ \/%J J exp(iAx) exp(—(t —s)A2)(iA) 2127 (dQ),
0o Jr
(53)

where Z (d2) is defined as in equations (33)-(34), and f;, and Zj respectively denote the spectral
density and the white noise measure associated with the spectral representation of the stationary
random initial condition h. Note that for the suitable definition of equation (53), h must be such
that the Green function G, as a function of the spatial component, is in the intersection of the

dual spaces of the spatial reproducing kernel Hilbert spaces of processes h and ‘Z?;V)’j (t,-),ie., G, €
*
a0 [‘%W <f,~>} |
9.1 Multidimensional wave equation
In the hyperbolic case, the following extended formulation is considered:
azu ad+1 - p
—(t, = —(I-A)u(t, ——(t,x), x€R% t>0
7z b (= At )+ o e, (0% X
u(0,x) = glw,x)= (Zﬂ)d/ZJ exp (i (4,%)) /fo(A)Z,(dA), weQ, xeR?
Rd
du
(00 = hwx)= (2n)d/2f exp (i (A,) VW Zy(dA), weQ, xeRY,

R4
(54)

with © denoting the sample space involved in the construction of the basic probabilistic space
(Q, o/, P), where the random fields h, g, and u are defined. Here, f, and f, are respectively the
spectral densities of stationary random fields g and h, and Z, and Zj represent the respective spec-
tral white noise measures involved in the spectral representation of such random fields.
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The solution to problem can be defined as

-
u(t,x) = (Zn)d/zj

exp (i (A,%)) z—f(t, Ag(A)dA + (2m)?/? f exp (i (4,%)) G(t, A)h(A)d A
]Rd

R4

rt d
+ (2m)? J f exp (i (4,%) G(t —s, M) | Jia) 12z (da)
R4

0 j=1

[ oG
= @Y | expl () Fo(6 MV f (M2 (d2)
Rd
-
+ (2m)? ). o (2,%) G(t, M)/ fn(A)Z4(d2)
]Rd
rt d
+ (2m?? J f exp (i (4,%) G(t —s, M) [ J(ia) 12z (da),
0 JRA j=1

(55)

where Z (dA) is given as in equations (33)-(34), considering the d—dimensional spatial domain
case, i.e., in terms of a d —dimensional Gaussian white noise measure in the spectral domain. Here,
the Fourier transform of the Green function G associated with the corresponding deterministic prob-
lem is given by
sin ((A) t)

(ay -’

with (A) defined as in equation (47). For the suitable definition of u, the random fields g and h

G(t,A) =

*
must be such that G, € [,]*N[+4,]" N [%azWH( } . Note that here the framework of anisotropic
dtox

fractional Bessel potential spaces can also be introduced for characterization of the local regularity

properties of the solution, according to the mean smoothness index, and directional temporal and
spatial smoothness indexes of the functions in its RKHS.

Consider now the so-called d’Alembert solution to the equation
u, = c*u,, x€R, t>0

u(0,x) = glw,x)= f exp(idx)y/ fe(A)Z,(dA), weQ
R

u(0,x) = h(w,x)= J exp(iAx)y/ fr(A)Z(dA), weq.
R

The d’Alembert solution u is

x+ct

1
u(t,x) = > [g(x —ct)+glx+ct)] +EJ h(y)dy,

xX—ct

which is given here by
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u(t,x) =

% |:exp(—i7tct)f exp(idx)y/ fg(A)Z,(dA) + exp(ilct)J exp(ikx)\/fg(k)zg(dk)}
R R

o

x—ct

% |:exp(—i7tct)J exp(idx)y/ fg(A)Z,(dA) + exp(ikct)J exp(ikx)\/fg(k)zg(dk)}
R R

1 exp(iA(x +ct)) —exp(iA(x — ct))
2 ) — VAH()Zy(d).

x+ct

exp(ixy)dy) Zy(d2)

9.1.1 Fractional and multifractional versions

The formulation in the previous section can be extended to the case where the spatial diffusion
operator belongs to the family of fractional pseudodifferential operators considered in equation
(42). The case where the spatial diffusion operator is a pseudodifferential operator of variable
order can also be studied in a similar way. Specifically, the following fractional and multifractional
hyperbolic equations are studied:

2%u
2

at

d+1

(6,x) = —f((I-A)u(t,x)+ ——F (£,x), x€R% >0
Jtdx;...0xy

u(0,x) = g(w,x)=(2m)"? J exp (i (4,%)) /f{(M)Z,(dA), weQ, xR

ﬁu(o )
at X

R4

h(w,x) = (27T)d/2f exp (i (A, x))/ fR(A)Zy(dA), we, xe R4,

Rd

where f is a continuous function, which can be, for example, a fractional elliptic polynomial or
positive rational function. The solution is then defined as

where

a/\
uex) = @ J exp (i (4, ) 5 (6, 1)y Ty (RZ,(42)
Rd

+ (27T)d/zf exp (i (4, X)) K(t, M)/ () Z,(d2)
R4

t d
+ (2m)/? J J exp (i (x,x>)1?(t—s,z)]_[(mj)—HjH/Zzs(dx), (56)
0 JRd j=1
. sin (¢[f ((A)]'/2)
KM=z
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Similarly, one can consider the multifractional hyperbolic equation

0 d+1

2
u H d
—(t,x) = —-2u(t, — 7 (t,x), x€R% t>0
a2 bX O T PR PR UL

u(0,x) = g(w,x)=(27r)d/2f exp (i (A,X)) 1/ fo(A)Z,(dA), weQ, xR

Rd
%(o,x) = h(w,x)z(Zn)d/Zf exp (i (A, x) V/ fn(A)Z,(dA), weQ, xeRY,
Rd

where 2 is a pseudodifferential operator of variable order, defined as in equation (45), in terms of
symbol p satisfying the regularity conditions given in the previous section (see equation (46))). The
Green function is then given by

: A 1/2
G(t,x)=(2n)d/2f exp((l,x))sm(t[p (. A)] ) (57)

Rd [p(X’ }')]1/2

Thus, the corresponding solution u is defined as in equation (56)) in terms of function G of equation
|D instead of function K.

10 Final comments

This paper provides the necessary elements for the introduction of random field models in the
context of elliptic, parabolic and hyperbolic equations driven by fractional Gaussian random fields.
The temporal, spatial and spatiotemporal Gaussian random field models considered here can be
extended to a more general, not necessarily stationary, random innovation setting. Specifically, the
innovation process can be defined in terms of the weak-sense second-order derivatives of a Gaussian
generalized random field with RKHS isomorphic to a fractional (isotropic or anisotropic) Bessel
potential space on the temporal, spatial or spatiotemporal domain considered. This isomorphic
relationship ensures a covariance factorization. Then, the solution to the corresponding random
elliptic, parabolic or hyperbolic equation can be expressed as a weak-sense integral, involving the
convolution of the corresponding Green kernel and the kernel factorizing the covariance operator
of the innovation process. The case of random initial condition can be similarly addressed using the
covariance factorization of the Gaussian innovation process.

Appendix

The basic elements and results on anisotropic fractional Bessel potential and Hoélder spaces, needed
in the characterization of the local regularity properties of the solutions to the formulated ellip-
tic, hyperbolic and parabolic equations driven by fractional Gaussian random processes, are now
introduced.

We first consider the definition of anisotropic fractional Bessel potential spaces:
Definition 3. (see Dachkovski, 2003) The anisotropic fractional Bessel potential space Hsz’a(]Rd) =
Hsz/a(IRd) of vectorial order s/a = (i ., i) ,withs € Rand a; > 0, for i = 1,...,d, is defined

a;’’ aq
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as the space of tempered distributions f € &'(R?) having square integrable weak-sense directional

derivatives of order (ail, e, as—d) ,ie., f e (RY) is such that

5.

Here, as before, f denotes the Fourier transform of f in the sense of the tempered distributions.

Y 2
(1422572 F(Ay,..., Ag)| d2y...dAg < co.

In the above definition the parameter s represents the mean smoothness of functions in the space
Hsz/ 4(RY). Specifically, the parameter s is computed as

L 1+ +1 (58)
s d\[ )’
from the vector
S s
(117"')1(1):(_)"',_)) a1+"'+ad:d,
a aq

providing the directional smoothness of functions in the space HSZ/ 2(RY). Note that, the classical
isotropic fractional Bessel potential space corresponds to a =1 = (1,...,1). The following identity
defines the duality between these anisotropic Bessel potential spaces:

[H/2(RY)' = H;*/2(R).

Since we are considering the case p = 2 in this paper, the above identity also leads to the duality
between Hilbert spaces here, i.e.,

[H*(RD]" = H;*(RY.

After the introduction of anisotropic Bessel potential spaces, the anisotropic fractional Hoélder spaces
are now defined. Denote by ]R(d’df), for 1 <i <1, the set

RE@A) .= R% x ... x RE x --- x RY,

[ . . .
where Zkzl d; = d, and with the hat over a factor (or component) meaning that the corresponding
entry is absent. Thus, x; := (xy,...,X;,...,X;), and for a function u on RY we write

u(xg, ) = ulxy, oo, X421, Xig15 00+ XP).

Let 65(IRY) be the space of continuous functions on RY vanishing at infinity. Then, define, for
u € 6y(RY), the corresponding U;, for 1 < i <[, defined as follows:

U;: (go(]Rd) — 6) (R(d’di), %O(Rd")) )

given by
Ui(w) := (x; — u(xg,-)) € 6 (]R(ddi)’ Cgo(]Rdi)) .

The following definition introduces anisotropic fractional Holder spaces.
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Definition 4. We define the anisotropic Hélder space 6, /2 (RY) of vectorial order (aL, s i) ,t>0,
1
as

1
(got/a(Rd) — m Gy (R(d,di), (got/ai(IRdi)) ’
i=1
with U; being defined, as before, from x; := (xq,...,X;,...,Xx1), for i = 1,..., 1. Here, CS(IRdf), i=
1,...,1,r € Ry, is defined, as usual, as a member of the fractional Besov space scale on R% i=1,...,1
(see, for example, Triebel, 1978). That is, the space CS(IRdi) contains continuous functions on RY% with
continuous fractional derivatives up to order r vanishing at infinity, fori =1,...,L.

Note that, along this paper we have considered the case d; = 1, for i = 1,...,[, with d = [. The
following results provides the continuous injection of anisotropic fractional Bessel potential spaces
into anisotropic fractional Holder spaces on RY.

Theorem 1. (see Theorem 3.9.1, Amann, 2009)
For1<p<oo,ifs>t+]|al|/p,and a#a(1,...,1), for any a > 0, the following embedding holds

H;/a(IRd) R (got/a(IRd).
Here, |a| =a; + -+ ay.

Remark 3. In the formulation of Theorem 1 we have applied Theorem 3.9.1. of Amann (2009) using
the fact that every finite-dimensional Banach space, in particular R?, is so-called "UMD’, and has the
so-called property (a) (see Amann, 2009, p.43). These are conditions which are assumed in Theorem
3.9.1 of Amann (2009).

The application of Theorem [I|with p = 2 allows us to establish conditions under which the functions
in the RKHS of the solution of fractional elliptic, hyperbolic and parabolic equations, driven by
fractional Gaussian white noise, are continuous.

1. First, we consider the study of local regularity properties of functions in the RKHS 2y, of
02Wy. By definition, every function g belonging to the RKHS Hy2y,, of the weak-sense derivative

2
satisfies

. . . 3w,
of fractional Brownian motion ™ 3?

IglZe,, = j A1 PP Ao 227G (A, A2)Pd A1 d A, < o0,
Whg R2

where g denotes, as before, the Fourier transform of g.

The interrelation between subspaces of functions in 752y, and Hsz/ ?(IR?) is provided in the following
proposition, where the parameters s and a are specified.

Proposition 1. The following assertions hold:

(l) For Hl :H2 = 1/2,
Ay, = LA(R?) = HY*(R?).
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(i) For Hy,H, € (1/2,1), the set of square-integrable functions in 2y, is included in the
anisotropic fractional Bessel potential space HSZ/ 4(IR?) (see Definition @, fors; = ai =H;—-1/2,
1
and s, = = = H, — 1/2, that is, according to equation ,

as -
20 —1/2)(H; = 1/2)
H +H,—1

(59)

(iii) For H{,H, € (0,1/2), the subspace of absolutely integrable functions in Hsz/ 4(R2) is included in
the space #2y,, , with, as before, sy = >~ =H; —1/2,and s, = > =H, — 1/2.

a; a,
Proof. The proof of (i) follows directly from the definition of spaces 5,2y, , for H; = H, =1/2, and
Hg/ 3(R?), which coincides with L2(IR?).
Regarding assertion (ii), since we are considering the set of square integrable functions, for every
function g € 52y, , we have

f (L + APV HV2(8(A, A)Pd A d A, < 00, i=1,2,
ex(0)xex (0)

where £;(0) C R denotes a one-dimensional neighborhood of zero frequency of radius R > 0. Thus,

f (14127218, A)Pd A dA,
eg(0)xeg(0)
+f (142527128 (A4, A)Pd A d Ay < 0. (60)
er(0)x£g(0)

Additionally, for every function g € 52y, ,

J (L4 1A 2128 An)Pd And 2y
R\eg(0)xR\eg(0)
Pl AP Y2
= J |A. |2H1_1|A. |2H2_1 |g()’1)k2)| dlzdkl
R\eg(0)xR\eg(0) 1 2
|)Ll|2H1—1|)Lz|2H2—1 R ,
= M PN 1§(A1, A2)|"d Apd Ay
R\eg(0)xR\eg(0) 2
< Mcf A2 2, P g (A, Ap)RdApd A, < oo, (61)
R\eg(0)xR\eg(0)

and similarly,

f (1+ A2 121g(A A)Pd Agd Ay
R\eg(0)xR\eg(0)

< MCJ |24 P25 PTG (A, A2)Pd Apd A < 0. (62)
R\eg(0)xR\eg(0)
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Therefore, from equations -, g€ Hsz/a(]Rz), withs; = = = H;~1/2,and s, = =~ = Hy—1/2.
1 2
Since a, +a, = d = 2, we get by (58)

>

1 1 1+1 1 1 N 1
s 2\s; so) 2\H;—1/2 H,—1/2)’

which yields (59). Thus, assertion (ii) holds.

Note that, in the derivation of inequalities in equations (61)-(62), we have applied the fact that,
there exists a constant M > 0 such that

14 2,2 ]2
[( A )} =M
i

for A; € R\ z(0), with R sufficiently large. Additionally, we have used the continuity of the Riesz
operator on the space of square integrable functions (see Theorem 9:5:10(a), p. 660, of Edwards,
1965). That is, there exists a constant C > 0, such that, for every function h € L*(T), with T an
interval of R,

(=) EDMR)2, o~ BN o Gl <c0, j=1.2
B a1 S Clitllagy <00 T =12
R\er(0)

where in equations (61)-(62), we have considered
Ry ()= AP HAPE g, (), 1=1,2, i),

for each fixed value of A; € R \ &g(0), since g € H#2y, .

Finally, for the proof of assertion (iii), we first apply the fact that for any absolutely integrable
functions g € Hsz/a(]Rz), with H; € (0,1/2), we also have

J 21 P2 P g (A, A0)IPd Ay d 2y < 0.
er(0)xer(0)

Furthermore, for H; € (0,1/2), fori = 1,2, for every g € Hsz/a(IRz),

J |2 P A PG (A, A)Pd A d Ay
R%\eg(0)x£x(0)

f |A‘1|2H1_1|A«2|2H2_1(1+|Al|2)Hl_1/2
R2\eg(0)x£x(0) 1+ |)Ll.|2)Hl-—1/2

< Mf 1+ |7Ll~|2)Hi_1/2|/g\(ll,12)|2d7tld7tz <oo, 1=1,2.
R2\gg(0)x£g(0)

18(A1, A0)[2d A d A,

(63)

Then, g € 2y, , and assertion (iii) holds. Note that in the derivation of equation (63) we have
applied that there exists a positive constant M such that

M.lz H;—1/2
— <M, i=1,2
|:(1+|7Li|2):| - T
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for A; € R\ ex(0), with R sufficiently large. Moreover, we have considered the fact that |A;|2%i71 <1,
H; €(0,1/2), for A; € R\ gz(0), with R sufficiently large, fori =1, 2. O

It follows from Theorem (1| that the functions in the space Hsz/ 3(R?) belong to ‘éot/ AR?) if s >
t +|al/2 = t + 1, for certain t > 0. Considering the parameters s and a specified in Proposition
this inequality means that

L 2H ~1/2)(H,— 1/2)

>t+|al/2=t+1,
H;+H,—-1 lal/

that is, H; and H, must be such that

2(H, — 1/2)(Hy = 1/2)

1>t,
H,+H,-1
ie.,
2H{H, — 2[H{+H,] +3/2
ek b [Hy 2] /’ (64)
H,+H,-1

for certain t > 0.

From Proposition (ii), the set of square-integrable functions in 52y, are then continuous for
H; €(1/2,1),i=1,2, such t > 0 satisfying (64).

2. In the case of the general solution , when H;, i = 1,2, and ¢ are such that

0 0 -1 2 —H;+1/2 i —H,+1/2
)l & [ e

for a suitable 8 € R, and b = (b,, by), where, as before, Hg / b(RZ) denotes the anisotropic fractional
Bessel potential space of vectorial order /b on R?. The strong-sense (pointwise) definition of u, in
the mean-square sense, as a continuous Gaussian random field, follows from the continuous injec-
tion of anisotropic Bessel potential spaces into anisotropic Holder spaces, under suitable conditions.
Specifically, from Theorem for p >t+ @ =t +1, for certain t > 0, Hg/ b(RZ) s ‘got/ b(Rz),
and a strong-sense (pointwise) definition of u can be established. When this cannot be done, a
weak-sense definition of u must be adopted, in terms of the tempered distributions belonging to the

anisotropic Bessel potential space H, bl b(IRZ), that is,
u(¢/))=f u(x, y)(x, y)dxdy, 1 € HyPP(R?),
R2

We now refer to the specific conditions satisfied by H; and H,, in the elliptic, hyperbolic and
parabolic cases, that allow the identification of the local regularity properties of the functions in
the RKHS of their solutions, in terms of fractional Bessel potential spaces.

3. In the elliptic case, we study the relationship of the RKHS %, of the solution u to equation (12
with the anisotropic fractional Bessel potential space with smoothness parameters given in equation
(20). These parameters are derived from Proposition [1| by considering the domain of the elliptic
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differential operator |l Since in the Fourier domain ;—x acts as iA, the operator |l acts as

lid1]? +iAs]? + v2. Hence, the RKHS ., of the solution u made of the functions g such that
f (A3 + 25 + YD) A P A2 HE (A, A9)1Pd A d Ay < 0. (65)
Rz

Consequently,
Proposition 2. The following equalities and inclusions hold:
(i) ForHy =H,=1/2,and y =1,
7, = Hy(R?),
where H%(IRZ) denotes the isotropic Bessel potential space of integer order 2.
(ii) For Hy,H, € (1/2,1), the set of square-integrable functions in the RKHS 3¢, is included in the

anisotropic fractional Bessel potential space Hg / b(Rz) (see Definition El), for B, =H,—1/24+2=
H;+3/2,and fy =Hy—1/2+2 = H, + 3/2, that is, according to equation (20),

_ 2(H; +3/2)(Hy +3/2)
B Hy+H,+3 '

(iii) For Hq,H, € (0,1/2), the subspace of absolutely integrable functions in & ’1(H52/ 4(R?), with s
and a defined as in Proposition [I] and £ given in equation (12)), is included in the RKHS space
H,, where

<f, g>—<g—1(HSZ/a(R2)) = <$(f )3 g(g)>H52/a(R2)) > f, g S ,g_l(Hsz/a(]Rz))

Proof. (i) It directly follows from the definition of the spaces 5, in equation (65)), and the isotropic
Bessel potential space H3(R?).

(ii) For every square-integrable function g € 54,

f (1+ 124 PYHH3218(A, A5)1Pd Aq d 2y
£n(0)xex(0)

+f (1412, F3218 (A1, A)Pd A d Ay < o0 (66)
er(0)x ex(0)
Now, for every function g € 7,
f (14 1A H32(g( A0)Pd And 2y
R\er(0)xR\er(0)
(A2 4+ A2 + 722 P Ag P71 (1 4 (2, 232 )
- 2 22 2V(2|3. [2H—1|3 _[2H,—-1 I§(A1, A2)["dAyd A4
R\ex(0)xR\ex(0) [(AT + A5+ 7P Aq[#H Ay
_ (A2 + 23+ PRI AP
< M f T 8(A1, 22)Pd2,d 2,
R\eg(0)x R\ g (0) |22

< MCJ (A3 + A2 + r2P A P A2 (A, A2)Pd Apd Aq < o0, (67)
R\eg(0)xR\eg(0)
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and similarly,

f (1+ |7kz|2)H2+3/2|§(1112)|2d12d11
R\eg(0)xRR\eg(0)

< I\N/fcf (A7 + 25 + Y2 PIA P AL P27 (A, A9)1Pd And Ay < o0,
R\eg(0)xR\eg(0)
(68)

Therefore, from equations , 8 € Hﬁ/ (R?), with 3, = b = Hl +3/2, and B, = ﬁ =

H,+3/2. Thus, assertion (ii) holds In the derivation of inequalities (67] , we have apphed “the

fact that
(1 + |)Li|2)Hi+3/2 - M
Q3+ 23+ PP =

i=1,2,

for certain positive constant M, and Ai€ R\ eg(0),i=1,2, and, as in Proposition the continuity
of the Riesz operator on L2(T) is applied.

(iii) We first remark that for any absolutely integrable functions g € £ _1(H52/ 4(R?)), with H; €
(0,1/2),i=1,2,

j (23 + 23 +y2)PIA P 2127 (A, A2)Pd A d A, < oo
en(0)xe4(0)

Furthermore, for H; € (0,1/2),i=1,2, foreveryg € & _1(H52/ 4(IR?)), similarly to Proposition (iii),
we obtain

J (A7 + 25 + ) PIA PR AL P27 g (A, A)1Pd A, d A