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Abstract

LetX ⊂R be countably infinite and let (Yx)x∈X be an independent family of stationary random
sets Yx ⊆ R, e.g. homogeneous Poisson point processes Yx on R. We give criteria for the a.s.
existence of various “regular” functions f : R → R with the property that f (x) ∈ Yx for all
x ∈ X . Several open questions are posed.
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1 Introduction

In classical discrete percolation [Gr99] one randomly and independently deletes edges or vertices
from a graph and considers the properties of the connected components of the remaining graph V .
In standard continuum percolation [MR96], which is concerned with Boolean models, one removes
balls, whose centers form a random point process, from space and again investigates the connectivity
properties of the remaining part V of space or, somewhat more commonly, of its complement V c .
In both cases, each component deleted from the underlying medium has, in some sense, a strictly
positive volume. Moreover, any bounded region of the space intersects a.s. only a finite number of
these components (see e.g. [MR96, Proposition 7.4] for continuum percolation).

In contrast, in fractal percolation [Gr99, Chapter 13.4] and continuum fractal percolation [Zä84]
[MR96, Chapter 8.1] one may delete from any bounded open region countably many components,
each of which has a strictly positive volume. For example, [Zä84] deals with the Hausdorff dimen-
sion of the set V = R

n\
⋃

i∈NΓi , where Γ1,Γ2, . . . are independent random open sets in R
n, the

so-called cutouts, e.g. scaled Boolean models.

In the present paper we introduce another continuum percolation model, in R
2, in which countably

many components may be removed from any bounded region. However, in contrast to the previous
models, these components are null sets in R

2. In particular, the remaining set V ⊂ R
2 has full

Lebesgue measure. The cutouts are arranged in such a way that V exhibits various phase transitions.
The precise model is the following.

Fix a complete probability space (Ω,F , P) and a countably infinite set X ⊂ R. For all x ∈ X let
Yx ⊆ R be a random closed set, i.e. Yx is a random variable on (Ω,F , P) with values in the space
of closed subsets of R equipped with the Borel σ-algebra generated by the so-called Fell topology,
see [Mo05, Chapter 1.1.1] for details. Throughout we suppose that

P[Yx = ;] = 0 for all x ∈ X . (1)

Another common assumption will be that

(IND) (Yx)x∈X is independent,

which is defined as usual, see [Mo05, Definition 1.1.18]. We will also need to assume some transla-
tion invariance of the sets Yx as described in [Mo05, Chapter 1.4.1]. One such possible assumption
is that

(STAT)
Yx is stationary for all x ∈ X , i.e. Yx has
for all a ∈R the same distribution as Yx + a.

This assumption is stronger than the hypothesis that

(1STAT)
Yx is first-order stationary for all x ∈ X , i.e. for all a, b, c ∈R,
with a ≤ b, P

�

Yx ∩ [a+ c, b+ c] 6= ;
�

= P
�

Yx ∩ [a, b] 6= ;
�

.

Our main example, which satisfies all of the above conditions, is the following:

(PPP)
(Yx)x∈X are independent homogeneous Poisson point processes
on R with intensities λx > 0, where (λx)x∈X is fixed.
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For a renewal process with interarrival times which are not exponentially distributed, like under
(PPP), but Weibull distributed, see Example 4. Another example, which fulfills (IND) and (STAT)
and is periodic, is

Yx = λx(Kx +Z+ Ux), where λx 6= 0 and all Kx ⊂R (x ∈ X )

are compact and (Ux)x∈X is i.i.d. with Ux ∼ Unif[0,1].
(2)

We now remove for each x ∈ X the set {x} ×Y c
x from R

2, where Y c
x = R\Yx , and investigate the

remaining set

V :=R
2\
⋃

x∈X

�

{x} ×Y c
x

�

=
¦

(x , y) ∈R2 | x ∈ X ⇒ y ∈ Yx

©

.

We thus “perforate" R2 by cutting out random subsets of parallel vertical lines to obtain a “vertically
dependent" random set V ⊂ R

2. For a similar discrete percolation model with vertical dependence
see [Gr09, Section 1.6].

What are the topological properties of V? It is easy to see that V is always connected, see Proposition
5. However, whether V is path-connected or not depends on the parameters. (Recall that V is path-
connected if and only if for all u, v ∈ V there is a continuous function f : [0,1]→ V with f (0) = u

and f (1) = v.)

Theorem 1. Assume (PPP) and let X be bounded. Then V is a.s. path-connected if

∀ǫ > 0
∑

x∈X

e−λxǫ <∞, (3)

and a.s. not path-connected otherwise.

Example 1. Assume (PPP), suppose X is bounded and let (xn)n∈N enumerate X . Then V is a.s.
path-connected if log n= o(λxn

) and a.s. not path-connected if λxn
= O(log n), cf. Example 3.

Note that (3) depends only on the intensities λx , counted with multiplicities, but not on X itself.

Theorem 1 will be generalized in Theorem 4. There it will also be shown that V is a.s. path-
connected if and only if there is a continuous function f : R → R whose graph graph( f ) :=
{(x , f (x)) | x ∈ R} is contained in V . This brings up the question under which conditions there
are functions f : R→ R which have other regularity properties than continuity and which belong
to

I :=
�

f : R→R | graph( f )⊆ V
	

=
�

f : R→R | ∀x ∈ X : f (x) ∈ Yx

	

.

The elements of I in some sense interpolate the sets Yx , x ∈ X , see Figure 1 for examples. For this
reason we suggest the name interpolation percolation for this model.

In Section 2 we derive some conditions under which the following subsets of Ω, which describe the
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Figure 1: (a) In the left figure xn, n ∈N, are independent and uniformly distributed on [0,1], X = {xn : n ∈N}, and
Yxn

, n ∈N, are independent Poisson point processes of intensity λxn
= n, independent also of (xn)n∈N. The figure shows

Yx1
, . . . ,Yx20

and an interpolating continuous function f ∈ I with f (0) = f (1) = 0. (b) In the right figure X = {2, 3, . . .}
and Yn = [1/n, 1] +Z+ Un, where Un, n ≥ 2, are independent and uniformly distributed on [0,1]. The figure shows
Y2, . . . ,Y11 and an interpolating line, see also Open Problem 3.

existence of interpolating functions with various regularity properties, occur or don’t occur.

B :=
�

∃ f ∈ I : f is bounded
	

(see Prop. 3),

C :=
�

∃ f ∈ I : f is continuous
	

(see Th. 4),

M :=
¦

∃ f ∈ I : f is increasing1 and bounded
©

(see Th. 6),

BV :=
�

∃ f ∈ I : f is of bounded variation
	

(see Th. 7),

LK :=
�

∃ f ∈ I : f is Lipschitz continuous with Lipschitz constant K
	

,
where K > 0, (see Th. 10),

Pm :=
�

∃ f ∈ I : f is a polynomial of degree m
	

,
where m ∈N0 = {0,1,2, . . .}, (see Prop. 11, Th. 12),

A :=
�

∃ f ∈ I : f is real analytic
	

(see Prop. 13).

It will follow from the completeness of (Ω,F , P) that these sets are events, i.e. elements of F . Our
results for B, Pm and A are not difficult.

Remark 1. (0-1-law) Note that every event defined above, call it G, is invariant under vertical shifts
of V , i.e. G occurs if and only if it occurs after replacing V by any V+(0, a), a ∈R. Therefore, under
suitable ergodicity assumptions, P[G] ∈ {0,1}. This is the case if (PPP) holds. In general, e.g. in
case (2), this need not be true, see Remark 10.

Remark 2. (Monotonicity) There is an obvious monotonicity property: IfX is replaced byX ′ ⊆X
and (Yx)x∈X by (Y ′

x ′
)x ′∈X ′ with Y ′

x ′
⊇ Yx ′ for all x ′ ∈ X ′ then V and I and all the events defined

above and their probabilities increase.

Remark 3. (Closedness) There are various notions of random sets. Random closed sets seem to be
the best studied ones, see [Mo05] and Chapter 1.2.5 therein for a discussion of non-closed random
sets. For this reason we assume the sets Yx to be closed even though this assumption does not

1Here and in the following a function f is called increasing if and only if f (s)≤ f (t) for all s < t. Similarly, f is called
decreasing if − f is increasing.
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seem to be essential for our results. An alternative, but seemingly less common notion of stationary
random and not necessarily closed sets is described e.g. in [JKO94, Chapter 8].

Remark 4. (Further connections to other models) This model is related to various other models
in probability.

(a) (Brownian motion) Our construction of the continuous functions in the proof of Theorem 1 has
been inspired by Paul Lévy’s method of constructing Brownian motion. In Example 4 we shall even
choose X ⊆ (0,1] and (Yx)x∈X in a non-trivial way and use this method to define a Brownian
motion (Bx)0≤x≤1 on the same probability space (Ω,F , P) such that a.s. (Bx)x∈R ∈ I . (Here we let
Bx := 0 for x /∈ (0,1] to extend B·(ω) to a function defined on R.)

(b) (Lipschitz and directed percolation) In [DDGHS10] random Lipschitz functions F : Zd−1 → Z

are constructed such that, for every x ∈ Zd−1, the site (x , F(x)) is open in a site percolation process
on Z

d . The case d = 2 is easy since it is closely related to oriented site percolation on Z
2. However,

if we let d = 2, denote the Lipschitz constant by L and let the parameter pL of the site percolation
process depend on L such that LpL → λ ∈ (0,∞) as L→∞ then we obtain after applying the scaling
(x , y) 7→ (x , y/L) in the limit L → ∞ the problem of studying the event L1 under the assumption
(PPP) with X = Z and λx = λ for all x ∈ X . Theorem 10 deals with this case and is proved using
oriented percolation.

(c) (First-passage percolation) Our computation of P[BV ] in Theorem 7 applies a method used for
the study of first-passage percolation on spherically symmetric trees in [PP94].

(d) (Intersections of stationary random sets) Note that

P0 =
n
⋂

x∈X

Yx 6= ;
o

. (4)

Such intersections of stationary random sets (or the unions of their complements) have been inves-
tigated e.g. in [Sh72a], [Sh72b], [KP91] and [JS08]. Studying the events Pm ⊇ P0, m ≥ 1, yields
natural variations of these problems, see e.g. Open Problem 3.

(e) (Poisson matching) In 2-color Poisson matching [HPPS09] one is concerned with matching the
points of one Poisson point process to the points of another such process in a translation-invariant
way. In our model with assumption (PPP),∞-color Poisson matching would correspond to choosing
infinitely many f ∈ I in a translation-invariant way. This will be made more precise in Open
Problem 6.

2 Results, proofs, and open problems

Some of our results will be phrased in terms of the following random variables. We denote for
x ∈ X and z ∈R by

D+x (z) := inf{y − z : y ≥ z, y ∈ Yx},

D−x (z) := inf{z − y : y ≤ z, y ∈ Yx}, and

Dx(z) := inf{|y − z| : y ∈ Yx}=min{D+x (z), D−x (z)}

the distance of z ∈R from Yx ∩ [z,∞), Yx ∩ (−∞, z], and Yx , respectively.
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Lemma 2. The probability that Dx(z) is finite for all x ∈ X and all z ∈R is 1. If (1STAT) holds then

the distributions of Dx(z), D+x (z) and D−x (z) do not depend on z and 2Dx(0) has the same distribution

as D+x (0) and D−x (0).

Proof. The first statement follows from {∀z ∈R : Dx(z)<∞}= {Yx 6= ;} and (1). If (1STAT) holds
then

P[Dx(z)≤ t] = P[Yx ∩ [z − t, z + t] 6= ;] = P[Yx ∩ [−t, t] 6= ;] = P[Dx(0)≤ t].

Similarly, P[D+x (z)≤ t] = P[D+x (0)≤ t] = P[Dx(0)≤ t/2]. Analogous statements hold for D−x .

Example 2. Under assumption (PPP) all three distances D+x (z), D−x (z) and Dx(z) are exponentially
distributed with respective parameters λx , λx , and 2λx .

For comparison with Theorem 4 about continuous functions and as a warm-up we first consider
bounded, but not necessarily continuous functions.

Proposition 3. (Bounded functions) Assume (IND). If

sup
x∈X

Dx(0)<∞ a.s. (5)

then P[B] = 1, otherwise P[B] = 0.

Proof. If (5) holds then a bounded function f ∈ I can be defined by setting f (x) = 0 for x /∈ X and
choosing f (x) ∈ Yx with | f (x)| = Dx(0) for all x ∈ X . For the converse we note that any f ∈ I

must satisfy ‖ f ‖∞ ≥ supx∈X Dx(0) and apply Kolmogorov’s zero-one law.

Remark 5. By the Borel Cantelli lemma (5) is equivalent to

∃ t <∞
∑

x∈X

P[Dx(0)> t]<∞. (6)

Note that (5) and (6) do not depend on X but only on the distributions of the random variables
Dx(0), x ∈ X .

Example 3. Suppose (PPP) holds and (xn)n∈N enumeratesX . Then P[B] = 1 if log n= O(λxn
) and

P[B] = 0 if λxn
= o(log n), cf. Example 1.

Theorem 1 immediately follows from the following result.

Theorem 4. (Continuous functions) Assume (IND) and (1STAT). If

∀m ∈N ∀ǫ > 0
∑

x∈X ,|x |≤m

P[Dx(0)> ǫ]<∞ (7)

then P[V is path-connected] = P[C] = 1. Otherwise, P[V is path-connected] = P[C] = 0.

Remark 6. Suppose (xn)n∈N enumerates X . Then, by the Borel Cantelli lemma, (7) is equivalent
to

∀m ∈N lim
n→∞

Dxn
(0)1[−m,m](xn) = 0 a.s.. (8)

Compare (7) to (6) and (8) to (5). Also note that if X is bounded then (7) does not depend on X
itself but only on the distributions of the random variables Dx(0), x ∈ X .
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Proof of Theorem 4. Assume (7). Then for all y ∈ R and all ǫ > 0 the set X (y,ǫ) := {x ∈ X |
Dx(y) ≥ ǫ/3} is a.s. locally finite due to the Borel Cantelli lemma and Lemma 2. Therefore, for all
K ,ǫ > 0 the set

XK(ǫ) := {x ∈ X | ∃y ∈ [−K , K] : Dx(y)≥ ǫ}

is a.s. locally finite as well since it is contained in the union of the sets X (y,ǫ) with y ∈ [−K , K]∩

(ǫ/3)Z. This together with (1) and the monotonicity of XK(ǫ) in K and in ǫ implies the existence
of a set Ω′ ⊆ Ω of full P-measure on which

∀K ,ǫ > 0 :XK(ǫ) is locally finite and ∀x ∈ X : Yx 6= ;. (9)

For the proof of the first statement of the theorem it suffices to show that on Ω′ there is for all
a0, a1, b0, b1 ∈R with a0 < a1 some continuous function f = fa0,a1,b0,b1

: [a0, a1]→R with

f (a0) = b0, f (a1) = b1 and f (x) ∈ Yx for all x ∈ X∩]a0, a1[. (10)

Indeed, this immediately shows that on Ω′ any two points in V with differing first coordinates a0 and
a1 can be connected by a continuous path inside V . Points in V whose first coordinates coincide can
be connected by the concatenation of two such paths. Similarly, P[C] = 1 follows by concatenating
the functions fan,an+1,0,0, where (an)n∈Z is a strictly increasing double sided sequence in R\X with
an→∞ and a−n→−∞ as n→∞.

Therefore, let a0, a1, b0, b1 ∈ R with a0 < a1. If X∩]a0, a1[ is finite then the existence of a contin-
uous function fa0,a1,b0,b1

satisfying (10) is obvious. Now assume that X∩]a0, a1[ is infinite. Also fix
a realization in Ω′. By (9),

K :=
�

sup
�

Dx(0) : x ∈ X1(1)∩]a0, a1[
	

∨ |b0| ∨ |b1|
�

+ 2 (11)

is finite. Here sup; := 0. The sets An, n ∈N0, recursively defined by

An :=
�

XK(2
−n)∩]a0, a1[

�

\

n−1
⋃

k=0

Ak (n ∈N0),

are finite due to (9), pairwise disjoint and satisfy

⋃

n≥0

An =
⋃

n≥0

XK(2
−n)∩]a0, a1[=

�

X∩]a0, a1[
�

\{x ∈ X : [−K , K] ⊆ Yx}. (12)

We shall obtain the desired function f = fa0,a1,b0,b1
as uniform limit of a sequence ( fn)n≥0 of contin-

uous functions which satisfy for all n≥ 0,

fn : [a0, a1]→

 

K − 2+
n−1
∑

k=0

2−k

!

[−1,1]⊆ [−K , K], (13)

fn(a0) = b0, fn(a1) = b1, (14)

fn(x) ∈ Yx for all x ∈ An, (15)

fn(x) = fn−1(x) for all A0 ∪ . . .∪ An−1 if n≥ 1, and (16)

‖ fn− fn−1‖∞ ≤ 2−n+1 if n≥ 1. (17)
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x ∈ Anx ∈ An x ∈ An+1

ǫ

ξ

f (τ f )f (σ f )

Figure 2: For the proof of Theorem 4 in case (PPP).

We construct this sequence recursively. For n = 0 set f0(a0) = b0, f0(a1) = b1 and choose f0(x) ∈

Yx for all x ∈ A0 such that | f0(x)| = Dx(0). This defines f0(x) for finitely many x . By linearly
interpolating in between these values we get a continuous piecewise linear function f0 satisfying
(13)–(17) with n= 0.

Now let n ≥ 0 and assume that we have already constructed a continuous function fn which fulfils
(13)–(17). We then set fn+1(x) = fn(x) for all x ∈ {a0, a1} ∪ A0 ∪ . . .∪ An. For all x ∈ An+1, which
again is a finite set, we choose fn+1(x) as some element of Yx with distance Dx( fn(x)) from fn(x)

and again interpolate linearly to obtain a piecewise linear continuous function fn+1, see Figure 2
(a).

Obviously, this function satisfies (14)–(16) with n+ 1 instead of n. To see that the same is true for
(13) and (17) we note that for all x ∈ An+1, by (13), fn(x) ∈ [−K , K]. Therefore, Dx( fn(x)) ≤ 2−n

since x /∈ XK(2
−n). Hence | fn+1(x)− fn(x)| ≤ 2−n. Consequently, since we interpolated linearly,

‖ fn− fn+1‖∞ = sup
�

| fn+1(x)− fn(x)| : x ∈ An+1

	

≤ 2−n, (18)

i.e. (17) holds with n+1 instead of n. This together with (13) implies that (13) also holds for n+1
instead of n.

Having finished the construction of ( fn)n≥0, we see that it converges uniformly on [a0, a1] due to
(17) to some function f . Since all the functions fn are continuous f is continuous as well. It also
fulfils (10) due to (12)–(16).

For the proof of the converse assume that there are m ∈ N and ǫ > 0 such that
∑

x∈X ,|x |≤m P[Dx(0) > ǫ] = ∞. Since [−m, m] is compact there is ξ ∈ [−m, m] such that for all
δ > 0 the sum of the probabilities P[Dx(0)> ǫ] with x ∈ X ∩ (ξ−δ,ξ+δ) diverges. Without loss
of generality we may assume that one can choose ξ ∈ [−m, m] such that even

∑

x∈X∩(ξ−δ,ξ)

P[Dx(0)> ǫ] =∞ for all δ > 0. (19)

(Otherwise replace X by −X .) Denote by C2 the event that there is a continuous function f =

( f1, f2) : [0,1] → R
2 with f1(0) < ξ < f1(1) whose graph is contained in V . Note that C ⊆ C2
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and {V is path-connected} ⊆ C2. Therefore, it suffices to show P[C2] = 0. For any such function
f define τ f := min{t ∈ [0,1] | f1(t) = ξ}. Since f1 is continuous τ f is well-defined. Next we set

σ f := sup
¦

t ∈ [0,τ f ] : | f2(t)− f2(τ f )| ≥ ǫ/2
©

. Since f2 is continuous as well we have 0 ≤ σ f <

τ f , see Figure 2 (b). Therefore, f1(σ f )< ξ by definition of τ f . Consequently,

C2 =
⋃

j∈Z,k∈N

�

∃ f ∈ C
�

[0,1],R2
�

: f1(0)< ξ < f1(1), graph( f )⊂ V,

| f2(τ f )− jǫ| ≤ ǫ/2, f1(σ f )< ξ− 1/k
	

.

If f1(σ f ) < ξ− 1/k then there is by the intermediate value theorem for all x ∈ X ∩ (ξ− 1/k,ξ)
some t ∈ (σ f ,τ f ) with f1(t) = x . For such t we have on the one hand by the definition of σ f that
| f2(t)− f2(τ f )| < ǫ/2 and on the other hand f2(t) ∈ Yx since graph( f ) ⊂ V . Therefore, by the
triangle inequality,

C2 ⊆
⋃

j∈Z,k∈N

C j,k, where C j,k :=
�

∀x ∈ X ∩ (ξ− 1/k,ξ) : Dx( jǫ)≤ ǫ
	

∈ F .

Consequently, it suffices to show that P[C j,k] = 0 for all j ∈ Z, k ∈ N. However, by (IND), (1STAT)
and Lemma 2,

P[C j,k] =
∏

x∈X∩(ξ−1/k,ξ)

�

1− P[Dx(0)> ǫ]
� (19)
= 0. �

Whether V is path-connected or not thus depends on the parameters of the model. One may wonder
whether the same is true for the connectedness of V . This is not the case. V is always connected as
the following non-probabilistic statement shows when applied to U = V and X =R\X .

Proposition 5. (Connectedness) Let U ⊆R
2 with projection π[U] =R onto the first coordinate and

let X ⊆R be dense in R with X ×R⊆ U. Then U is connected.

Proof. Assume that U is not connected. Then there are non-empty open sets O1,O2 ⊆ R
2 such that

U∩O1 and U∩O2 partition U . Since R= π[U] = π[O1]∪π[O1] is connected and the sets π[O1] and
π[O2] are both non-empty and open, the set π[O1]∩π[O2] is not empty either. Since it is also open
and X is dense in R there is x ∈ X ∩π[O1]∩π[O2]. For any i = 1,2, Ui := ({x}×R)∩Oi 6= ; because
of x ∈ π[Oi]. Moreover, {x} ×R ⊆ U due to X ×R ⊆ U . Therefore, U1 and U2 partition {x} ×R

and are non-empty and open in {x} ×R. This is a contradiction since {x} ×R is connected.

Example 4. (Interpolation by Brownian motion) The construction of an interpolating continuous
function in the proof of Theorem 4, see in particular Figure 2 (a), resembles Paul Lévy’s construction
of Brownian motion, see e.g. [MP10, Chapter 1.1.2].

We shall show that one can indeed choose X ⊆ (0,1] and, in a non-trivial way, (Yx)x∈X and then
construct by Lévy’s method a Brownian motion (Bx)x∈[0,1] on (Ω,F , P) such that a.s. (Bx)x∈R ∈ I .
(Here Bx := 0 for x /∈ [0,1].) Like in Lévy’s construction we let X be the set of dyadic numbers in
(0,1], namely the disjoint union X := X−1 ∪

⋃

n≥1Xn, where X−1 := {1} and Xn :=
�

k2−n
�

� 1 ≤
k < 2n, k is odd

	

for n≥ 1. For n= −1,1,2,3, . . . and x ∈ Xn let Yx ⊂R be a two-sided stationary
(in the sense of (STAT), see e.g. [KT75, Theorem 9.9.1]) renewal processes with i.i.d. interarrival
times whose cumulative distribution function is given by Fn(t) := 1− exp

�

−2n−2 t2
�

for t ≥ 0 and
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whose probability density function we denote by fn. Furthermore, we assume (IND). For x ∈ X and
z ∈ R we denote by Yx(z) the a.s. unique element of Yx with minimal distance to z, i.e. distance
Dx(z). We then recursively define Bx for x ∈ {0} ∪X as follows: We set B0 := 0 and B1 := Y1(0).
Having defined Bx for x ∈ Xm, m< n, we set

Bx := Yx

�

Bx−2−n + Bx+2−n

2

�

for x ∈ Xn. By Lemma 2 and [KT75, Theorem 9.9.1] for all x ∈ Xn and z ∈R,

P[Dx(z)> t] = P[D+x (0)> 2t] =

∫∞

2t

∫∞

0
fn(x

++ x−) d x− d x+

∫∞

0

∫∞

0
fn(x

++ x−) d x− d x+
. (20)

Since
∫∞

0
fn(x

+ + x−) d x− = 1− Fn(x
+) and

∫ ∞

2t

1− Fn(x
+) d x+ =

∫ ∞

2t

e−2n−2(x+)2 d x+ = 2(1−n)/2

∫ ∞

2(n+1)/2 t

e−s2/2 ds

the quantity in (20) is equal to P
�

|Z | ≥ 2(n+1)/2 t
�

, where Z is a standard normal random variable.

Consequently, by symmetry Yx(z) − z is normally distributed with mean 0 and variance 2−n−1 as
it should for Lévy’s construction. Continuing as in the proof of [MP10, Theorem 1.3] the function
(Bx)x∈X can be a.s. extended to a standard Brownian motion (Bx)x∈[0,1].

Theorem 6. (Increasing, bounded functions) Assume (IND) and (1STAT). Then P[M] = 1 if
∑

x∈X D+x (0)<∞ a.s. and P[M] = 0 otherwise.

Proof. Let (xn)n≥0 enumerateX . For n≥ 0 we denote by ϕn the permutation of {0, . . . , n} for which
�

xϕn(i)

�

0≤i≤n
is strictly increasing.

To prove the first assertion assume that (D+x (0))x∈X is a.s. summable. For y ∈ R and n ≥ 0 we
denote by un(y) := y + D+xn

(y) the smallest element of Yxn
which is ≥ y . For n ≥ 0 we define the

function fn : R→ [0,∞) by fn(x) := 0 if x < xϕn(0) and

fn(x) := uϕn(i)

�

uϕn(i−1)

�

. . .
�

uϕn(1)

�

uϕn(0)(0)
��

. . .
��

if 0≤ i < n and xϕn(i)
≤ x < xϕn(i+1) or if i = n and xϕn(n)

≤ x , see Figure 3.

Then f := supn fn satisfies the requirements formulated in the definition of M , as we shall explain
now.

Firstly, f is increasing since each fn is increasing. Secondly, f is a.s. bounded. Indeed, due to
(IND), (1STAT) and Lemma 2, ‖ fn‖∞ = fn(xϕn(n)

) has the same distribution as D+x0
(0)+ . . .+D+xn

(0).
Moreover, ( fn(x))n≥0 is for each x ∈ R an increasing sequence. Consequently, ‖ fn‖∞ increases for
n→∞ towards ‖ f ‖∞. Hence ‖ f ‖∞ has the same distribution as

∑

x∈X D+x (0) and is therefore a.s.
finite by assumption. Thirdly, we have for all i ≥ 0 that f (x i) ∈ Yx i

a.s. since fn(x i) ∈ Yx i
for all

n≥ i and Yx i
is closed.
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xϕ4(0) xϕ4(1) xϕ4(2) xϕ4(3) xϕ4(4)

f4

Figure 3: fn is the smallest increasing function R→ [0,∞) with fn(x i) ∈ Yxi
for all 0 ≤ i ≤ n. Here n = 4 and (PPP)

hold.

For the proof of the second statement of the theorem assume that P[
∑

x D+x (0) = ∞] > 0. For all
a, b ∈ Z with a < b define

Ma,b :=
�

∃ f ∈ I : f is increasing, f [R]⊆ [a, b]
	

.

Note that M is the union of all Ma,b, a < b. Therefore, it suffices to show that P[Ma,b] = 0 for all
a < b. For all n≥ 0,

Ma,b ⊆
¦

∃ f : R→ [a, b] : f is increasing, ∀ 0≤ i ≤ n f (x i) ∈ Yx i

©

.

Any increasing f : R→ [a, b] with f (x i) ∈ Yx i
for all 0≤ i ≤ n must satisfy

f (xϕn(i)
)≥ S

(n)

i
:= inf

n

y ≥ S
(n)

i−1

�

� y ∈ Yϕn(i)

o

(0≤ i ≤ n),

where S
(n)

−1 := a. Therefore, Ma,b ⊆ {S
(n)
n ≤ b} ∈ F for all n ∈ N. Hence, by (IND), (1STAT) and

Lemma 2,

P[Ma,b]≤ inf
n∈N

P
�

S(n)n ≤ b
�

= inf
n∈N

P





n
∑

i=0

D+x i
(0)≤ b− a



 ≤ P





∑

x∈X

D+x (0)<∞



 ,

which is, by assumption, strictly less than 1 and therefore, by Kolmogorov’s zero-one law, equal to
0.

Remark 7. In Theorem 6 one can replace D+x (0) by Dx(0) due to Lemma 2.

Example 5. Assume (PPP). Then, by the three series theorem and Theorem 6, P[M] = 1 if

∑

x∈X

1

λx

<∞ (21)

and P[M] = 0 else. In particular, (21) implies P[BV ] = 1 since M ⊆ BV . For the reverse implication
we have the following partial result.
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Theorem 7. (Functions of bounded variation) Assume (PPP) and X =N. Then P[BV ] = 0 if any

one of the following conditions (22)–(24) holds:

(λn)n∈N is increasing and
∑

n∈N

1

λn

=∞. (22)

lim inf
n→∞

λn <∞. (23)

lim
n→∞

λn =∞ and lim sup
n→∞

n

λ(n)
> 0, where (λ(n))n∈N is an (24)

increasingly ordered permutation of (λn)n∈N.

Open Problem 1. (a) Theorem 7 and Example 5 do not determine P[BV ] in some cases in which
(λn)n≥0 is a permutation of, say, (n log n)n≥2. (b) Can Theorem 7 be extended to X whose closure
contains an interval?

The following non-probabilistic lemma is needed for case (24).

Lemma 8. Let (µn)n≥0 be a sequence of positive numbers which monotonically decreases to 0. Then

lim sup
n→∞

nµn > 0 (25)

implies

∀ϕ : N0→N0 bijective ∃M ⊆N0

∑

n∈M

min
m∈M : m≤n

µϕ(m) =∞. (26)

Remark 8. In fact, (25) and (26) are equivalent.

Proof of Lemma 8. Let ǫ := lim supn→∞ nµn > 0 and let ϕ be a permutation of N0. We inductively
construct a sequence (Mk)k≥0 of finite sets Mk ⊂N0 such that for all 0≤ i < j,

∀m ∈ Mi ∀n ∈ M j : m< n, (27)

ϕ(m)< ϕ(n) and (28)

#M j min
m∈M j

µϕ(m) ≥ ǫ/2. (29)

The induction starts with M0 := {0}. Let k ≥ 1 and assume that we have already defined finite
sets M0, . . . , Mk−1 which fulfill conditions (27)–(29) for all 0 ≤ i < j < k. (These conditions are
void for k = 1.) We set mk := max{ϕ(a) | 0 ≤ a ≤ max Mk−1} and choose nk > mk large enough
such that (nk −mk)µnk

> ǫ/2. Then Mk := {ϕ−1(a) | mk < a ≤ nk} is finite. Moreover, (27)–(29)
hold for all 0 ≤ i < j ≤ k as well. Indeed, by induction hypothesis we only need to consider the
case j = k. Property (29) follows from the definition of Mk and the fact that µa decreases in a.
For the proof of (27) and (28) let m ∈ Mi and n ∈ Mk. The definition of Mk implies mk < ϕ(n).
Therefore, by definition of mk, ϕ(a) < ϕ(n) for all 0 ≤ a ≤ max Mk−1. In particular, a 6= n for all
0 ≤ a ≤max Mk−1 and therefore a < n for all 0 ≤ a ≤max Mk−1. Due to (27) this applies to a = m

and yields ϕ(m)< ϕ(n) and m< n.
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Having constructed the sequence (Mk)k≥0 we set M :=
⋃

k≥1 Mk. By disjointness, see (27),

∑

n∈M

min
m∈M : m≤n

µϕ(m) =
∑

j≥1

∑

n∈M j

min
m∈M : m≤n

µϕ(m)

(27)
=

∑

j≥1

∑

n∈M j

min
m∈M1∪...∪M j : m≤n

µϕ(m)
(28)
=

∑

j≥1

∑

n∈M j

min
m∈M j : m≤n

µϕ(m)

≥
∑

j≥1

∑

n∈M j

min
m∈M j

µϕ(m)
(29)
≥

∑

j≥1

ǫ/2 = ∞.

For the proof of Theorem 7 we first show in Lemma 9 that whenever there is a function of bounded
variation in I then there is also another such function which is only “jumping between nearest
neighbors". More precisely, we recursively define the random function g :

⋃

n∈N0
{+,−}n→ R such

that g(s1, . . . , sn) ∈ Yn for n ≥ 1 by setting g(λ) := 0, where λ is the empty sequence, i.e. the only
element of {+,−}0, and

g(st) := g(s) +
�

tDt
|st|
(g(s))

�

for s ∈
⋃

n∈N0

{+,−}n, t ∈ {+,−}, (30)

where st is the concatenation of s and t and | · | denotes the length of a sequence. For any (finite or
infinite) sequence s = (si)1≤i<N+1 of length N ≤∞ we let

gs := (g(s1, . . . , si))0≤i<N+1.

Moreover, for any finite of infinite sequence h = (h0,h1, . . .) of real numbers we define the total
variation of h as V (h) :=

∑

i |hi − hi−1|.

Lemma 9. Let X =N. Then BV ⊆ BV2 :=
¦

∃s ∈ {+,−}N : V (gs)<∞
©

.

Proof. Let f ∈ I be of bounded variation. Set f0 := 0 and fi := f (i) for i ∈N. We define inductively
for i ∈N,

si := sign
�

fi − g(s1, . . . , si−1)
�

∈ {+,−}, where sign 0 := +, (31)

and set s := (si)i∈N. Thus (gi)i≥0 := gs is the sequence which starts at 0 and tries to trace ( fi)i≥0

but is restricted to making only the smallest possible jumps up or down. To prove V (gs) < ∞ we
consider for all n ∈N the telescopic sum

V ( f0, . . . , fn)− V (g0, . . . , gn) = V (g0, f1, . . . , fn)− V (g0, . . . , gn)

=

n
∑

i=1

V (g0, . . . , gi−1, fi , . . . , fn)− V (g0, . . . , gi , fi+1, . . . , fn). (32)

We shall show that all the summands in (32) are non-negative, see Figure 4. Since the sequences
(g0, . . . , gi−1, fi , . . . , fn) and (g0, . . . , gi , fi+1, . . . , fn) differ only in the i-th term the i-th summand in
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i − 1 i i + 1

fi

gi

Figure 4: The dashed graph has a smaller total variation than the solid graph.

(32) is equal to

| fi − gi−1|+ | fi+1− fi | − |gi − gi−1| − | fi+1− gi |

(31),(30)
= si( fi − gi−1) + | fi+1− fi | − D

si

i
(gi−1)− | fi+1− gi |

= si

�

fi − (gi−1+ (si D
si

i
(gi−1)))

�

+ | fi+1− fi | − | fi+1− gi |

(30)
= si

�

fi − gi

�

+ | fi+1− fi | − | fi+1− gi |

=
�

� fi − gi

�

�+ | fi+1− fi | − | fi+1− gi |, (33)

where we used in (33) that by definition fi , gi ∈ Yi with fi ≥ gi ≥ gi−1 if si = + and fi ≤ gi ≤ gi−1

if si = −. Due to the triangle inequality the expression in (33) is non-negative. Hence, by (32),
V (g0, . . . , gn)≤ V ( f0, . . . , fn) and therefore

V (gs) = sup
n∈N

V (g0, . . . , gn)≤ sup
n∈N

V ( f0, . . . , fn) = V
�

( fn)n≥0

�

,

which is less than or equal to the total variation of f , which is finite.

Proof of Theorem 7. First consider case (22). By Lemma 9 is suffices to show P[BV2] = 0. The proof
goes along the same lines as part of the proof of [PP94, Theorem 3], which gives a criterion for
explosion of first-passage percolation on spherically symmetric trees. By definition of BV2,

P[BV2] = P

�

inf
s∈{+,−}N

V (gs)<∞

�

= P

�

inf
s∈{+,−}N

sup
n∈N

V (g(s1,...,sn))<∞

�

≤ P

�

sup
n∈N

inf
s∈{+,−}N

V (g(s1,...,sn))<∞

�

= P

�

lim
n→∞

min
s∈{+,−}n

V (gs)<∞

�

. (34)

For all n ∈N and s ∈ {+,−}n,

V (gs) =

n
∑

i=1

|g(s1, . . . , si)− g(s1, . . . , si−1)|
(30)
=

n
∑

i=1

D
si

i
(g(s1, . . . , si−1)). (35)
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This is the sum of independent exponentially distributed random variables with respective param-
eter λi , see Example 2. To apply standard large deviation estimates we weight the summands to
make them i.i.d. and consider first the sum

V ∗(gs) :=
n
∑

i=1

λi D
si

i
(g(s1, . . . , si−1)) (36)

of n independent random variables which are all exponentially distributed with parameter 1. We
choose ǫ > 0 such that 2e2ǫ < 3, denote by +n the only element of {+}n and get

P

�

min
s∈{+,−}n

V ∗(gs)< ǫn

�

≤ 2nP
�

V ∗(+n)< ǫn
�

≤ 2ne2ǫnE
�

e−2V ∗(+n)
�

=

�

2e2ǫ

3

�n

,

which is summable in n. Therefore, by the Borel Cantelli lemma, there is a.s. some random N such
that

M∗n := min
s∈{+,−}n

V ∗(gs)≥ ǫn for all n≥ N . (37)

Recalling (35) we have for all n ∈N and s ∈ {+,−}n,

V (gs) =

n
∑

i=1

λ−1
i







i
∑

j=1

λ j D
s j

j
(g(s1, . . . , s j−1))−

i−1
∑

j=1

λ j D
s j

j
(g(s1, . . . , s j−1))







(36)
=

n
∑

i=1

λ−1
i

�

V ∗(g(s1,...,si))− V ∗(g(s1,...,si−1))
�

=

n
∑

i=1

λ−1
i V ∗(g(s1,...,si))−

n−1
∑

i=1

λ−1
i+1V ∗(g(s1,...,si))

= λ−1
n V ∗(gs) +

n−1
∑

i=1

(λ−1
i −λ

−1
i+1)V

∗(g(s1,...,si)). (38)

Due to assumption (22), λ−1
i
−λ−1

i+1 ≥ 0. Therefore, the right hand side in (38) is

≥ λ−1
n V ∗(gs) +

n−1
∑

i=1

(λ−1
i −λ

−1
i+1)M

∗
i

= λ−1
n V ∗(gs) +

n−1
∑

i=1

(λ−1
i −λ

−1
i+1)ǫi

+

(N∧n)−1
∑

i=1

(λ−1
i −λ

−1
i+1)(M

∗
i − ǫi) +

n−1
∑

i=N∧n

(λ−1
i −λ

−1
i+1)(M

∗
i − ǫi)

(37)
≥ λ−1

n V ∗(gs) + ǫ

n−1
∑

i=1

(λ−1
i −λ

−1
i+1)i − c1(N) + 0, where (39)

c1(N) := ǫ

N−1
∑

i=1

(λ−1
i −λ

−1
i+1)i.
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The second summand in (39) is equal to

ǫ

 

n−1
∑

i=1

i

λi

−

n
∑

i=2

i − 1

λi

!

= ǫ

 

1

λ1
−

n− 1

λn

+

n−1
∑

i=2

1

λi

!

= ǫ

 

−
n− 1

λn

+

n−1
∑

i=1

1

λi

!

.

Therefore, the right hand side of (39) is equal to

ǫ

n−1
∑

i=1

1

λi

− c1(N) +
V ∗(gs)− ǫ(n− 1)

λn

≥ ǫ

n−1
∑

i=1

1

λi

− c1(N)− c2(N) (40)

since
V ∗(gs)− ǫ(n− 1)

λn

≥
M∗n − ǫn

λn

(37)
≥
−ǫN

λ1
=: c2(N).

The right hand side of (40) does not depend on the particular choice of s ∈ {+,−}n and tends a.s. to
∞ as n→∞ due to (22). Consequently, the right most side of (34) is 0, which completes the proof
in case (22).

In case (23) there is some finite constant c such that X ′ := {x ∈ X : λx < c} is infinite. Since
X ′ ⊆X and (λx)x∈X ′ ≤ (c)x∈X ′ the claim follows from (22) and monotonicity (Remark 2).

Case (24) is treated similarly. We choose a permutation ϕ of N such that λ(n) = λϕ−1(n) for all n.
Applying Lemma 8 to µn := 1/λ(n) gives a set X ′ := M ⊆ N0 such that the increasing sequence
(λ′x)x∈X ′ with λ′x := maxn∈X ′:n≤x λn ≥ λx satisfies

∑

x∈X ′ 1/λ
′
x =∞. The statement now follows

from case (22) by monotonicity (Remark 2).

Theorem 10. (Lipschitz functions) Denote by pc the threshold for oriented site percolation on the

square lattice Z2. Then there is

λc ∈ −
[1,3]

2
ln(1− pc), (41)

with the following property: If (PPP) holds, X = Z, K > 0 and λ > 0 is such that λx = λ for all x ∈ X

then

P[LK] = 0 if λ < λc/K and P[LK] = 1 if λ > λc/K . (42)

Proof. By independence of (Yx)x∈X and ergodicity of each Yx , P[LK] ∈ {0,1}, see Remark 1. Since
P[LK] is increasing in λ for every K , see Remark 2, there exists for all K some λc(K) ∈ [0,∞] with
property (42). Scaling V by (x , y) 7→ (x , y/K) reduces the problem to considering Poisson point
processes of intensity λK and Lipschitz functions with Lipschitz constant 1. This implies that λc(K)

in fact does not depend on K .

For the proof of (41) we partition Z×R into the line segments S(x , i) := {x}×[4i+(−1)x , 4(i+1)+
(−1)x) of length 4, where x , i ∈ Z. Consider the graph G with vertices S(x , i), and oriented edges
(S(x , i),S(x + 1, i)) and (S(x , i),S(x + 1, i + (−1)x)), where x , i ∈ Z. This graph is isomorphic to
the oriented square lattice, see Figure 5 (a). We declare the vertex S(x , i) to be open if it intersects
{x} ×Yx and to be closed otherwise. Denote by O the event that there is a double infinite directed
path in G between open nearest neighbors. Any such path induces some f ∈ I with Lipschitz
constant 6. Therefore, O ⊆ L6. Since any vertex is open with probability 1− e−4λ this yields the
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Figure 5: Here we assume (PPP) and X = Z. (a) Vertices of a quadrant of G are indicated as discs, the edges
connecting them are dotted. Discs are shaded, i.e. open, if and only if there is a point of the Poisson point process in the
corresponding interval. The graph of some Lipschitz function accompanying an open directed path is dashed. (b) Here
λx = 1 for all x ∈ X . The figure shows those straight line segments whose end points (x , yx) and (x + 1, yx+1) satisfy
x ∈ {1, 2, . . . , 50}; yx ∈ Yx ∩ [0, 50], yx+1 ∈ Yx+1 ∩ [0, 50] and |yx+1 − yx | ≤ K = 1. Do these line segments contain the
graph of a function defined on [1,50]?

upper bound on λc = λc(6) in (41). Conversely, any f ∈ I with Lipschitz constant 2 induces an
open double infinite directed path in G. Hence L2 ⊆ O . This implies the lower bound on λc = λc(2)
in (41).

Remark 9. Substituting Bishir’s [Bi63] [PF05, Theorem 4.1] lower bound pc ≥ 2/3 and Liggett’s
[Li95] upper bound pc ≤ 3/4 into (41) yields 0.549≤ λc ≤ 2.08. The lower bound can be improved
by directly applying the methods described in [Du84, Section 6].

Open Problem 2. What is the exact value of λc? Critical thresholds in (oriented) percolation
are rarely explicitly known. However, due to Monte-Carlo simulations, see also Figure 5 (b), we
conjecture λc = 1.

In the following simple example the corresponding λc can be computed explicitly.

Example 6. Let X = Z and λ, K > 0. Let (Un)n∈Z be independent and uniformly distributed on
[0,1] and set Yn := (Un +Zn)/λ for n ∈ Z. (Note the similarity of V to perforated toilet paper.)
Then for any n ∈ Z and z ∈R there is some y ∈ Yn with |z − y | ≤ K if 2K ≥ 1/λ. If 2K < 1/λ then
there is at most one such y and with positive probability no such y . Hence P[LK] = 1 if λ ≥ 1/(2K)

and P[LK] = 0 else. Thus in this case (42) holds for λc = 1/2.

Next we consider some of the smoothest functions, polynomials and real analytic functions.

Proposition 11. (Polynomials) Assume (IND) and (STAT) and that all Yx , x ∈ X , are a.s. countable.

Then P[Pm] = 0 for all m ∈N0.

997



Proof. Let m ∈ N0 and let x0, . . . , xm+1 ∈ X be pairwise distinct. For any y = (y0, . . . , ym) ∈
∏m

i=0Yx i
there is exactly one polynomial f y of degree m with f y(x i) = yi for i = 0, . . . , m. For all

K ∈ N the set
∏m

i=0

�

Yx i
∩ [−K , K]

�

is countable and compact. Hence, GK := { f y(xm+1) : y ∈
∏m

i=0

�

Yx i
∩ [−K , K]

�

} is a.s. countable and, by continuity, compact as well. If Pm occurs then
GK ∩Yxm+1

6= ; for some K ∈ N. By (IND) and (STAT), the closed set GK ∩Yxm+1
has for all a ∈ R

the same distribution as GK ∩ (Yxm+1
+ a). Therefore,

P[Pm] ≤
∑

K∈N

P[GK ∩Yxm+1
6= ;] =

∑

K∈N

∫ 1

0

E
h

1{GK∩(Yxm+1
+a) 6=;}

i

da.

Using Fubini’s theorem and denoting by λ the Lebesgue measure on R, we get P[Pm] ≤
∑

K E
�

λ
�

GK −Yxm+1

��

= 0 since GK −Yxm+1
:= {a− b | a ∈ GK , b ∈ Yxm+1

} is a.s. countable.

Of course, the assumption of countability in Proposition 11 cannot be dropped. Here is a nontrivial
example. Let (xn)n∈N enumerate X and let 1 > ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓn→ 0 as n→∞. We consider two
different families (Yx)x∈X . The first one is of the type described in (2) and is given by

Yxn
= [ℓn, 1] +Z+ Un, where (Un)n≥1 is i.i.d., Un ∼ Unif[0,1], (43)

cf. Figure 1 (b). The second one consists of complements of Boolean models:

Yxn
= (]0,ℓn[+Y

′
n)

c , where (Y ′n)n≥1 are independent
Poisson point processes with intensity 1.

(44)

In case (43), P[0 ∈ I ] =
∏

n≥1(1− ℓn), while in case (44), P[0 ∈ I ] =
∏

n≥1 e−ℓn . Therefore, in
either case P[0 ∈ I ] = 0 if and only if

∑

n ℓn =∞. Obviously, {0 ∈ I } ⊆ P0. However, the following
theorem due to L. A. Shepp shows that these two events might differ by more than a null set. To
recognize it recall (4) and take complements.

Theorem 12. (Constant functions, [Sh72a], [Sh72b, (42)]) Assume (43) or (44). Then P[P0] = 0
if and only if

∑

n≥1

1

n2
exp

 

n
∑

i=1

ℓi

!

=∞. (45)

Remark 10. Note that in case (43) there is no zero-one law like in Remark 1: 0 < P[P0] < 1 is
possible. In fact, P[P0] = 1 if and only if

∑

n ℓn ≤ 1, which is not the opposite of (45).

Open Problem 3. Let m ∈ N. Assuming (43) or (44), find conditions which are necessary and
sufficient for P[Pm] = 0 (respectively, P[Pm] = 1).

For m = 1 and case (43) (see also Figure 1 (b)) this problem can be phrased in terms of random
coverings of a circle in the spirit of [Sh72a] and [JS08] as follows: Arcs of length ℓx (x ∈ X ) are
thrown independently and uniformly on a circle of unit length and then rotate at respective speed
x around the circle. Give a necessary and sufficient condition in terms of (ℓx)x∈X and X under
which there is a.s. no (resp., a.s. at least one) point in time at which the circle is not completely
covered by the arcs. In other words: Under which conditions is there a.s. no (resp., a.s. at least one)
random, but constant speed at which one can drive along a road with infinitely many independent
traffic lights without ever running into a red light?
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Proposition 13. (Real analytic functions) If X is locally finite then P[A] = 1.

Proof. Choose yx ∈ Yx for all x ∈ X . By [Ru87, Theorem 15.13] there is an entire function g :
C→ C, g(z) =

∑

n≥0 anzn, such that g(x) = yx for all x ∈ X . Its real part ℜ(g(z)) =
∑

n≥0ℜ(an)z
n

restricted to R is real analytic and takes values yx at x ∈ X as well.

We conclude by suggesting some further directions of research.

Open Problem 4. Theorem 10 and Proposition 13 deal only with locally finiteX . What can be said
about P[LK] and P[A] for more general X ? It is easy to see that even in case (PPP) with constant
intensities λx = λ any general criterion for, say, P[LK] = 0 would need to depend not only on λ but
also on X itself. If X is for example bounded then for any K > 0, P[LK] ≤ P[C] = 0 by Theorem
4, no matter how large λ is, in contrast to (42).

Open Problem 5. One might consider other types of interpolating functions. For example, under
which conditions are there functions f ∈ I , which are (a) continuous and monotone at the same
time or (b) Hölder continuous or (c) k-times continuously differentiable? Extensions to higher
dimension might be possible as well.

Open Problem 6. (More than just one function) Let X ⊂ [0,1] and fix (λx)x∈X with λx >

0. Under which conditions is there a simple point process N =
∑

i∈Nδ fi
(in the sense of [DV88,

Definition 7.1.VII]) on the space C([0,1]) of continuous functions on [0,1] (or any other suitable
space of regular functions) such that (a) for all x ∈ X the points fi(x), i ∈N, are pairwise distinct,
(b) there are independent homogeneous Poisson point processesYx , x ∈ X , with intensities λx such
that { fi(x) : i ∈N} ⊆ Yx for all x ∈ X and (c) the “vertically shifted" point process

∑

i∈Nδ fi+y has
for all y ∈R the same distribution as N?
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