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1 Introduction

The purpose of this paper is to present new-type spatial-temporal scaling limits for the homoge-
nization theory associated with a certain fractional kinetic equation and also a related system of
reaction-diffusion type formed from it:

(

∂ β

∂ tβ
u(t, x) =−µ1(I −∆)

γ

2 (−∆)
α
2 u(t, x) + b11u+ b12v, u(0, x) = u0(x),

∂ β

∂ tβ
v(t, x) =−µ2(I −∆)

γ

2 (−∆)
α
2 v(t, x) + b21u+ b22v, v(0, x) = v0(x),

(1)

where µi > 0, 0 < β ≤ 1, 0 < α ≤ 2,0 ≤ γ, and t > 0, x ∈ Rn. The parameter β denotes the
time-fractional index, and α,γ denote the space-fractional indices, for which we refer as the Riesz
parameter and the Bessel parameter respectively (see [24, V.1 and V.3]).

When (β ,α,γ) = (1, 2,0), the system (1) is reduced to a classical reaction-diffusion system. The
time-fractional index β < 1 means sub-diffusive (super-diffusive in case β > 1, which we do not
study in this paper; see the remarks in Section 4). The spatial-fractional Riesz index α means the
jumps of the evolution, and Bessel index γ means the tempering of large jumps; see the now-classic
book of Stein [24, V.1 and V.3] for precise mathematical explanations. To our knowledge, fractional
kinetic equations of Riesz-Bessel type appear firstly in Anh and Leonenko [1, 2]; subsequent works
in this direction by the authors and collaborators can be seen in [3, 4, 5, 13, 15, 16] and the refer-
ences therein. We mention that fractional differential equations involving more-than-one fractional
parameters could be natural mathematical objects to describe long-range dependence and/or inter-
mittency; one can find data exhibiting such characteristics in quite several fields including finance,
hydrology, telecommunications, and turbulence.

In this paper, we aim to study the small-scale limit of spatial-temporal random field arising from the
solution of the fractional Riesz-Bessel equation and its associated system (1) with µ1 = µ2 = µ > 0,
subject to given the random initial data u0 and v0, of which are independent and each one has
a certain long-range dependence in its random structure. We mainly focus on the single equation
case, and then the derive the system case via a certain decoupling method used in [17, 18]. The
opposite large-scale limits have been explored intensively in the above cited literatures; a notable
point in such large-scale limits as in [1, 2] is that the Bessel parameter does not play its role; while
in our small-scale limits, both the Riesz and the Bessel parameters play their roles, and moreover we
need the rescaling on the initial data. Such small-scale spatial-temporal scaling limit is a completely
new result in the homogenization theory of random fields, to our best knowledge. Furthermore,
our study may show how the theory of Riesz potentials and Bessel potentials, as in the Chapter V of
Stein [24], may appear significantly in the homogenization of random fields.

The underlying idea in this paper is motivated by those works in [1, 2, 5, 15, 16] and the references
therein. Namely, we use the spectral representations to describe the sample field arising from the
initial data, and the relations between Hermite polynomials and homogeneous chaos associated with
the initial data, to get representations for the limit field in terms of multiple Itô-Wiener integrals.
From limit theorems point-of-view, our results, though it is the small-scale rather than the well-
studied large-scale as in those in the above citations, still could be regarded in the realm of non-
central limit theorems for convolution type integrals, in which the papers [25, 11] are pioneering;
see also the monograph of Major [22] and survey papers in the special volume edited by Doukhan,
Oppenheim and Taqqu [9]

The paper is organized as follows. In the preliminary Section 2, we list some result for the sub-
sequent needs; we give the explicit solution of the system (1), which includes automatically the
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single equation solution, and our initial data are assumed to be the subordinated Gaussian fields.
In the main Section 3, we present main results, the small-scale limit theorems of the solution field
of the single equation and the related system, (1), in which we adopt usual time-derivative and the
fractional spatial-derivative characterized by the Riesz and the Bessel parameters. The correspond-
ing large-scale limits and time-fractional extensions are described in Section 4, together with two
remarks for perspectives. The proofs of main results are give in the final Section 5.

Acknowledgement. The authors are grateful to the inspiring lectures of Professor W.A. Woyczyński
at National Taiwan University for the perspective on Mathematical Theory of Fractional P.D.E. We also
thank the referee and the associate editor whose comments to make the paper in a more concise
and edged version.

2 Preliminaries

To begin with, we rewrite the system (1), with µ1 = µ2 = µ > 0, α > 0, γ ≥ 0 and β = 1, in the
matrix form as follows:

∂

∂ t

�

u
v

�

=−µ(I −∆)
γ

2 (−∆)
α
2

�

u
v

�

+ B

�

u
v

�

, (2)

subject to some initial conditions
�

u(0, x)
v(0, x)

�

=

�

u0(x)
v0(x)

�

, x ∈Rn, (3)

where u = u(t, x), v = v(t, x), t > 0, x ∈ Rn, ∆ is the n-dimensional Laplacian, and B is a 2× 2
matrix.

The Green function G(t, x;α,γ) associated with the operator ∂t + µ(I −∆)
γ

2 (−∆)
α
2 , for which the

spatial part is a hybrid of the Laplace and the Bessel operators, is defined via the spatial Fourier
transform as follows; see, [24, Chapter 5] or [2, Section 2].

∫

Rn

ei<x ,λ>G(t, x;α,γ)d x = exp[−µt|λ|α(1+ |λ|2)
γ

2 ], λ ∈Rn, (4)

where < ·, ·> denotes the inner product on Rn. We remark that, by (4) it has
∫

Rn

G(t, x;α,γ) d x = 1, for any t ≥ 0. (5)

In order to get an explicit representation for the solution of (2), we impose the following assumption
on the matrix B.
Condition DM. Suppose the matrix [bi j]1≤i, j≤2 is diagonalizable, i.e., the matrix B can be written
as

B =

�

b11 b12
b21 b22

�

= PDP−1 with P =

�

p11 p12
p21 p22

�

, (6)
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where P is a real-valued non-degenerate eigenvector matrix associated with the matrix B, and
D = diag(d1, d2), d1, d2 ∈R, where d j is the eigenvalue associated with the eigenvector (p1, j , p2, j)T

(here and henceforth, T denotes the transpose). Without loss of generality, we suppose that
det(P) = 1. We always write

Q(t; d1, d2) := P

�

ed1 t 0
0 ed2 t

�

P−1. (7)

Next, we consider the randomness of the initial data. Let (Ω,F ,P ) to be an underlying probability
space, such that all random element appeared in this paper are measurable with respect to it. In
this paper, we assume that the initial data are a kind of isotropic stationary fields, namely the
subordinated Gaussian fields; it is described as follows:
Condition SGRID. We assume each component of the initial data (3) w0(x) := (u0(x), v0(x)) =
(η1(x),η2(x)), x ∈Rn, is a random field of the following form

η j(x) := h j(ζ j(x)), x ∈Rn, j ∈ {1, 2}, (8)

in which ζ1(x) and ζ2(x) are independent, mean-square continuous, homogeneous and isotropic
Gaussian random fields, each is of mean zero and of variance 1, and for each the spectral measure
F j(dλ) has the (spectral) density f j(λ), λ ∈Rn, j ∈ {1, 2}, respectively. Each f j(λ) is decreasing for
|λ| > λ0 for some λ0 > 0 and continuous for all λ 6= 0. Moreover, we assume that h j(·), j ∈ {1, 2},
are real non-random Borel functions satisfy

Eh2
j (ζ j(0))<∞, j ∈ {1, 2}. (9)

Under the Condition SGRID, we have the spectral representation for the sample paths of ζ j(x), j ∈
{1,2}, as below:

ζ j(x) =

∫

Rn

ei<x ,λ>
p

f j(λ)Wj(dλ), x ∈Rn, j ∈ {1,2}, (10)

where Wj(·), j = 1,2, are two orthogonal standard Gaussian noise measures onRn. Moreover, under
(9), we can consider the following Hermite expansions of h j(u) in the Hilbert space L2(R, p(u)du)

with p(u) = 1p
2π

e−
u2

2 :

h j(u) = C ( j)0 +
∞
∑

σ=1

C ( j)σ
Hσ(u)p
σ!

, j ∈ {1,2}, (11)

in which the Hermite coefficients

C ( j)σ :=

∫

R

h j(u)
Hσ(u)p
σ!

p(u)du, j ∈ {1, 2}, (12)

and the Hermite polynomials {Hσ(u),σ = 0, 1,2, ...}

Hσ(u) := (−1)σe
u2

2
dσ

duσ
e
−u2

2 , for σ ∈ {0,1, 2, ...}.
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The Hermite rank of the function h j(·) is defined by

m j := inf{σ ≥ 1 : C ( j)σ 6= 0}, j ∈ {1,2}.

We also need the following two important properties ( see, for example, Major [22], Corollary 5.5
and p. 30) :

E[Hσ1
(ζ j(y1))Hσ2

(ζ j′ (y2))] = δ
j
′

j δ
σ1
σ2
σ1!Rσ1

ζ j
(y1− y2), y1, y2 ∈Rn, (13)

and

Hρ(ζ j(x)) =

∫ ′

Rn×ρ
ei<x ,λ1+...+λρ>

ρ
∏

σ=1

p

f j(λσ)Wj(dλσ), (14)

in the above, the integral representation (14) is the ρ-fold Itô-Wiener integral; the integration

notation
∫ ′

means that it excludes the diagonal hyperplanes zi =∓z j , i, j = 1, ...,ρ, i 6= j.

We now can state the following explicit form of the spatial-temporal random fields of the system,
subject to the Conditions DM and SGRID. It contains the single-equation solution consequently,
which can be seen in [2, Section 2].

Proposition 1. Let w(t, x;w0(·)) := (u(t, x; u0(·)), v(t, x; v0(·))), t > 0, x ∈Rn} be the mean-square
solution of the initial value problem (2) (3), of which satisfies the conditions DM and SGRID, then it is
expressed as

w(t, x;w0(·)) =Q(t; d1, d2)
n

�

C (1)0

C (2)0

�

+
∑

ρ∈N

∫ ′

Rn×ρ
ei<x ,λ1+···+λρ>−µt|λ1+···+λρ |α(1+|λ1+···+λρ |2)

γ
2











C (1)ρp
ρ!

ρ
∏

σ=1

p

f1(λσ)W1(dλσ)

C (2)ρp
ρ!

ρ
∏

σ=1

p

f2(λσ)W2(dλσ)











o

,

where the coefficients C ( j)ρ , j ∈ {1,2}, are defined by (12).

The above display of the solution can be obtained by firstly taking the spatial Fourier transform on
both sides of (2). The Condition DM allows us to decouple the system; then we make the inverse
Fourier transform to express the solution as the convolution of the Green function and the initial
data. Then we make use of the Green function G(t, y;α,γ) defined as (4). Finally we plug in the
initial data as described in the Condition SGRID.

We also impose the following assumption which is related to the long-range-dependence of the
underlying Gaussian fields ζ j(x), j ∈ {1,2}; we refer to [9] for the notion and the literatures of
long-range dependence. In the following and henceforth, the notation f (·) ∼ g(·) means that the
ratio f (·)/g(·) tends to 1, as the indicated variable “·" tends to ∞ or tends to 0, according to the
context.
Condition LD. The Gaussian random fields ζ j(x), j ∈ {1,2}, in the Condition SGRID, have their
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covariance functions to be regular varying at infinity in the sense that: the covariance function Rζ j

is given by

Rζ j
(x)∼

L(|x |)
|x |κ j

, as |x | →∞, 0< κ j <
n

m j
, j ∈ {1, 2}, (15)

where L : (0,∞)→ (0,∞) is a slowly varying function at infinity and is bounded on each finite inter-
val; recall that L is said to be slowly varying at infinity if limy→∞[L(c y)/L(y)] = 1 uniformly for any
c ∈ (a, b), 0 < a < b <∞. Here, the relation “ ∼ ” in (15) means that lim

|x |→∞
|x |κ j Rζ j

(x)/L(|x |) = 1;

the similar notation will be used in this section and also in Section 5.
Under the Condition LD, by a Tauberian theorem (see, for example, the book of Leonenko [14, p.
66]), the spectral density functions of the random fields ζ j(x), j ∈ {1,2}, are regular varying near
the origin as follows:

f j(λ)∼ K(n,κ j)|λ|κ j−n L(|
1

λ
|), as λ→ 0, j ∈ {1,2}, (16)

where K(n,κ j) denotes the Tauberian constant.
We note that, for each natural number ρ ≥ 2, the power of the covariance function (Rζ j

(x))ρ itself is
still the covariance function of some random fields, for which there exists the corresponding spectral
density function ( f j)∗ρ(λ), which is the ρ-th convolution of f j(λ):

( f j)
∗ρ(λ) =

∫

Rn×(ρ−1)
f j(λ−λ1) f j(λ1−λ2) · · · f j(λρ−2−λρ−1) f j(λρ−1)

ρ−1
∏

l=1

dλl . (17)

Note that Lρ(|x |) is still a slowly varying function for any ρ. Thus, when the ρ satisfies 0< ρκ j < n,
we can apply the Tauberian theorem again to get

( f j)
∗ρ(λ)∼ K(n,ρκ j)|λ|ρκ j−n Lρ(|

1

λ
|), as λ→ 0, 0< ρκ j < n, (18)

for j ∈ {1, 2}. While, if ρκ j > n then the covariance function (Rζ j
(x))ρ belongs to the class L1(Rn);

thus the corresponding spectral density function is everywhere continuous and satisfies

(2π)n( f j)
∗ρ(0) =

∫

Rn

(Rζ j
)ρ(x)d x ≤

∫

Rn

|Rζ j
(x)|ρd x ≤

∫

Rn

|Rζ j
(x)|ρ

∗
d x <∞, (19)

where ρ∗ := inf{ρ ∈N| ρκ j > n}; we note that |Rζ j
(·)| ≤ 1.

The displays (17), (18) and (19) will be used in the proofs in Section 5.

3 Main results: the small-scale limits

In this section, we present the main results of this paper, which concerns with the small-scale (or say
the micro) limits of the homogenization of the spatial-temporal random field described in Section 2.
It features that both the Riesz parameter α and the Bessel parameter γ play their roles in the scaling
procedure, and we also need to rescale the initial data.
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Firstly, we state our result for the small-scale limit of a single fractional kinetic equation. The
equation is then of the form:

∂ s

∂ t
(t, x) =−µ(I −∆)

γ

2 (−∆)
α
2 s(t, x), s(0, x) = h(ζ(x)). (20)

To our knowledge, the homogenization presented below is completely new spatial-temporal scalings.
In the below, the notation imposed on ζ wants to mean that the variable of ζ is under the indicated
dilation factor.

Theorem 1. Let s := s(t, x; s0(·)), t > 0, x ∈Rn, be the mean-square solution of (20), which satisfies
the Conditions SGRID and LD, with κ ∈ (0, n

m
), where m denotes the Hermite rank of the non-random

function h(·) on R, which has the Hermite coefficients Ci(h), i = 0,1, . . . (i.e., h1(x) = h(x), ζ1(x) =
ζ(x), f1(λ) = f (λ) and κ1 = κ, etc. in Section 2). Then, for any fixed parameter χ > 0,
(1) the covariance function of the rescaled random field

sε(t, x) := [εmκχ Lm(ε−χ)]−
1
2

n

s(εt,ε
1
α+γ x; h(ζ(ε−

1
α+γ−χ ·)))− C0(h)

o

, t > 0, x ∈Rn, (21)

satisfies

lim
ε→0

Cov(sε(t, x)sε(t
′
, x
′
)) = (Cm(h))

2K(n, mκ)

∫

Rn

ei<x−x
′
,τ> e−µ(t+t

′
)|τ|α+γ

|τ|n−mκ dτ. (22)

(2) When ε → 0, the rescaled random field sε(t, x), t > 0, x ∈ Rn, converges to the limiting spatial-
temporal random field sm(t, x), t > 0, x ∈ Rn, in the finite dimensional distribution sense, and
sm(t, x) is represented by the multiple-Wiener integral

sm(t, x) =
Cm(h)p

m!
K(n,κ)

m
2

∫ ′

Rn×m

ei<x ,z1+···+zm>−µt|z1+...+zm|α+γ

(|z1| · · · |zm|)
n−κ

2

m
∏

l=1

W (dzl), (23)

where
∫ ′

· · · denotes a m-fold Wiener integral with respect to the complex Gaussian white noise W (·)
on Rn.

Remark. The requirement for rescaling the initial data could be figured intuitively as that, the
small-scale is meant to “freeze down" both the time t and the space x , to ensure the overall renor-
malization we have to “heat up" the initial data, so that it can be achieved a non-degenerate (though
singular) limiting field. The term “small-scale limits", opposite to large-scale (other naming such as
micro v.s. macro, local v.s. asymptotic), is adapted from the recent studies on the multi-scaling
behavior of fractional non-Gaussian random fields, notably in [6, 7]. It has also been used in the
study of the fractal nature of the intersection local time measure [23].

Next, we state the small-scale limit for the system as follows. It shows that there is a nontrivial
combination limit, namely the case (3) below, caused by the imposed relation on various parameters.

Theorem 2. Let w(t, x;w0(·)) := (u(t, x; u0(·)), v(t, x; v0(·))), t > 0, x ∈ Rn, be the solution-vector
of the initial value problem (2) and (3), satisfying the Conditions DM, SGRID, and LD. In the following,
χ is a positive parameter, Q(t; d1, d2) is a matrix defined in (7), and the two Gaussian noise fields
Wj , j ∈ {1,2} are totally independent. Let m1, m2, κ1 and κ2 denote respectively the Hermite ranks
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and the long-range-dependence indices mentioned in the Conditions SGRID and LD for u0 and v0.

(1) If m2κ2 > m1κ1, then the finite-dimensional distributions of the rescaled random field

[εm1κ1χ Lm1(ε−χ)]−
1
2

n

w(εt,ε
1
α+γ x;w0(ε

− 1
α+γ−χ ·))−Q(εt; d1, d2)

�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field
�

Y ∗1 (t, x)
Y ∗2 (t, x)

�

=

�

eX (1)m1
(t, x)
0

�

, t > 0, x ∈Rn,

where

eX (1)m1
(t, x) :=

C (1)m1
p

m1!
K(n,κ1)

m1
2

∫ ′

Rn×m1

ei<x ,z1+...+zm1
>−µt|z1+...+zm1

|α+γ

(|z1| · · · |zm1
|)

n−κ1
2

m1
∏

l=1

W1(dzl), (24)

with W1(·) is a complex Gaussian white noise on Rn ( i.e., (23) with m, κ and W replaced by m1, κ1
and W1, respectively).
(2) If m1κ1 > m2κ2, then the finite-dimensional distributions of the rescaled random field

[εm2κ2χ Lm2(ε−χ)]−
1
2

n

w(εt,ε
1
α+γ x;w0(ε

− 1
α+γ−χ ·))−Q(εt; d1, d2)

�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field
�

Y ∗∗1 (t, x)
Y ∗∗2 (t, x)

�

=

�

0
eX (2)m2
(t, x)

�

, t > 0, x ∈Rn,

where

eX (2)m2
(t, x) :=

C (2)m2
p

m2!
K(n,κ2)

m2
2

∫ ′

Rn×m2

ei<x ,z1+...+zm2
>−µt|z1+...+zm2

|α+γ

(|z1| · · · |zm2
|)

n−κ2
2

m2
∏

l=1

W2(dzl), (25)

and W2(·) is a complex Gaussian white noise on Rn ( i.e., (23) with m, κ and W replaced by m2, κ2
and W2, respectively).
(3) If m1 = m2 := m, κ1 = κ2 := κ, then the finite-dimensional distributions of the rescaled random
field

[εmκχ Lm(ε−χ)]−
1
2

n

w(εt,ε
1
α+γ x;w0(ε

− 1
α+γ−χ ·))−Q(εt; d1, d2)

�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field
�

Y ∗∗∗1 (t, x)
Y ∗∗∗2 (t, x)

�

=

�

eX (1)m (t, x)
eX (2)m (t, x)

�

, t > 0, x ∈Rn, (26)

where eX (1)m and eX (2)m , are defined in (24) and (25) with m1 = m2 = m and κ1 = κ2 = κ.
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To understand the stochastic structure of the limiting fields, we state, for instance, the following
covariance result of (Y ∗∗∗1 (t, x) Y ∗∗∗2 (t, x)).

Proposition 2. For each fixed t > 0, the limiting vector field
�

Y ∗∗∗1 (t, x) Y ∗∗∗2 (t, x)
�

in the case (3)
of Theorem 2 is spatial-homogeneous and its covariance matrix has the following spectral representation

E

�

Y ∗∗∗1 (t, x)
Y ∗∗∗2 (t, x)

�

�

Y ∗∗∗1 (t
′
, x
′
) Y ∗∗∗2 (t

′
, x
′
)
�

=

∫

Rn

ei<x−x
′
,λ>S(λ; t, t

′
,α,γ)dλ,

where S(λ; t, t
′
,α,γ) = K(n, mκ) e−µ(t+t

′
)|λ|α+γ

|λ|n−mκ diag((C (1)m )
2, (C (2)m )

2).

Remark. In view of the singularity of the (diagonal) spectral matrix near the origin, we may con-
clude that, for limiting vector field in the case (3), the long-range-dependence only exists within each
individual component. In Proposition 3 below, we will find that there is also long-range-dependence
between the different components of the large-scale limiting fields.

4 Extensions

4.1 Large-scalings

In this subsection, we state the large-scale (or say the macro) limits of the system, in which only the
Riesz parameter α plays its role in the scaling scheme. The result is compared to the single-equation
case in And and Leonenko [2, Theorems 2.2 and 2.3]; it shows various limit fields may happen
because of the different relations of the various parameters. The proof can be proceeded by the
decoupling method.

Proposition 3. Let w(t, x;w0(·)) := (u(t, x; u0(·)), v(t, x; v0(·))), t > 0, x ∈ Rn, be the solution-
vector of the initial value problem (2) and (3), satisfying the Conditions MD, SGRID, and LD. In the
following, Q(t; d1, d2) is the matrix defined in (7), pi j is the entry in (6), and the two Gaussian noise
fields Wj , j ∈ {1, 2}, are totally independent. Again let m1, m2, κ1 and κ2 denote the parameters in
the Conditions SGRID and LD for u0 and v0.

(1) If m2κ2 > m1κ1 and d1 > d2, then the finite-dimensional distributions of the rescaled random field

[ε
m1κ1
α Lm1(ε−

1
α )]−

1
2 e−d1

t
ε

n

w(
t

ε
,

x

ε
1
α

;w0(·))−Q(
t

ε
; d1, d2)

�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field

T(1)m1
(t, x) :=

�

p11p22X (1)m1
(t, x)

p21p22X (1)m1
(t, x)

�

, t > 0, x ∈Rn,

where

X (1)m1
(t, x) :=

C (1)m1
p

m1!
K(n,κ1)

m1
2

∫ ′

Rn×m1

ei<x ,z1+...+zm1
>−µt|z1+...+zm1

|α

(|z1| · · · |zm1
|)

n−κ1
2

m1
∏

l=1

W1(dzl), (27)
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with W1(·) is a complex Gaussian white noise on Rn.
(2) If m1κ1 > m2κ2 and d1 > d2, then the finite-dimensional distributions of the rescaled random field

[ε
m2κ2
α Lm2(ε−

1
α )]−

1
2 e−d1

t
ε

n

w(
t

ε
,

x

ε
1
α

;w0(·))−Q(
t

ε
; d1, d2)

�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field

T(2)m2
(t, x) :=

�

−p11p12X (2)m2
(t, x)

−p21p12X (2)m2
(t, x)

�

, t > 0, x ∈Rn,

where

X (2)m2
(t, x) :=

C (2)m2
p

m2!
K(n,κ2)

m2
2

∫ ′

Rn×m2

ei<x ,z1+...+zm2
>−µt|z1+...+zm2

|α

(|z1| · · · |zm2
|)

n−κ2
2

m2
∏

l=1

W2(dzl), (28)

and W2(·) is a complex Gaussian white noise on Rn.
(3) If m1 = m2 := m, κ1 = κ2 := κ, and d1 > d2, then the finite-dimensional distributions of the
rescaled random field

[ε
mκ
α Lm(ε−

1
α )]−

1
2 e−d1

t
ε

n

w(
t

ε
,

x

ε
1
α

;w0(·))−Q(
t

ε
; d1, d2)

�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field

T(3)m (t, x) := T(1)m (t, x) + T(2)m (t, x), (29)

where T(1)m (t, x) and T(2)m (t, x), are defined in the case (1) and the case (2) with m1 = m2 = m and
κ1 = κ2 = κ.

4.2 The subdiffusive case

We extend the above results to the subdiffusive case, meant for which the time-fractional derivative
is ∂ β

∂ tβ
, β ∈ (0,1), (see Section 1) in the system (2), that is,

∂ β

∂ tβ

�

u
v

�

=−µ(I −∆)
γ

2 (−∆)
α
2

�

u
v

�

+ B

�

u
v

�

, µ, α, γ > 0, (30)

The time-fractional derivative ∂ β

∂ tβ
, for any β > 0, can be seen, for example, the book of Djrbashian

[8]). For 0< β < 1, it is

dβ f

d tβ
(t) =

1

Γ(1− β)

∫ t

0

f
′
(τ)

(t −τ)β
dτ, (31)

where f (t) is causal (i.e., f vanishes for t < 0).
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The solution of (30) can be obtained via the fractional (both in time and in space) procedure (see,
for example, [20, 21]); under the Condition DM, we express the solution as the convolution of the
fractional (both in time and in space) Green function and the initial data, as follows.

w(t, x;w0(·)) =
∫

Rn

P

�

Gβ(t, x − y; d1) 0
0 Gβ(t, x − y; d2)

�

P−1

�

u0(y)
v0(y)

�

d y (32)

with the fractional Green function Gβ(t, x; d j) is defined via the transformation

Eβ(−µ|λ|α(1+ |λ|2)
γ

2 tβ + d j t
β) =

∫

Rn

ei<x ,λ>Gβ(t, x; d j)d x , j ∈ {1,2},

where Eβ(·) is the Mittag-Leffler function defined by (see, for example, [2] or [8, Chapter 1])

Eβ(z) =
∞
∑

p=0

zp

Γ(βp+ 1)
, z ∈ C. (33)

For the properties of the Mittag-Leffler function, we refer the classic book by Erdélyi et.al. [10] (pp.
206-212, in particular p. 206 (7) and p. 210 (21)).

The following results are time-fractional versions of those in the above; however, the sub-diffusivity
brings some new feature. For the large-scalings of homogenization of the system, we need to take
an additional scaling on the matrix B in the system (30) in order to compromise the effect of this
sub-diffusivity upon the interaction between u and v; while the sub-diffusivity has no influence on
the small-scalings and thus it is the same as that in Section 3. To make the situation clear, in the
following we denote the vector solution by w(t, x;w0(·), B). We only state some partial assertions
in the below.

Proposition 4. Let {w(t, x;w0(·), B), t > 0, x ∈ Rn} be the solution-vector of the initial value prob-
lem (30) and (3), satisfying Conditions DM, SGRID, and LD. Denote again the long-range-dependence
indices κ j and the Hermite ranks m j , j ∈ {1,2}. Assume that m1κ1 < m2κ2.

Large-scalings: under m1κ1, m2κ2 < min{2α, n} the finite-dimensional distributions of the rescaled
random field

T (1)ε (t, x) := (ε
m1κ1
α Lm1(ε−

β

α ))−
1
2

n

w(ε−1 t,ε−
β

α x;w0(·),εβB)−C(ε−1 t;εβB)
o

,

t > 0, x ∈Rn, converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field

T (1)(t, x) =

�

p11p22T (1)(t, x; d1)− p12p21T (1)(t, x; d2)
p21p22T (1)(t, x; d1)− p21p22T (1)(t, x; d2)

�

, t > 0, x ∈Rn,

where

C(ε−1 t;εβB) = C(t; B) = P

�

Eβ(d1 tβ) 0
0 Eβ(d2 tβ)

�

P−1

�

C (1)0

C (2)0

�

,

and for j ∈ {1,2} T (1)(t, x; d j) is expressed by the following multiple-Wiener integral:

C (1)m1
p

m1!
K(n,κ1)

m1
2

∫ ′

Rn×m1

ei<x ,λ1+···+λm1
>

Eβ(−µ|λ1+ · · ·+λm1
|α tβ + d j t

β)

(|λ1| · · · |λm1
|)

n−κ1
2

m1
∏

l=1

W1(dλl). (34)
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Small-scalings: under m1κ1, m2κ2 < min{2(α + γ), n} the finite-dimensional distributions of the
rescaled random field

M(1)ε := [εm1κ1χ Lm1(ε−χ)]−
1
2

n

w(εt,ε
β

α+γ x;w0(ε
− β

α+γ−χ ·), B)−
�

C (1)0

C (2)0

�

o

, t > 0, x ∈Rn,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field

M(1)(t, x) =

�

M (1)(t, x)
0

�

, t > 0, x ∈Rn,

where

M (1) =
C (1)m1
p

m1!
K(n,κ1)

m1
2

∫ ′

Rn×m1

ei<x ,λ1+···+λm1
>

Eβ(−µ|λ1+ · · ·+λm1
|α+γ tβ)

(|λ1| · · · |λm1
|)

n−κ1
2

m1
∏

l=1

W1(dλl).

4.3 Two remarks for future study

1 Superdiffusive case. The time-fractional index β < 1 indicates the sub-diffusivity, and it changes
to be the super-diffusivity if we consider β > 1 (see Section 1). In [18], the time-fractional
reaction-wave type system with random initial data are studied, in which the first-order initial time-
derivatives of u and v play the crucial role. To consider spatial-temporal fractional kinetic systems
which is super-diffusive in time and Riesz-Bessel in space will be a task of tremendous calculations.
We also mention that, for the classical, i.e. non-fractional, heat-type system with random initial
condition, the solution vector-field and the scaling limit are expressed in terms of heat kernels; this
more explicit and simpler case is treated in [17].
2 Relativistic diffusion equation. That role of the Bessel parameter could be somewhat intriguing.
It plays no role in the large-scaling [1, 2], in which only the Riesz parameter appears; the Bessel
parameter does appear in our small-scaling Theorem 1, and it plays jointly with the Riesz parameter.
Perhaps, an appropriate viewpoint on this intriguing situation is to consider the "physically correct"
Bessel operator, that is, to consider the prominent relativistic diffusion equation and its fractional
version. This is addressed in [19].

5 Proofs of main results

We concentrate on the proofs of the main results in Section 3, that is, Theorem 1 and Theorem 2.
The proofs of those propositions mentioned in Section 4 are skipped and left to the readers.

In the following proofs, ⇒ denotes the convergence of random variables (or random families)

in distributional sense, and
d
= denotes the equality of random variables (or random families) in

distributional sense. Moreover, we also denote f (t, x;ε) � g(t, x;ε) if there exists a constant c :=
c(t, x)> 0 such that cg(t, x;ε)< f (t, x;ε)< c−1 g(t, x;ε) when ε→ 0.

The following lemma will play an important role in the proof of our main results; its proof is a easy
consequence of the Cramer-Wold argument for two-dimensional random vectors (see, for example,
[14, p. 6.]).
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Lemma 1. Let Xε := {[X (1)ε X (2)ε ]
T (t, x), x ∈ Rn, t > 0} be a R2-valued random field which is

generated by Xε(t, x) = Qε(t)[Uε Vε]T (t, x), where Uε(t, x) and Vε(t, x) are independent random
fields on Rn×R+ and Qε(t) is a non-random 2× 2 matrix. If there exist two random fields U0 and
V0 such that Uε(t, x)⇒ U0(t, x) and Vε(t, x)⇒ V0(t, x), respectively, and Qε(t) converges to Q(t)
in the usual sense when ε→ 0, then the finite dimensional distributions of Xε(t, x), t > 0, x ∈Rn,
converge to the finite dimensional distributions of X := {Q(t)[U0 V0]T (t, x), t > 0, x ∈Rn}.

Proof of Theorem 1
(1) Firstly, for simplification, we set N1(ε) = εχmκLm(ε−χ). By the Hermite expansion, we can

rewrite s(εt,ε
1
α+γ x; h(ζ(ε−

1
α+γ−χ ·)))− C0(h) as

s(εt,ε
1
α+γ x; h(ζ(ε−

1
α+γ−χ ·)))− C0(h) =

∞
∑

ρ=m
s(εt,ε

1
α+γ x;

Cρ(h)
p

ρ!
Hρ(ζ(ε

− 1
α+γ−χ ·))), (35)

where the summation is in L2(Ω) sense. Hence, in accordion to the definition (21) about the random
field sε(t, x), it can be rewritten as

sε(t, x) =
∞
∑

ρ=m
Iερ(t, x), (36)

with Iερ(t, x) := (N1(ε))
− 1

2 s(εt,ε
1
α+γ x;

Cρ(h)p
ρ!

Hρ(ζ(ε
− 1
α+γ−χ ·))).

By the solution form given in Section 2, with d1 = d2 = 0, we have

(
Cρ(h)
p

ρ!
)−1(N1(ε))

1
2 Iερ(t, x) (37)

=

∫

Rn

G(εt, y;α,γ)Hρ(ζ(ε
− 1
α+γ−χ(ε

1
α+γ x − y)))d y

=

∫

Rn

G(εt, y;α,γ)

∫ ′

Rn×ρ
ei<ε

− 1
α+γ−χ (ε

1
α+γ x−y),λ1+···+λρ>

ρ
∏

σ=1

p

f (λσ)W (dλσ)d y

=

∫ ′

Rn×ρ
ei<ε−χ x ,λ1+···+λρ>

n

∫

Rn

G(εt, y;α,γ)e−i<ε
− 1
α+γ−χ y,λ1+···+λρ>d y

o

ρ
∏

σ=1

p

f (λσ)W (dλσ).

For the bracket above, by substituting t → εt and λ→ ε−
1
α+γ−χ(λ1+ · · ·+λρ) into (4), we have

∫

Rn

G(εt, y;α,γ)e−i<ε
− 1
α+γ−χ y,λ1+···+λρ>d y = e−µεtε

− α
α+γ−αχ |λ1+···+λρ |α(1+ε

− 2
α+γ−2χ |λ1+···+λρ |2)

γ
2 ,
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so (37) is equal to
∫ ′

Rn×ρ

ei<ε−χ x ,λ1+···+λρ>e−µεtε
− α
α+γ−αχ |λ1+···+λρ |α(1+ε

− 2
α+γ−2χ |λ1+···+λρ |2)

γ
2

ρ
∏

σ=1

p

f (λσ)W (dλσ)

d
= ε

χρn
2

∫ ′

Rn×ρ

ei<x ,λ
′
1+···+λ

′
ρ>e−µεtε

− α
α+γ |λ

′
1+···+λ

′
ρ |
α(1+ε−

2
α+γ |λ

′
1+···+λ

′
ρ |

2)
γ
2
ρ
∏

σ=1

Æ

f (εχλ′σ)W (dλ
′

σ)

:= (
Cρ(h)
p

ρ!
)−1(N1(ε))

1
2eIερ(t, x), (38)

where we have used the self-similar property for Gaussian random measure on Rn in the last equal-
ity. Therefore, by the orthogonal property for the Gaussian white noise, we can get

(Cρ(h))
−2N1(ε)Cov(Iερ(t, x)Iερ(t

′
, x
′
)) = (Cρ(h))

−2N1(ε)Cov(eIερ(t, x)eIερ(t
′
, x
′
))

=εχρn

∫

Rn×ρ

ei<x−x
′
,λ
′
1+···+λ

′
ρ>e−µε(t+t

′
)ε−

α
α+γ |λ1+···+λρ |α(1+ε

− 2
α+γ |λ1+···+λρ |2)

γ
2

ρ
∏

σ=1

f (εχλσ)dλσ

=εχρn

∫

Rn

ei<x−x
′
,τ1>e−µε(t+t

′
)ε−

α
α+γ |τ1|α(1+ε

− 2
α+γ |τ1|2)

γ
2 f ∗ρ(εχτ1)

εχ(ρ−1)n
dτ1

=εnχ

∫

Rn

ei<x−x
′
,τ>e−µ(t+t

′
)|τ|α(ε

2
α+γ+|τ|2)

γ
2 f ∗ρ(εχτ)dτ, (39)

where f ∗ρ(·) is defined in (17).
(i) For ρ ∈N with mκ≤ ρκ < n and any δ > 0, by (39) and (18),

Cov(Iερ(t, x)Iερ(t
′
, x
′
)) = (Cρ(h))

2(A1(ε) + A2(ε)), (40)

with

|A1(ε)|= N1(ε)
−1εnχ |

∫

|εχτ|>δ
ei<x−x

′
,τ>e−µ(t+t

′
)|τ|α(ε

2
α+γ+|τ|2)

γ
2 f ∗ρ(εχτ)dτ|

≤ N1(ε)
−1εnχ sup{ f ∗ρ(eλ)| |eλ|> δ}

∫

|εχτ|>δ
e−µ(t+t

′
)|τ|α+γdτ

= (εχmκLm(ε−χ))−1εnχ sup{ f ∗ρ(eλ)| |eλ|> δ}
∫

|τ|>δε−χ
e−µ(t+t

′
)|τ|α+γdτ

→ 0, as ε→ 0 (∵ mκ≤ ρκ < n),

and, by choosing δ small enough and (18),

A2(ε) =N1(ε)
−1εnχ

∫

|εχτ|≤δ
ei<x−x

′
,τ>e−µ(t+t

′
)|τ|α(ε

2
α+γ+|τ|2)

γ
2 f ∗ρ(εχτ)dτ

=N1(ε)
−1εnχ

∫

|εχτ|≤δ

ei<x−x
′
,τ>e−µ(t+t

′
)|τ|α(ε

2
α+γ+|τ|2)

γ
2 (1+ o(1))K(n,ρκ)

Lρ(|εχτ|−1)
|εχτ|n−ρκ

dτ

∼(N1(ε))
−1εχρκLρ(ε−χ)K(n,ρκ)

∫

Rn

ei<x−x
′
,τ>−µ(t+t

′
)|τ|α+γ

|τ|n−ρκ
dτ, as ε→ 0,
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where the asymptotic equivalence is guaranteed by the uniform convergence theorem for the slowly
varying function (see, for example, Leonenko [14, Section 1.4]). We remark that the f , defined
as a spectral density function, is bounded outside of zero (while the singularity at zero is from the
long-range-dependence assumption, as employed in subsection 3.2); therefore its ρ-th convolution
remains to have, at most, the singularity only at zero.
The conclusion of (i): Apart from the term Cov(Iεm(t, x)Iεm(t

′
, x
′
)),

lim
ε→0

∑

ρ:m<ρ<n/κ

Cov(Iερ(t, x)Iερ(t
′
, x
′
)) = 0 (41)

where we have used the fact that {l ∈ N|mκ ≤ łκ < n} is a finite set and on this set
lim
ε→0

N1(ε)−1εχρκLρ(ε−χ) = 0 except for ρ = m.

(ii) For ρ ∈N with ρκ > n , by (39), (19) and
∞
∑

ρ=m
(Cρ(h))2 ≤‖ h ‖2

L2(p(u)du)
<∞,

lim
ε→0

∑

ρ:ρκ>n
Cov(Iερ(t, x)Iερ(t

′
, x
′
)) (42)

=lim
ε→0

εnχN1(ε)
−1
∑

ρ:ρκ>n
(Cρ(h))

2

∫

Rn

ei<x−x
′
,τ>−µ(t+t

′
)|τ|α+γ f ∗ρ(0)dτ

≤lim
ε→0

εnχN1(ε)
−1h ‖2L2(p(u)du) f ∗eρ(0)

∫

Rn

e−µ(t+t
′
)|τ|α+γdτ= 0,

since by (19) f ∗ρ(0), ρ > n/κ, are bounded by f ∗eρ(0) with eρ = inf{l ∈N| lκ > n}.
Finally, from the expansion (36) for the random field sε(t, x) and combining the observations (41)
and (42) we know that only the component Iεm(t, x) in (36) do contribute to the covariance function
of the random field sε(t, x), that is,

lim
ε→0

Cov(sε(t, x)sε(t
′
, x
′
)) = (Cm(h))

2K(n, mκ)

∫

Rn

ei<x−x
′
,τ> e−µ(t+t

′
)|τ|α+γ

|τ|n−mκ dτ.

(2) From the above discussion, we may apply Chebyshev’s inequality to obtain that:
∞
∑

ρ=m+1

Iερ(t, x)
P−→ 0.

Therefore, in view of Slutsky’s argument (for example, see again [14, p. 6.]) , we suffice to focus
our attention on the term Iεm(t, x). In the following we will prove that Iεm(t, x) converges in the
distributional sense to sm(t, x), which is defined in (23), for each fixed (t, x) ∈ R+ ×Rn. By the
definition of N1(ε) and replacing the letter ρ by m in (38), we can rewrite (38) as follows

Iεm(t, x)
d
= eIεm(t, x) =

Cm(h)p
m!

∫ ′

Rn×m

ei<x ,λ
′
1+···+λ

′
m>Mε(λ)

m
∏

σ=1

W (dλ
′

σ), (43)

with

Mε(λ) = ε
χm(n−κ)

2 L−
m
2 (ε−χ)e−µt(ε

2
α+γ+|λ1+···+λm|2)

γ
2 |λ1+···+λm|α

m
∏

σ=1

p

f (εχλσ),
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which, when ε→ 0, satisfies

lim
ε→0

Mε(λ)
(16)
= (K(n,κ))

m
2

e−µt|λ1+···λm|α+γ

(|λ1| · · · |λm|)
n−κ

2

. (44)

Now, applying the isometric property of the multiple Wiener integrals to the difference of (43) and
(23), we have

E|eIεm(t, x)− sm(t, x)|2 =lim
ε→0
(Cm(h))

2

∫

Rn×m

|Mε(λ)− (K(n,κ))
m
2

e−µt|λ1+···+λm|α+γ

(|λ1| · · · |λm|)
n−κ

2

|2
m
∏

σ=1

dλσ

−→ 0, as ε→ 0, by (44), the assumption f (λ) on Condition SGRID, and

∫

Rn×m

e−2µt|λ1+···+λm|α+γ

(|λ1| · · · |λm|)n−κ
m
∏

σ=1

dλσ = π
(m−1)n

2

� Γ(κ
2
)

Γ( n−κ
2
)

�mΓ( n−mκ
2
)

mκ
2

∫

Rn

e−2µt|λ|α+γ

|λ|n−mκ dλ <∞,

for mκ < n, by the Riesz composition formula (see, for example, [4, Appendix A]). Finally, the
assertion (2) follows from Slutsky’s and the Cramer-Wold arguments.
Proof of Theorem 2(1)
From the expression of the solution, we have

�

u(t, x; u0(·))
v(t, x; v0(·))

�

−Q(t; d1, d2)

�

C (1)0

C (2)0

�

=Q(t; d1, d2)

��

U(t, x)
V (t, x)

�

−
�

C (1)0

C (2)0

��

, (45)

where Q(t; d1, d2) is the matrix defined by (7), and U(t, x) and V (t, x) are convolutions of the
Green function with the respective initial data.
By (45),

[εm1κ1χ Lm1(ε−χ)]−
1
2

( 

u(εt,ε
1
α+γ x; u0(ε

− 1
α+γ−χ ·))

v(εt,ε
1
α+γ x; v0(ε

− 1
α+γ−χ ·))

!

−Q(εt; d1, d2)

�

C (1)0

C (2)0

�

)

=Q(εt; d1, d2)[ε
m1κ1χ Lm1(ε−χ)]−

1
2

 

U(εt,ε
1
α+γ x; u0(ε

− 1
α+γ−χ ·))− C (1)0

V (εt,ε
1
α+γ x; u0(ε

− 1
α+γ−χ ·))− C (2)0

!

(46)

:=Q(εt; d1, d2)[ε
m1κ1χ Lm1(ε−χ)]−

1
2

�

Uε(t, x)
Vε(t, x)

�

. (47)

We make use of the assumption that m2κ2 > m1κ1.

Firstly, by Theorem 1(2), we have

Uε(t, x)⇒ eX (1)m1
(t, x), (48)

where eX (1)m1
is defined in (24).

Secondly, by Theorem 1(1), we can obtain

Vε(t, x)
P−→ 0 (49)

977



since we can apply Chebyshev’s inequality to observe that for any c > 0, as ε→ 0,

P(|Vε(t, x)|> c)≤ c−2Var(Vε(t, x))� c−2[ε−m1κ1χ L−m1(ε−χ)] · [ε−m2κ2χ L−m2(ε−χ)]→ 0.

Meanwhile, since

lim
ε→0

Qε(t) := lim
ε→0

Q(εt; d1, d2) = P

�

1 0
0 1

�

P−1 = I2×2. (50)

Therefore, we may apply Lemma 1 to those Uε(t, x), Vε(t, x) and Qε(t) on the above to obtain that

[εm1κ1χ Lm1(ε−χ)]−
1
2

( 

u(εt,ε
1
α+γ x; u0(ε

− 1
α+γ−χ ·))

v(εt,ε
1
α+γ x; v0(ε

− 1
α+γ−χ ·))

!

−Q(εt; d1, d2)

�

C (1)0

C (2)0

�

)

⇒ I2×2

�

eX (1)m1
(t, x)
0

�

, t > 0, x ∈Rn.

Proof of Theorem 2(2)
The proof is proceeded as the case (1), with the roles of m1,κ1, m2,κ2 are interchanged, and thus
we skip it.

Proof of Theorem 2(3)
The assumption that m1 = m2 = m, κ1 = κ2 = κ will enforce the limiting field to be the combination
of those of (1) and (2), as we show below . By Theorem 1(2), we have

Uε(t, x) := [εmκχ Lm(ε−χ)]−
1
2

n

U(εt,ε
1
α+γ x; u0(ε

− 1
α+γ−χ ·))− C (1)0

o

⇒ eX (1)m (t, x),

Vε(t, x) := [εmκχ Lm(ε−χ)]−
1
2

n

V (εt,ε
1
α+γ x; v0(ε

− 1
α+γ−χ ·))− C (2)0

o

⇒ eX (2)m (t, x),

where eX ( j)m , j ∈ {1, 2}, are defined in (24) and (25) with m1 = m2 = m.
Because in this case the equality lim

ε→0
Qε(t) = I is unchanged; in the same way, we obtained

[εmκχ Lm(ε−χ)]−
1
2

( 

u(εt,ε
1
α+γ x; u0(ε

− 1
α+γ−χ ·))

v(εt,ε
1
α+γ x; v0(ε

− 1
α+γ−χ ·))

!

−Q(εt; d1, d2)

�

C (1)0

C (2)0

�

)

⇒ I2×2

�

eX (1)m (t, x)
eX (2)m (t, x)

�

=

�

eX (1)m (t, x)
eX (2)m (t, x)

�

, t > 0, x ∈Rn.

Proof of Proposition 2

E

�

Y ∗∗∗1 (t, x)
Y ∗∗∗2 (t, x)

�

�

Y ∗∗∗1 (t
′
, x
′
) Y ∗∗∗2 (t

′
, x
′
)
�

=E

�

eX (1)m (t, x)
eX (2)m (t, x)

�

�

eX (1)m (t
′
, x
′
) eX (2)m (t

′
, x
′
)
�

=

�

EeX (1)m (t, x)eX (1)m (t
′
, x
′
) 0

0 EeX (2)m (t, x)eX (2)m (t
′
, x
′
).

�

(51)
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Because the representation for the limiting fields eX (1)m (t, x) and eX (2)m (t, x) is the same as the limiting
field sm(t, x), defined in (23), we can apply the result (22) to get

EeX ( j)m (t, x)eX ( j)m (t
′
, x
′
) = (C ( j)m )

2K(n,κm)

∫

Rn

ei<x−x
′
,τ> e−µ(t+t

′
)|τ|α+γ

|τ|n−mκ dτ.

Therefore, the covariance matrix (51) is equal to

∫

Rn

ei<x−x
′
,τ>K(n,κm)

e−µ(t+t
′
)|τ|α+γ

|τ|n−mκ

�

(C (1)m )
2 0

0 (C (2)m )
2

�

dτ.
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