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Abstract

Let each point of a homogeneous Poisson process on R independently be equipped with a ran-
dom number of stubs (half-edges) according to a given probability distribution µ on the positive
integers. We consider schemes based on Gale-Shapley stable marriage for perfectly matching the
stubs to obtain a simple graph with degree distribution µ. We prove results on the existence of
an infinite component and on the length of the edges, with focus on the case µ({2}) = 1. In this
case, for the random direction stable matching scheme introduced by Deijfen and Meester we
prove that there is no infinite component, while for the stable matching of Deijfen, Häggström
and Holroyd we prove that existence of an infinite component follows from a certain statement
involving a finite interval, which is overwhelmingly supported by simulation evidence .
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Figure 1: The stable multi-matching (top) and the random direction stable multi-matching, for 10
vertices on a finite interval, with 2 stubs per vertex.

1 Introduction

Let P be a homogeneous Poisson process with intensity 1 on Rd and µ a probability measure on the
strictly positive integers. We shall study translation-invariant simple random graphs whose vertices
are the points of P and where, conditional on P , the degrees of the vertices are i.i.d. with law
µ. Previously, Deijfen [3] has studied achievable moment properties for the edges, and Deijfen,
Häggström and Holroyd [4] have studied the question of whether the graph contains a component
with infinitely many vertices. In the latter work an especially natural matching scheme, called the
stable multi-matching, was introduced, leading to a number of challenging open questions. Here
we restrict to d = 1 and the focus is on the case µ({2}) = 1, one of the simplest cases for which
the question of existence of an infinite component is non-trivial. For the stable multi-matching and
a variant of it with prescribed random stub directions, we prove results on the component structure
and on the length of the edges. Figure 1 shows schematic pictures of the two matchings, which are
described below.

First we formally describe the objects that we will work with. Write [P ] := {x ∈ R : P ({x}) > 0}
for the support, or point-set, of P . Let ξ be a random integer-valued measure on R with the same
support as P , and which, conditional on P , assigns i.i.d. values with law µ to the elements of [P ].
The pair (P ,ξ) is a marked point process with positive integer-valued marks. For x ∈ [P ] we write
Dx for ξ({x}) and interpret this as the number of stubs at vertex x .

A matching scheme for a marked process (P ,ξ) is a point processM on the space of unordered
pairs of points in R, with the property that almost surely for every pair (x , y) ∈ [M ] we have
x , y ∈ [P ], and such that in the graph G = G(P ,M ) with vertex set [P ] and edge set [M ],
each vertex x has degree Dx . Our primary interest is in the connected components of G. The
matching schemes under consideration will always be simple, meaning that G has almost surely no
self-loops and no multiple edges, and translation-invariant, meaning that M is invariant in law
under the action of all translations of R. We say that a translation-invariant matching is a factor
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if it is a deterministic function of the Poisson process P and the mark process ξ, that is, if it does
not involve any additional randomness. We write P and E for probability and expectation on the
probability space supporting the random triplet (P ,ξ,M ).
Let (P ∗,ξ∗,M ∗) be the Palm versions of (P ,ξ,M ) with respect to P and write P∗ and E∗ for
the associated probability law and expectation operator. Informally speaking, P∗ describes the con-
ditional law of (P ,ξ,M ) given that there is a point at the origin, with the mark process and the
matching scheme taken as stationary background; see e.g. [10, Chapter 11] for more details. Since

P is a Possion process, we have [P ∗] d
= [P ]∪ {0}.

We now define the two matching schemes that will be analyzed in the paper.

Stable multi-matching

The concept of stable matching was introduced by Gale and Shapley [6]. It has been studied in
[8] and [9] in the context of spatial point processes (with µ({1}) = 1 in our notation). A natural
generalization to other degree distributions µ was introduced in [4] and is referred to as the stable
multi-matching. Formally, a matching schemeM is said to be a stable multi-matching if a.s., for
any two distinct points x , y ∈ [P ], either they are linked by an edge or at least one of them has
no incident edges longer than |x − y|. Here and throughout, distance and edge length refer to the
Euclidean norm | · | on R.

We will restrict our attention to the case when P is a Poisson process. For this case, it was proved
in [4, Proposition 2.2] that there is an a.s. unique stable multi-matching, which moreover can be
constructed by the following iterative matching procedure. Let each point x that still has at least
one stub select the closest point from among all other points that have at least one stub and do
not already have an edge to x . Wherever two points select each other, connect them with an edge
and remove one stub from each (simultaneously for all such pairs). Repeat indefinitely. See [4,
Propostion 2.2].

Random direction stable multi-matching

We introduce a variant of stable multi-matching where the directions of the edges are prescribed
independently of the Poisson process. As described above, the process ξ assigns a mark Dx to each
point x ∈ [P ]. Letψ be a second mark process which, conditionally on P and ξ, assigns an integer
Rx ∼ Binomial(Dx , 1/2) independently to each point x ∈ [P ]. We think of Rx as the number of
stubs incident with x that are to be matched to the right of x and shall refer to the triple (P ,ξ,ψ)
as a doubly marked Poisson process. If x < y , and (x , y) is an edge of a matching schemeM , we
call (x , y) a right-edge of x , and a left-edge of y . A matching schemeM is now said to be a random
direction stable multi-matching if each point x ∈ [P ] has exactly Rx incident right-edges and if
a.s., for any two distinct points x , y ∈ [P ] with x < y , either they are linked by an edge, or x has
no incident right-edges longer than |x − y|, or y has no incident left-edges longer than |x − y|.
Let each point x ∈ [P ] be equipped with Rx stubs pointed to the right and Lx := Dx − Rx stubs
pointed to the left, and consider the following iterative procedure for matching right-stubs to left-
stubs. First consider all pairs of consecutive points in [P ]. Create an edge between every such
pair x < y such that x has at least one right-stub and y has at least one left-stub, and remove
the corresponding stubs. Then consider pairs of points in [P ] with precisely one point in [P ] in
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between them. Create an edge between every such pair of points x < y such that x has at least
one right-stub and y has at least one left-stub left, and remove the corresponding stubs. Continue
indefinitely, with pairs of points separated by an increasing number of points. This procedure has
previously been studied in [5]. We show in Section 2 that it leads to the unique stable multi-
matching subject to the prescribed (random) directions for the edges.

Results

We next collect the main results. The proofs are then given in Section 3. The first result concerns
uniqueness of the infinite component.

Proposition 1.1. For a Poisson process on R and any degree distribution, in the stable multi-matching
and the random direction stable multi-matching, there is at most one infinite component.

The next result asserts that, in the case µ({2}) = 1 of two stubs per vertex, the random direction
stable multi-matching has no infinite components. For other degree distributions the existence of
an infinite component remains an open question. Part (b) of the theorem however provides some
information on the edge length. See [5, Theorem 4.1] and [8, Theorem 2] for related results.

For x ∈ [P ], let X x denote the average length of all edges incident to x , and write X = X0 for the
value at the origin in the Palm version of the process.

Theorem 1.2. For a Poisson process on R, consider the random direction stable multi-matching.

(i) For µ({2}) = 1, almost surely there is no infinite component.

(ii) For any degree distribution with bounded support, we have
E∗[X 1/2] =∞.

Turning to the stable multi-matching, it was proved in [4, Theorem 1.2(b)] that there is no infi-
nite component when the only possible values for the degrees are 1 and 2, with a strictly positive
probability of degree 1. In d ≥ 2 it was also proved that there is an integer k = k(d) such that if
all vertices almost surely have degree at least k, then there is almost surely an infinite component,
[4, Theorem 1.2(a)]. Note that, by ergodicity, the event that there exists an infinite component has
probability 0 or 1 for any degree distribution. The following result relates the existence of an infinite
component for the case µ({1, 2}) = 1 in d = 1 to a certain property concerned with the lengths of
the edges. Let Mx denote the length of the longest edge incident to x ∈ [P ]. For x ∈ [P ] and any
y ∈ R (not necessarily a point in [P ]), say that x desires y ∈ R if |y − x | < Mx . Write N for the
number of points in [P ] that desire the origin.

Theorem 1.3. For a Poisson process on R, consider the stable multi-matching.

(i) For any degree distribution, if there is no infinite component, then
N =∞ almost surely.

(ii) If µ({1,2}) = 1 and there is an infinite component, then N <∞ almost surely.

For degree distributions with µ({1, 2}) = 1, existence of an infinite component in the stable multi-
matching is hence equivalent to N <∞. On the other hand, N is related to edge lengths, as follows.
Write M = M0.
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Lemma 1.4. For any translation-invariant matching scheme, we have that E∗[M] <∞ if and only if
E[N]<∞.

In view of this relation, E∗[M]<∞ would imply that N <∞, and thereby establish the existence of
an infinite component for µ({2}) = 1 in the stable multi-matching. However, the best result we have
in this direction is the following, which applies in any dimension d ≥ 1 (the stable multi-matching
is defined analogously in all dimensions; see [4]).

Proposition 1.5. For a Poisson process of intensity 1 on Rd , and any degree distribution with bounded
support, in the stable multi-matching we have P∗(M > t) ≤ c t−d for some c ∈ (0,∞) (depending only
on d and the bound on degree).

A “statistical proof” of percolation It is not rigorously known whether the stable multi-matching
with µ({2}) = 1 has an infinite component in d = 1. However, in Section 4 we will present com-
pelling evidence that this is indeed the case. Specifically, we will define a certain event GL in terms
of a Poisson process on the bounded interval [0, L]. We will prove rigorously that for any L > 0,

P(GL)> 0.968 implies existence of an infinite component.

On the other hand, since GL is defined in terms of a bounded interval, its probability can be estimated
by Monte Carlo simulation. Such simulations provide overwhelming statistical evidence that

P(G13000)> 0.968.

The random direction stable multi-matching and the stable multi-matching are hence qualitatively
different: when the directions of the stubs are prescribed randomly, there is no infinite component,
while when the directions are prescribed by the positions of the Poisson points (as in the stable
multi-matching) there is an infinite component. Figure 2 shows simulation pictures of the random
direction stable multi-matching and the stable multi-matching, respectively, with µ({2}) = 1 in
d = 1. Previous work involving reduction of a statement involving an infinite event to a finite event
amenable to simulation appears for example in [2, 11].

Say that an edge (x , y) ∈ [M ] crosses a site z ∈R if x < z < y . Our last result is the following.

Proposition 1.6. For a Poisson process on R, and any degree distribution µ whose support includes
some odd integer, for any factor matching scheme, the number of edges that cross the origin is infinite.

If the number of edges that cross the origin is infinite, then clearly also N =∞. Hence, appealing
to Lemma 1.4, Proposition 1.6 implies that E∗[M] =∞ in any factor matching scheme for degree
distributions whose support contains an odd integer. Since the stable multi-matching is a factor,
combining Proposition 1.6 with Theorem 1.3(b) gives an alternative proof (in d = 1) of the result of
[4] that the stable multi-matching does not percolate when the only possible values for the degrees
are 1 and 2 and the probability of degree 1 is strictly positive. For degree distributions with support
on larger values this approach is inconclusive, since Theorem 1.3(b) does not apply.

The rest of the paper is organized as follows. In Section 2, a few preliminary results are collected.
The above results are then proved in Section 3. In Section 4, existence of a infinite component in
the degree 2 case in d = 1 is shown to follow from the assertion that a finite event GL has large
enough probability, which is convincingly supported by Monte Carlo simulation. Section 5 contains
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Figure 2: The stable multi-matching (top) and the random direction stable multi-matching, with 2
stubs per vertex, for 500 uniformly random points on an interval.

examples demonstrating that there is no general relation between the edge length and the existence
of an infinite component valid for any matching scheme, and that for point processes other than
the Poisson process, both percolation and non-percolation are possible for the stable multi-matching
in the degree 2 case. Finally, in Section 6 some directions for further work are presented. For
background on the problem we refer to [4, Section 2.1] and [3, Section 1].

2 Preliminaries

We first show that the iterative procedure described for the stable multi-matching with random
directions leads to the unique stable multi-matching with the prescribed directions for the edges.

Proposition 2.1. Let (P ,ξ,ψ) be a doubly marked Poisson process. Almost surely, the iterative multi-
matching procedure described in the introduction exhausts the set of stubs, and the limiting graph (after
an infinite number of iterations) is a random direction stable multi-matching. No other such matching
scheme exists.

Proof. Let P ′r (respectively P ′l ) be the process of points with at least one unmatched right-stub
(left-stub) on them after the above matching procedure is completed. By symmetry P ′r and P ′l have
the same intensity and they are both ergodic point processes. Hence either both have a.s. infinitely
many points or both have a.s. no points. The first option however would produce a contradiction,
since the iterative procedure could then be applied to the remaining configuration of stubs giving
rise to edges that would have been created already in the original procedure.
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That the resulting multi-matching is stable subject to the prescribed (random) directions follows
from the definition: an unstable pair of points – that is, a pair x and y with x < y with no edge
between them and where x (y) has an edge connected to the right (left) of y (x) – would have
had an edge created between them at some stage of the matching procedure. That it is the unique
matching with this property follows by induction over the stages in the algorithm to show that each
edge that is present in the resulting configuration must be present in any stable matching of the
stubs with the prescribed directions.

We proceed by formulating a version of the mass transport principle suitable for our needs. For
background, see [1]. A mass transport is a random measure T on (Rd)2 that is invariant in law
under translations of Rd . For Borel sets A, B ⊂ Rd , we interpret T (A, B) as the amount of mass
transported from A to B. Write Q for the unit cube [0, 1)d .

Lemma 2.2 (Mass Transport Principle). Let T be a mass transport. Then

E T (Q,Rd) = E T (Rd ,Q) .

Proof.
E T (Q,Rd) =

∑

z∈Zd

E T (Q,Q+ z) =
∑

z∈Zd

E T (Q− z,Q) = E T (Rd ,Q) .

Lemma 1.4 is now easily established using the mass transport principle.

Proof of Lemma 1.4. Consider the mass transport in which each point x ∈ [P ] sends out mass 2Mx ,
and distributes it uniformly to the interval (x − Mx , x + Mx). The expected mass sent out from
the unit interval [0, 1) equals 2E∗[M]. On the other hand, the mass received by the unit interval

is
∫ 1

0
Nx d x , where Nx denotes the number of points that desire x ∈ R. Hence the expected mass

received by the unit interval is EN . The result hence follows from the mass transport principle.

Next we observe that an infinite component in a translation-invariant matching scheme must be
unbounded both to the right and to the left, that is, for any r ∈ R+ it must contain points both to
the right of r and to the left of −r.

Lemma 2.3. A translation-invariant matching scheme almost surely cannot have an infinite component
that is unbounded in only one direction.

Proof. Assume that there is a matching scheme that with positive probability gives rise to an infinite
component that is unbounded in only one direction, say to the left, and consider the mass transport
in which each vertex in such an infinite component sends mass 1 to the rightmost point in the
component. With positive probability such a rightmost point is located in the unit interval, which
then receives infinite mass. The expected mass sent out from the unit interval is however bounded
by 1, so we have a contradiction with the mass transport principle.

Finally, the following result will be of use in proving Theorem 1.3(b).

Lemma 2.4. Let Γ be a translation-invariant simple point process of finite intensity on R. For x ∈ [Γ],
write Zx for the maximum of the distances from x to the nearest point of [Γ] on the left and the nearest
point on the right. The number of points x ∈ [Γ] with Zx > |x | is finite almost surely.
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Proof. Consider the mass transport in which an interval sends out mass equal to its length, and the
mass sent out by an interval (x , y) between consecutive points x < y of [Γ] is distributed uniformly
to the interval (x− (y− x), y+(y− x)). If there were infinitely many points x ∈ [Γ] with Zx > |x |,
then the unit interval would receive infinite mass, which conflicts with the mass transport principle,
since the mass sent out from the unit interval equals 1.

3 Proofs

We now proceed to prove the results in Section 1, starting with the uniqueness of an infinite com-
ponent. We say that two edges (a, b) and (c, d) in [M ] cross each other if a < c < b < d. The
following observation follows immediately from the definitions of the matching schemes.

Lemma 3.1. If two edges (a, b) and (c, d) cross each other, then the edge (c, b) must also be present in
the matching.

Proof of Proposition 1.1. It follows from Lemma 3.1 that two distinct components cannot have cross-
ing edges. However, by Lemma 2.3, any infinite component must be unbounded in both directions.
Hence two distinct infinite components would necessarily have crossing edges.

Proof of Theorem 1.2 (i). Recall that Lx (respectively Rx) is the number of edges incident with x ∈
[P ] that are connected to the left (right) of x . Let µ({2}) = 1. We call x a bird if Lx = Rx = 1, a
left-beak if Lx = 2 and a right-beak if Rx = 2 (see Figure 1). Let (· · ·<)x1 < · · ·< xk(< · · · ) ∈ [P ]
be the ordered vertices of some (finite or infinite) component of the stable multi-matching (recall
by Lemma 2.3 that a component is either finite or unbounded in both directions). Clearly, if the
component is finite, then its leftmost point is a right-beak and its rightmost point is a left-beak. We
claim that if x i is a right-beak, and not one of these extreme points of the component, then x i+1 is
a left-beak. To check this, let the two edges from x i have their other endpoints at x j and xk, where
x i < x j < xk. We claim that the other neighbour of x j must lie left of x i . To see this, follow the
path formed by the cluster starting with the edge (x i , x j) – eventually we must leave the interval
[x i , xk], since the cluster contains points to the left of x i . When we do so, it is via an edge that
crosses (x i , xk). Unless it is the first edge encountered after x j , this entails a violation of Lemma 3.1.
Thus x j is a left-beak. Now there cannot be any further vertices of the cluster in the interval [x i , x j],
since at least one of these vertices would have an incident edge crossing (x i , x j), again contradicting
Lemma 3.1.

Therefore, the non-extreme vertices of a component consist of birds together with consecutive right-
beak/left-beak pairs. Note that between the points of a component there may be points belonging to
other components, but since two components cannot have crossing edges, any other such component
must lie in a single interval (x i , x i+1).

Now consider the function F :R→Z defined by F(0) = 0, and

F(y)− F(x) =
∑

t∈[P ]∩[x ,y)

(Lt − Rt), x < y.

Thus, F takes a up-step (of size 2) at each left-beak and a down-step at each right-beak. Hence it
is a continuous-time simple symmetric random walk on the even integers. On the other hand, by
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the observations above concerning components, if there is an infinite component, then F is bounded
above a.s. by some (random) constant – indeed, it is bounded by F(m) + 2, where m is the closest
point to the origin in the infinite component. This is impossible.

Proof of Theorem 1.2 (ii). We use a variant of an argument from [8, Theorem 2(b)]. For A ⊂ R,
write R(A) for the total number of right-stubs at points x ∈ [P ] ∩ A, that is, R(A) =

∑

x∈[P ]∩A Rx ,
and define L(A) analogously as the total number of left-stubs in A. Furthermore, for A, B ⊂ R,
let R(A → B) denote the number of right-stubs in A that are matched with left-stubs in B, and
D(A↔ B) the total number of edges connecting points in [P ]∩A to points in [P ]∩ B. Write k for
the supremum of the support of µ. For t > 0, we have

ER
�

[0,2t]→ [0,2t]c
�

=
1

2
ED
�

[0,2t]↔ [0,2t]c
�

≤
k

2

∫ 2t

0

P∗
�

X > x ∧ (2t − x)
�

d x

= k ·E∗[X ∧ t].

Furthermore, since µ has bounded support, we can use the central limit theorem to get that

ER
�

[0,2t]→ [0, 2t]c
�

≥ E
h

�

R[0,2t]− L[0, 2t]
�+
i

∼ c t1/2

as t →∞ for some c > 0. Hence t−1/2E∗[X ∧ t] ≥ c′ for sufficiently large t and some c′ > 0. On
the other hand, if E∗[X 1/2]<∞, then t−1/2E∗[X ∧ t]→ 0 as t →∞ by the dominated convergence
theorem, a contradiction.

Proof of Theorem 1.3 (i). Let
H = {x ∈ [P ] : Mx > |x | − 1},

that is, H is the set of vertices that desire some point in the unit interval (−1,1). Write eN for
the cardinality of H. We will show that eN = ∞ a.s. By symmetry this implies that with positive
probability infinitely many vertices in (1,∞) desire 1. However, on the latter event, for any a > 1,
infinitely many vertices in (a,∞) desire a, so by ergodicity it follows that N =∞ a.s.

First we show that P(eN = 0) = 0. Assume for contradiction that P(eN = 0) > 0. For a configuration
(P ,ξ) with eN = 0, consider a modified configuration where a vertex is added uniformly at random
in [0, 1] independently of P . If follows from [8, Lemma 18] and a straightforward modification of
[8, Lemma 16] that all stubs at this vertex would be unmatched in the stable multi-matching, which
contradicts [4, Proposition 2.2].

Now assume that all components are finite a.s., and suppose for a contradiction that P(eN <∞)> 0.
For a configuration (P ,ξ) with eN <∞, consider a modified configuration where the vertices in H
are removed, along with all vertices in their components. The number of vertices that are removed
is almost surely finite. But in this configuration, we have eN = 0, which is a contradiction to a
straightforward modification of [8, Lemma 18].

Proof of Theorem 1.3 (ii). First note that, when the only possible values for the degrees are 1 and 2,
the stable multi-matching cannot contain any crossing edges. If a < c < b < d and the edges (a, b)
and (c, d) are present, then, as pointed out in the proof of Proposition 1.1, the edge (c, b) must also
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be present in the matching. But if b − a > d − b, then b and d desire each other, and are hence
connected by an edge, so b has degree at least 3. Similarly, if b − a < d − b then c has degree at
least 3.

Lemma 2.3 and the fact that edges do not cross imply that an infinite component must consist of
a set of degree-2 vertices, unbounded in both directions, with an edge between each consecutive
pair. It follows from Lemma 2.4 that the number of vertices in this infinite component that desire
the origin is finite almost surely.

As for the finite components, each must be contained in a single interval defined by an edge of the
infinite component (since there are no crossing edges). Note also (although this observation will not
be needed) that a component of size k must consist of vertices x1 < · · · < xk with edges (x i , x i+1)
for all i = 1, . . . , k− 1 together with the edge (x1, xk).

Now let I0 denote the interval defined by the edge in the infinite path that crosses the origin. This
interval is finite and hence contains almost surely finitely many points of [P ] in finite components.
These points might desire the origin. A vertex x > 0 (respectively, x < 0) in a finite component
outside this interval however cannot desire the origin: if it did, it would also desire the left-most
(right-most) end-point of the interval Ix defined analogously to I0. But this vertex also desires x ,
which means that there would be an edge between them.

We conclude that N <∞ almost surely, as desired.

Proof of Proposition 1.5. Say that a point x ∈ [P ] is t-bad if Mx > t. If D ≤ k almost surely, then
there can be at most k t-bad points in the ball B(0, t/2). Hence

k ≥ E[number of t-bad points in B(0, t/2)}] = vol(B(0, t/2))P∗(M > t),

giving the result.

Proof of Proposition 1.6. Assume that the number of edges that cross the origin is finite with positive
probability. On the event that the origin is crossed by finitely many edges, the same is true for any
other x ∈ R, since the difference between the number of edges crossing x and the number of
edges crossing the origin is bounded above by the total degree of the vertices between the origin
and x . Now consider the intervals between the points x ∈ [P ] with odd degrees. When passing
a point with odd degree, the number of crossing edges changes parity, that is, if it is even (odd)
immediately to the left of the point, it is odd (even) to the right. When passing a point with
even degree on the other hand, the parity of the number of crossing edges remains unchanged.
This means that we can assign the value 0 (even number of edges crossing) or 1 (odd number of
edges crossing) to the intervals separating the odd degree vertices in a deterministic way (indeed,
the stable multi-matching is a factor). Furthermore, the odd degree vertices constitute a Poisson
process. Now, [8, Lemma 11] asserts that it is impossible to assign alternating values 0 and 1 to the
intervals separating the points of a Poisson process as a factor of the Poisson process. Here we need
the stronger statement that this cannot be done even using the randomness in the degrees of the
vertices and in the position of the even degree vertices. This however follows from a straightforward
modification of the proof of [8, Lemma 11].
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4 Percolation for the stable multi-matching with degree 2

If the stable multi-matching almost surely has an infinite component, then there is a strictly positive
probability p that a given vertex belongs to this component. Simulations of the stable multi-matching
with D ≡ 2 on large finite cycles indicate a largest component comprising about 0.3 of the vertices
(see the top row of Table 1 in Section 6 below). This suggests the existence of an infinite component
with p ≈ 0.3. In this section we show that percolation indeed follows from the assumption that a
certain finite event has sufficiently large probability. Furthermore, we give overwhelming statistical
evidence for this assumption.

The key concept for the proof is the core (stable) multi-matching, which we define next (in the
more general setting of arbitrary dimension and numbers of stubs). Let S ⊂Rd be a bounded set, let
P ⊂ S be a finite set of points, and let (Dx)x∈P be positive integers representing numbers of stubs.
Let eP = P ∪ {Sc}, where Sc := Rd \ S. (We will treat Sc like an additional point; it will not form
part of the matching, but will affect the notion of closest points.) Assume that all distances between
pairs of elements of eP are distinct. Assign Dx stubs to each point x ∈ P, and one stub to Sc . Repeat
the following operations. From each point x ∈ P that currently has an unused stub, assign an arrow
pointing to the closest other element of eP among those that have at least one unused stub and do
not already have an edge to x . Then, for every pair x , y ∈ P whose arrows point to each other,
connect them with an edge and remove one stub from each. Erase all arrows and repeat. After some
finite number of such iterations, no more edges are added. The core multi-matching of (P, D) in S is
defined to be the resulting graph. Note that the degree of a vertex x ∈ P is at most Dx , but may be
strictly less.

Lemma 4.1. Let P be any discrete set of points in Rd , let (Dx)x∈P be positive integers, and let S be
a bounded set. Every edge in the core multi-matching of (P ∩ S, D) in S is present in every stable
multi-matching of (P, D) on Rd .

Proof. It is straightforward to check by induction on the steps of the above algorithm that every
edge added is present in any stable multi-matching. The key point is that if x ∈ S is closer to some
other point y ∈ S than to Sc , then x is also closer to y than to any point in P \ S.

We now specialize to the main case of interest. Let d = 1, and let S = I = [a, b], a bounded interval.
Let P be a Poisson process of intensity 1 onR, and consider the case µ({2}) = 1 of deterministically
two stubs per vertex. By the core multi-matching on the interval I we mean the core multi-matching
of ([P ]∩ I , D) on I , where D ≡ 2. We call an interval I = [a, b] good if the core matching on I has
a connected component with a point in the first quarter [a, 3

4
a+ 1

4
b] and a point in the last quarter

[1
4
a+ 3

4
b, b].

Theorem 4.2. Let P be a Poisson process of intensity 1 on R and let µ({2}) = 1. If for some L we
have P([0, L] is good)> 0.968, then the 2-stub stable multi-matching has an infinite component.

Monte Carlo simulations provide overwhelming evidence that the condition in Theorem 4.2 indeed
holds for some large L, subject to the trustworthiness of the pseudo-random number generator and
the software used. Indeed, in 1000 independent simulation runs of the process with L = 13000, the
interval [0, L] was good in 991 cases, implying that the hypothesis that the probability is 0.968 or
less can be rejected at the 10−6 level. The simulation code is available at arxiv.org:1101.3716.
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By a monotone path in a multi-matching we mean a sequence of vertices x1 < x2 < · · · < xk with
the edges (x1, x2), (x2, x3), . . . , (xk−1, xk) all present. As observed in the proof of Theorem 1.3 (ii),
no two edges cross in the 2-stub stable multi-matching, and hence the same holds in a core multi-
matching. If I is good, it follows that the core multi-matching on I contains a monotone path from
the first quarter to the last quarter. We call such a path a spanning path of the good interval.

Lemma 4.3. Let a < b < c < d be points of P , and suppose that the intervals [a, b] and [c, d] are
both longer than [b, c]. If the 2-stub stable multi-matching has a monotone path α from a to b and a
monotone path δ from c to d, then it has a monotone path from a to d which contains α and δ.

Proof. Suppose on the contrary that there is no monotone path from a to d containing α and δ.
First extend the path α to the right as far as possible within [b, c]; that is, let b′ ∈ [b, c] be as large
as possible such that there is a monotone path containing α from a to b′. Similarly extend γ as far
left as possible to c′ ∈ [b, c]. By our assumption, and since there are no crossing edges, we have
b′ < c′. Note also that [a, b′] and [c′, d] are longer than [b′, c′]. Now b′ is adjacent to its neighbour
in the monotone path from a, and to exactly one other vertex x . By our assumptions, x /∈ [b′, c′],
and therefore x 6∈ (a, d), otherwise we would have crossing edges. A similar argument shows that
c′ has a neighbour outside (a, d). But now (b′, c′) form an unstable pair.

Corollary 4.4. If at least 8 of the 9 intervals [0, x], [x , 2x], . . . , [8x , 9x] are good, then so is [0, 9x].
Furthermore, under the same assumption, given any spanning paths, one of each of the good short
subintervals, there is a spanning path of the long interval containing all of them.

Proof. Let the configuration outside I := [0, 9x] be arbitrary and consider the stable multi-matching.
Write Ik = [(k − 1)x , kx]. For any sequence of consecutive good intervals Ia, Ia+1, . . . , Ib, by
Lemma 4.3 we obtain a monotone path in their union reaching to within distance x/4 of each
end. If I3, I4, I5, I6, I7 are all good, then the resulting path reaches to within 2x + x/4 = 9x/4 of
each end of I , as required. On the other hand, if one of I3, I4, . . . , I7 is bad (but the other 8 subinter-
vals are good), then we obtain two paths of length greater than 2x − 2(x/4) = 3x/2 on either side
of the bad subinterval, with a gap of length less than x + 2(x/4) = 3x/2 in between, so another
application of Lemma 4.3 provides the required spanning path.

Proof of Theorem 4.2. Let

I k :=
h

−
9k L

2
,
9k L

2

i

,

and let pk be the probability that I k is good. Thus p0 > 0.968, and by Corollary 4.4, pk+1 ≥ f (pk)
where

f (p) := p9+ 9p8(1− p).

It follows by an elementary computation that pk → 1 as k → ∞, and indeed
∑

k(1 − pk) < ∞.
Hence by the Borel-Cantelli lemma, a.s. I k is good for all sufficiently large k. Moreover, since
∑

k(1− f (pk)) <∞, for all sufficiently large k, the interval I k can be divided into 9 equal intervals
of which at least 8 are good. By Corollary 4.4 it follows that for some (random) K we may find
monotone paths πK ,πK+1,πK+2, . . ., each contained in the next, with πk a spanning path of I k for
each k. Then

⋃

k≥K πk is an infinite connected graph in the stable multi-matching.
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5 Some counterexamples

Theorem 1.2 asserts that the random direction stable multi-matching has no infinite component
when all vertices have degree 2, and that it has long edges in the sense that E∗[X 1/2] = ∞. Fur-
thermore, it follows from Theorem 1.3 that existence of an infinite component in the stable-multi
matching with all degrees equal to 2 is equivalent to N < ∞. This might lead one to suspect that
there is a simple relation between the component structure and the edge length for µ({2}) = 1
that holds for any matching scheme. Below, we give two examples of factor matching schemes that
demonstrate that this is not the case.

Example 1. Our first example is a matching scheme where all components are infinite and where
also the number of edges crossing the origin is a.s. infinite. Note that, if the origin is crossed by
infinitely many edges, then also N = ∞ and thus, by Lemma 1.4, E∗[M] = ∞. Existence of an
infinite component hence does not imply short edges in any of these respects.

To describe the matching scheme, let each point in [P ] be equipped with two stubs. Recall that
the stable multi-matching in the special case where µ({1}) = 1 is known as the stable matching.
First use one stub per point to form edges according to the stable matching of the points. Then
orient the remaining stub at each point in the opposite direction (left or right) from that of the first
stub, and connect these directed stubs according to the procedure used for the random direction
stable matching. This gives a graph where each point has one edge connected to the right and one
edge connected to the left – that is, all points are birds in the in the terminology used in the proof of
Theorem 1.2 – which implies that all components in the graph are infinite. That the number of edges
crossing the origin is infinite almost surely follows from Proposition 1.6 applied to the configuration
after the first stub per point is connected. �

Example 2. The next example is a matching scheme that gives almost surely only finite compo-
nents and where the expected edge length is finite. Finite expected edge length hence does not
imply existence of an infinite component.

The matching scheme proceeds by dividing the vertices into groups of size at least 3 as follows. Call
a point of P a seed if it has some other point within distance 1. Call a seed x good if the number
of non-seed points between x and the next seed to its right is at least 2. Now whenever x < y are
two consecutive good seeds, let all the points in [x , y) constitute one group.

Define the matching as follows. For a group x1 < · · · < xk, connect the two stubs per vertex to
form the edges (x i , x i+1) for i = 1, . . . , k−1 and the edge (x1, xk). This clearly gives a configuration
with almost surely finite components and finite expected edge length (since the distances between
consecutive Poisson points have exponential tails). �

Next we give simple examples of translation-invariant point processes on R for which the stable
multi-matching in the case µ({2}) = 1 provably does, and does not, have an infinite component.

Example 3. Let (X i)i∈Z be i.i.d. and uniformly distributed on [0,1/3], and let U be independent
and uniform on [0,1]. Consider the point process with support {i + X i + U : i ∈ Z}. It is easy
to see that each point connects to its left-neighbour and its right-neighbour, so there is an infinite
component.
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Number of points

210 212 214 216 218

Ex
pe

ct
ed

de
gr

ee

2 .244± .099 .291± .044 .297± .014 .287± .009 .292± .005

3 .278± .099 .154± .029 .049± .006 .017± .003 .006± .001

4 .802± .158 .728± .232 .653± .201 .366± .207 .399± .143

5 .974± .018 .933± .114 .815± .183 .672± .258 .321± .102

6 .989± .009 .990± .004 .975± .047 .933± .161 .755± .207

7 .994± .008 .997± .003 .989± .020 .996± .000 .961± .112

2.1 .071± .023 .024± .005 .009± .002 .003± .000 .001± .000

2.5 .132± .062 .043± .018 .018± .006 .006± .001 .001± .000

3.5 .472± .172 .244± .071 .146± .061 .050± .014 .016± .004

4.5 .992± .011 .888± .110 .529± .138 .298± .132 .129± .059

Table 1: Simulation results for the stable multi-matching of uniformly random points on the cycle.
The proportion of points in the largest connected component is indicated as “sample mean ± sample
standard deviation” for a sample of size 10. The degree D is either a constant integer, or takes two
consecutive integer values with probabilities determined by the indicated expected value.

Example 4. Let (X i, j)i∈Z, j=1,2,3 be i.i.d. and uniformly distributed on [0,1/3], and let U be inde-
pendent and uniform on [0, 1]. Consider the point process with support {i + X i, j + U : i ∈ Z, j =
1,2, 3}. Then each component has size exactly 3.

6 Open problems

The random direction stable multi-matching

For degree distributions other than µ({2}) = 1, it remains an open problem to determine if the
random direction stable multi-matching generates an infinite component.

The stable multi-matching

Firstly, it would of course be desirable to turn the “statistical proof” of percolation for D ≡ 2 in d = 1
into a fully rigorous proof. Furthermore, it remains an open problem to determine whether there
exists an infinite component the stable multi-matching for other degree distributions (an exception
being the case D ∈ {1,2} with P(D = 1) > 0; see [4]). Another interesting case arises when most
vertices have 2 stubs, but a small fraction have 3; this case can be expected to be very different from
the 2-stub case since there are local configurations which can end a long path. Indeed, simulations
appear to indicate that the proportion of vertices in the largest component converges to 0 as the
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system size increases, thus suggesting no infinite component; see Table 1 (lines 9-10). The obser-
vation that local modifications can end a long path extends to any degree distribution with support
on at least one odd integer. Is it the case that the stable multi-matching has an infinite component
in d = 1 if and only if the degree distribution has support only on even integers? Simulation results
can be found in Table 1.

Iterated stable matching

Yet another multi-matching scheme is obtained by repeatedly applying the stable matching of the
points with the restriction that multiple edges are not allowed. More specifically, first take the stable
matching of [P ], connect the points accordingly and remove one stub per point. Then consider the
stable matching of the points that have at least one stub left on them and with the modification that
two points that already have an edge between them cannot be matched. This matching is obtained
by repeatedly matching mutually nearest neighbors in the set of points with at least one stub left on
them, avoiding matchings of points that are already connected. As remarked in [4, Remark 2.2], the
proof of [4, Proposition 2.2] is easily modified to show that this yields a perfect matching. Connect
the points according to this matching and remove one stub from each point that is connected. Repeat
indefinitely.

Does this matching scheme generate an infinite component? How does the answer depend on the
degree distribution? Note that it follows from Proposition 1.6 that the number of edges that cross
the origin is a.s. infinite already after the first stub of the vertices has been connected. For degree
distributions with degrees larger than 1 however the matching contains crossing edges. This means
for instance that the proof of Theorem 1.3(b) cannot be applied to draw the same conclusion (that
N <∞ if there is an infinite component) for the iterated stable matching.
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