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Abstract

In this paper we investigate three types of convergence for geometrically ergodic Markov chains
(MCs) with countable state space, which in general lead to different ‘rates of convergence’. For
reversible Markov chains it is shown that these rates coincide. For general MCs we show some
connections between their rates and those of the associated reversed MCs. Moreover, we study
the relations between these rates and a certain family of isoperimetric constants. This sheds
new light on the connection of geometric ergodicity and the so-called spectral gap property, in
particular for non-reversible MCs, and makes it possible to derive sharp upper and lower bounds
for the spectral radius of certain non-reversible chains.

Key words: Markov chain, countable state space; geometric ergodicity; spectral gap property;
isoperimetric constant; reversibility; bounds for the spectral radius.

AMS 2010 Subject Classification: Primary 60J10.

Submitted to EJP on October 9, 2010, final version accepted April 20, 2011.

∗Research has been supported by the DFG

1001

http://www.math.washington.edu/~ejpecp/


1 Introduction

For positive recurrent Markov chains (MCs) one of the central questions is the convergence of their
transition kernels to the invariant distribution. The ‘geometrically ergodic’ case when this conver-
gence takes place at a geometric rate is of particular importance. A profound analysis of this subject
can be found in the monographs by Meyn and Tweedie [7] and by Nummelin [8].

In this paper we are concerned with three different kinds of rates of geometric convergence. In
Section 2 we present an example to illustrate the differences between the definitions; in Section 3
several connections between these rates for a MC and the corresponding rates for the reversed chain
are proved. In Section 4 we show that for reversible Markov chains (under a mild condition) the dif-
ferent types of rates of convergence actually coincide. In Section 5 we analyze geometrically ergodic
MCs by applying the concept of isoperimetric constants, which has been used in [14] to establish
necessary and sufficient conditions for the spectral gap property. We show that this property and
geometric ergodicity are equivalent for normal Markov chains, generalizing the results of Roberts
and Tweedie [11] and Roberts and Rosenthal [12]. Moreover, it is shown how a certain sequence
of isoperimetric constants can be used to obtain bounds for the rates of geometric convergence, and
prove that these bounds are sharp in some cases. In Section 6 we present an example which shows
that geometric ergodicity (GE) does not imply the spectral gap property (SGP) and calculate exact
rates of geometric convergence applying the method of isoperimetric constants.

Throughout this paper let ξ1,ξ2, . . . be a positive recurrent MC with countable state space Ω, transi-
tion kernel p(·, ·) and invariant probability measure π. Let

p∗(i, j) =
π( j)p( j, i)
π(i)

, i, j ∈ Ω (1)

be the transition probabilities of the reversed MC (a realization of which we denote by ξ∗1,ξ∗2, . . .).
We need the standard MC operators P, P∗ and Π defined by

P f (i) =
∑

j∈Ω
f ( j)p(i, j), (2)

P∗ f (i) =
∑

j∈Ω
f ( j)p∗(i, j), (3)

Π f (i) =
∑

j∈Ω
f ( j)π( j). (4)

for all real-valued functions f on Ω for which the corresponding series converge. In particular, for
all f ∈ L2(π) it easily follows from Jensen’s inequality and the stationarity of π that the sums in
(2), (3) and (4) converge and that P f , P∗ f and Π f are in L2(π). Note that we consider Π as the
operator that maps every f ∈ L2(π) to the function constantly equal to the π-expected value of f .
The scalar product on L2(π) is of course

〈 f , g〉π =
∑

j∈Ω
f ( j)g( j)π( j).

It is easy to show that
〈P f , g〉π = 〈 f , P∗g〉π,
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so P∗ is the adjoint operator of P on L2(π). We say that P has the spectral gap property (SGP) on
L2(π) if

ρ = lim
n→∞

sup
f ∈L2

0,1(π)
||Pn f ||

1
n

L2(π)
< 1, (5)

where
L2

0,1(π) = { f ∈ L2(π) : || f ||L1(π) = 0, || f ||L2(π) = 1},
and

|| f ||L1(π) =
∑

j∈Ω
f ( j)π( j), || f ||L2(π) =

�
∑

j∈Ω
f ( j)2π( j)

�1/2
.

Note that the limit in (5) always exists (see e.g. [10]). The total variation distance of two probability
measures µ and ν on Ω is defined by

d(µ,ν) = ||µ− ν ||T V = sup
φ:||φ||∞=1

∑

j∈Ω
(µ( j)− ν( j))φ( j).

If we set A= { j ∈ Ω : µ( j)≥ ν( j)}, then clearly

d(µ,ν) = 2|µ(A)− ν(A)|.

A Markov chain ξ1,ξ2, . . . is called geometrically ergodic (GE) if for some δ < 1

Kδ(i) = sup
n∈N

||pn(i, ·)−π||T V

δn <∞ ∀i ∈ Ω. (6)

From [7] (Chapter 15) and [8] (Theorem 6.14 (iii)) it follows that the GE property is equivalent to
the seemingly more restrictive condition

||Kδ||L1(π) =
∞
∑

i=1

Kδ(i)π(i)<∞ (7)

for some δ < 1, where Kδ is defined as in (6). Note that the δ in (7) may differ from the δ in (6).

Obviously, (7) implies that for some δ < 1

C(δ) = sup
n∈N

∑

i∈Ω ||p
n(i, ·)−π||T Vπ(i)
δn <∞. (8)

It is certainly of interest to find the best rate of ‘geometric convergence’. However, considering
(6)-(8) there are three possibilities to define an optimal lower bound for this rate: Let

δ0 = inf{δ : 0< δ < 1 and (6) is satisfied} (9)

δ1 = inf{δ : 0< δ < 1 and (7) is satisfied} (10)

δ2 = inf{δ : 0< δ < 1 and (8) is satisfied}. (11)

Definition 1. Regarding the geometric rate of convergence we call δ0 the optimal lower bound (OLB)
in the weak sense, δ1 the OLB in the strong sense and δ2 the OLB in the L1(π) sense.

It follows from the definitions that
δ1 ≥ δ2 ≥ δ0.

Are these inequalities in general strict, and under which conditions do they become equalities?
Moreover, are these OLBs attained? We start with an example.
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2 Introductory example: the reversed winning streak

Let us consider the MC with state space N and transition matrix
















1
2

1
4

1
8

1
16

. . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .

















. (12)

Its invariant measure π is given by

π(i) =
�

1

2

�i

, i ∈N.

The crucial observation now is that

p(1, i) = π(i) ∀i ∈N,

which immediately generalizes to

||pi(i, ·)−π||T V = 0 ∀i ∈N.

It follows that
||p j(i, ·)−π||T V = 0 ∀ j ≥ i, i ∈N.

For arbitrary δ > 0 we conclude that

||pn(i, ·)−π||T V ≤ 2(1/δ)i−1δn ∀n ∈N, i ∈N.

Since this holds true for all δ > 0, we see that Kδ(i) ≤ 2(1/δ)i−1 and that the OLB in the weak
sense is zero, i.e.,

δ0 = 0.

But of course the MC is not GE at rate zero (this rate of geometric ergodicity only occurs for MCs
induced by a sequence of i.i.d. random variables); thus the infimum in (9) is not attained.

Next let us determine δ1. Check that

|pi(i+ 1, 1)−π(1)|=
1

2
∀i ∈N.

Now consider an arbitrary δ < 1 satisfying (10). Then

1

2
≤ ||pi(i+ 1, ·)−π||T V ≤ Kδ(i+ 1)δi ,

so that

Kδ(i)≥
δ/2

δi ∀i ∈N.
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So (7) holds for δ only if
δ

2

∞
∑

i=1

�

1

2

�i�1

δ

�i

<∞,

which is of course equivalent to δ > 1/2. Hence,

δ1 ≥
1

2
. (13)

On the other hand, if we choose δ = 1
2
+ε, we see that for any ε ∈ (0, 1

2
)we have that Kδ(i)≤ (2−ε)i .

Moreover, a simple calculation shows that (7) is satisfied. This together with (13) implies that

δ1 =
1

2
.

The above reasoning implies that this MC is not GE with rate 1
2

in the strong sense.

Regarding δ2, so far we only know that δ2 ≤
1
2
. Its exact value will be derived in the next section,

where we will also see how the different rates of convergence occur in a natural way when trying to
bound δ∗0, the OLB of the reversed chain in the weak sense, by the OLBs of the original MC.

3 The reversed chain

Assuming that a MC ξ1,ξ2, . . . is GE, what can we say about the reversed MC ξ∗1,ξ∗2, . . .? We show
that the GE property is preserved under time-reversion, but the behavior of the OLBs is more com-
plicated.

Theorem 1. If a MC is GE, then the reversed MC is also GE.

Proof: Let B(n)i = { j ∈ Ω : p∗
n
(i, j)≥ π( j)} and δ ∈ (δ2, 1). Then we have

||p∗
n
(i, ·)−π||T V = 2|p∗

n
(i, B(n)i )−π(B

(n)
i )|

= 2
∑

j∈B(n)i

π( j)
π(i)

�

pn( j, i)−π(i)
�

≤
2

π(i)

∑

j∈B(n)i

π( j)
||pn( j, ·)−π||T V

δn δn

≤
2

π(i)

∑

j∈Ωπ( j)||p
n( j, ·)−π||T V

δn δn

=
2C(δ)
π(i)

δn (14)

and C(δ)<∞ since δ > δ2.

�

Actually, we have just shown
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Corollary 1. If ξ1,ξ2, . . . is GE, then δ∗0 ≤ δ2.

Theorem 2. If ξ1,ξ2, . . . is GE, then
δ2 = δ

∗
2, (15)

where δ∗2 denotes the OLB of the reversed MC in the L1(π) sense.

Proof: We have
∑

i∈Ω
||p∗

n
(i, ·)−π||T Vπ(i) = 2

∑

i∈Ω
|p∗

n
(i, B(n)i )−π(B

(n)
i )|π(i)

= 2
∑

i∈Ω

∑

j∈B∗(n)i

π( j)
π(i)

�

pn( j, i)−π(i)
�

π(i)

= 2
∑

i∈Ω

∑

j∈B∗(n)i

π( j)
�

pn( j, i)−π(i)
�

≤ 2
∑

j∈Ω

∑

i∈Ω
π( j)

�

�pn( j, i)−π(i)
�

�

= 2
∑

i∈Ω
||pn(i, ·)−π||T Vπ(i). (16)

For every δ > δ2 there is a constant C such that the right-hand side of (16) is at most Cδn for all n.

It follows that δ2 ≥ δ∗2. Using the fact that p∗∗(·, ·) = p(·, ·) and carrying out the same calculations
as in (16) with p∗∗(·, ·) instead of p∗(·, ·), we obtain δ2 ≤ δ∗2.

�

Let us apply Theorem 2 to the example in Section 2. The transition matrix of the reversed MC is
given by













1
2

1
2

0 0 . . .
1
2

0 1
2

0 . . .
1
2

0 0 1
2

. . .
...

...
...

... . . .













. (17)

This MC has a remarkable feature: there is a central state in the sense that this state can be reached
from any other one in a single step with probability 1/2. This property immediately implies that

sup
i, j∈Ω,A⊂Ω

|p∗(i, A)− p∗( j, A)| ≤
1

2
. (18)

It is interesting that (18) implies the classical condition which was used by Döblin [2] in order to
establish uniform geometric convergence to the invariant measure (with respect to total-variation)
for certain Markov chains, i.e.,

∃δ < 1 : sup
n≥1

sup
i∈Ω

||pn(i, ·)−π||T V

δn = sup
i∈Ω

Kδ(i)<∞.

Note that this is a stronger property than (6).

1006



In [6] it is shown that (18) implies that

||p∗
n
(i, ·)−π||T V ≤ 2

�

1

2

�n

(19)

(the constant 2 does not appear in [6] due to a different definition of the total variation norm). The
proof is based on a coupling argument in which (18) is used to bound the expected coupling time,
which in turn leads to the estimate for the total variation (see [6]). The factor 1

2
in (19) is optimal

in the sense that it is as small as possible. In fact,

sup
i∈Ω
||p∗

n
(i, ·)−π||T V ≥ |p∗

n
(1, n)−π(n)|= 2−n,

so δ∗0 =
1
2
. From (19) it now follows immediately that

δ∗0 = δ
∗
1 = δ

∗
2 =

1

2
. (20)

The situation is completely different from what we have seen for the original chain, for which it has
been shown that

0= δ0 ≤ δ2 ≤ δ1 =
1

2
.

Let us determine δ2, which had been left open at the end of Section 2. From Theorem 2 and (20) it
follows that

δ2 = δ
∗
2 =

1

2
.

A closer look at the proof of Theorem 2 yields even more. We obtain

∑

i∈Ω
||pn(i, ·)−π||T Vπ(i)≤ 4

�

1

2

�n

,

so the OLB in the L1(π) sense, δ2, is in fact attained. Recall that this was not the case for δ0 and δ1.

4 Reversible Markov chains

In this section we show that for reversible MCs δ0, δ1 and δ2 coincide under the (rather weak) condi-
tion that the invariant distribution π has a finite (1+ε)-moment (ε > 0), i.e., if M =

∑∞
i=1 i1+επ(i)<

∞.

Theorem 3. If a MC is reversible, GE and its invariant distribution π has a finite (1+ ε)-moment for
some ε > 0, then

δ0 = δ1 = δ2, (21)

and all these OLBs are attained.

Proof: Without loss of generalization we can assume that Ω =N and

π(i)≥ π(i+ 1) ∀i ∈N.
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Define δi :N→R by

δi(k) =

¨

1 : i = k
0 : i 6= k

and

ρi = limsup
n→∞

|| (Pn−Π)
δi

π
||

1
n

L2(π)
, (22)

with || f ||L2(π) = [
∑

j∈Ω f ( j)2π( j)]]1/2. Now we apply the spectral representation theorem (see e.g.
[10]) with spectral measure

νi(λ) =

®

Eλ
δi/π

||δi/π||L2(π)
,

δi/π

||δi/π||L2(π)

¸

associated to P − Π and (δi/π)/||δi/π||L2(π), Eλ denoting the corresponding projection operator.
We obtain

|| (Pn−Π)
δi

π
||

1
n

L2(π)
=

�

(Pn−Π)2
δi

π
,
δi

π

�
1

2n

L2(π)

=

 

∫ 1

−1

λ2n〈dEλ
δi

π
,
δi

π
〉L2(π)

!
1

2n

= ||
δi

π
||

1
n

L2(π)

 

∫ 1

−1

λ2nνi(dλ)

!
1

2n

=





1
p

π(i)





1
n
 

∫ 1

−1

λ2nνi(dλ)

!
1

2n

(23)

From (22) and (23) it follows that

ρi =max[− inf supp(νi(λ)), sup supp(νi(λ))]. (24)

We have

||pn(i, ·)−π||T V = sup
φ:||φ||∞=1

∑

j∈Ω

�

pn(i, j)−π( j)
�

φ( j)

= sup
φ:||φ||∞=1

∑

j∈Ω

∑

k∈Ω

δi(k)
π(k)

�

pn(k, j)−π( j)
�

φ( j)π(k)

= sup
φ:||φ||∞=1

�

δi

π
, (Pn−Π)φ

�

L2(π)

= sup
φ:||φ||∞=1

�

(Pn−Π)
δi

π
,φ
�

L2(π)

≤ || (Pn−Π)
δi

π
||L2(π)

≤ ρn
i

1
p

π(i)
(25)

1008



≤ sup
j∈Ω
ρn

j

1
p

π(i)
(26)

≤
1

p

π(i)
ρn (27)

where the first two inequalities follow from Cauchy-Schwarz and the identities (23)-(24), respec-
tively. The last inequality follows from the definition of ρ. From the equivalence of (i) and (iii) in
Theorem 2.1 of [12] it follows that the upper bound ρi for the rate in (25) is optimal in the sense
that

sup
n≥1

||pn(i, ·)−π||T V

δn =∞ ∀δ < ρi ∀i ∈ Ω.

This implies that
δ0 = sup

j∈Ω
ρ j .

From (26) it follows that δ0 is attained, i.e., that (6) holds for δ = δ0.

Now let us prove (21). By (26), it is enough to show that

||
1

p

π(·)
||L1(π) =

∞
∑

i=1

p

π(i)<∞. (28)

Let K =
∑∞

i=1 i−(1+ε). We obtain

∞
∑

i=1

p

π(i) =
∞
∑

i=1

i
1+ε

2

p

π(i)
1

i
1+ε

2

≤
p

K M <∞. (29)

�

From the last proof we immediately obtain

Corollary 2. For a reversible MC the following two statements are equivalent:

1. ρ = sup j∈Ωρ j .

2. δ0 = ρ.

The estimate in (27) is the well-known 1p
π(i)

-bound for the total variation in terms of the spectral

radius. For Markov chains with finite state space this can be found in [13].

5 Geometric ergodicity and spectral theory

The following theorem due to [11] and [12] shows the close connection between geometric ergod-
icity and the spectral gap property.

Theorem 4. For a reversible MC ξ1,ξ2, . . . the following two statements are equivalent:
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1. ξ1,ξ2, . . . is GE.

2. P satisfies the SGP.

Moreover,
ρ = δ0.

The original proof of this result can be found in [12]. A very short derivation of the first part was
given in [14]. The key observation there was that the spectral radius of a MC can be expressed by a
rescaled function of a sequence of isoperimetric constants (see Theorem 5 below). It turns out that
these rescaled constants are a suitable tool for studying geometric ergodicity in the sense that they
can be related to the different notions of geometric speed of convergence.

The isoperimetric constants in question are

kn = inf
A⊂Ω

kn(A), kP∗n Pn = inf
A⊂Ω

kP∗n Pn(A), n ∈N

where

kn(A) =
1

π(A)π(Ac)

∑

i∈A

pn(i, Ac)π(i)

kP∗n Pn(A) =
1

π(A)π(Ac)

∑

i∈A

∑

j∈Ω
p∗

n
(i, j)pn( j, Ac)π(i).

The following theorem from [14] relates spectral properties to the rescaled limits of isoperimetric
constants.

Theorem 5. Assume that the operator P is normal. Then the spectral radius ρ is given by

ρ = lim
n→∞

�

p

1− kP∗n Pn

�
1
n . (30)

In particular, for reversible Markov chains this yields

ρ = lim
n→∞

�
p

1− k2n

�
1
n .

Moreover, if P is in addition positive, we have

ρ = lim
n→∞

�

1− kn
�

1
n .

Based on this result, we can show

Theorem 6. If the underlying MC is GE, then

sup
A⊂Ω

limsup
n→∞

(1− kP∗n Pn(A))
1

2n ≤
p

δ2.

If P is in addition normal, then the MC satisfies SGP and the spectral radius ρ can be estimated by

δ0 ≤ ρ ≤
p

δ2. (31)
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Proof: An easy calculation shows that

1− kP∗n Pn(A) =
1

π(A)π(Ac)

∑

i∈Ω
(pn(i, Ac)−π(Ac))2π(i). (32)

Hence, for every ε ∈ (0,1−δ2),

lim sup
n→∞

(1− kP∗n Pn(A))
1

2n

= limsup
n→∞

 

1

π(A)π(Ac)

∑

i∈Ω
(pn(i, Ac)−π(Ac))2π(i)

!
1

2n

≤
p

ε+δ2 lim sup
n→∞

�

2

π(A)π(Ac)

�
1

2n
�∑

i∈Ω ||p
n(i, ·)−π||T Vπ(i)
(ε+δ2)n

�
1

2n

≤
p

ε+δ2. (33)

This proves the first assertion of the theorem.

The first inequality in (31) follows from the second part of Theorem 4. Let us prove the second
inequality. It was shown in [14] that for l < n we have

(1− k
P∗l P l (A))

1
2l ≤ (1− kP∗n Pn(A))

1
2n . (34)

Thus, by (34) and (32),

(1− k
P∗l P l (A))

1
2l ≤

 

1

π(A)π(Ac)

∑

i∈Ω
(pn(i, Ac)−π(Ac))2π(i)

!
1

2n

≤
�

2

π(A)π(Ac)

�
1

2n

 

∑

i∈Ω
||pn(i, ·)−π||T Vπ(i)

!
1

2n

. (35)

Now first letting n → ∞, then taking the supremum over all A ⊂ Ω, thereafter letting l → ∞ and
applying Theorem 5 yields ρ ≤

p

δ2.

�

From this theorem we immediately obtain

Corollary 3. If P is normal, then the following statements are equivalent:

1. ξ1,ξ2, . . . is GE.

2. ξ1,ξ2, . . . satisfies SGP .

Next we want to prove the equivalence in Corollary 3 for certain non-reversible MCs. Note that
normality of the operator P is only needed to ensure that (34) holds. So it seems natural to start
with a modified version of (34). Define

a(n, A) = (1− kP∗n Pn(A))
1

2n . (36)
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Corollary 4. Assume that for every A⊂ Ω the sequence (a(n, A))n∈N has a nondecreasing subsequence
(a(nk, A))k∈N with n1 = 1. Then the GE property and SGP are equivalent and

ρ ≤
Ç

1−
κ

8

�

1−δ2
2

�2
, (37)

where κ≥ 1 is a constant which does not depend on the underlying MC.

Note that the subsequence (nk)k≥2 is allowed to depend on A. The fact that κ ≥ 1 has been estab-
lished in [5], from which the following definition of κ is taken: Let D denote the set of all possible
distributions of pairs (X , Y ) of i.i.d random variables each having variance 1. Then

κ= inf
D

sup
c∈R

E
�

|(X + c)2− (Y + c)2|
�

E((X + c)2)
. (38)

Proof: The implication SGP =⇒ GE can be derived in a similar way as (25). More precisely,
in the derivation of (25) we have to take the adjoint in the inner product, i.e. to replace
Pn − Π by P∗n − Π. The result follows by applying Cauchy-Schwarz in (25) and the fact that
||Pn−Π||L2(π) = ||Pn∗−Π||L2(π).

GE =⇒ SGP follows immediately from (37), since δ2 < 1 implies ρ < 1. So let us show (37). Since
(a(nk, A))k∈N is nondecreasing, we can carry out the same calculation as in the proof of Theorem 6
with n replaced by nk. By assumption, we have n1 = 1 for all A⊂ Ω. This yields

(1− kP∗P(A))
1
2 ≤ δ2, (39)

which implies that
(1− kP∗P)

1
2 ≤ δ2.

Now (37) follows from Proposition 1 of [16].

�

Because of its generality, the upper bound in (37) is not sharp in most cases. In order to improve
this upper bound for certain MCs we show the following generalization of Theorem 5.

We need the Hilbert space L2
0(π) = { f ∈ L2(π) :

∑

j∈Ω f ( j)π( j) = 0}.

Theorem 7. For a positive recurrent MC the spectral radius ρ = ρ(P) of the associated Markov operator
P on L2

0(π) is given by

ρ = lim
n→∞

lim
l→∞

�

1− k(P∗n Pn)l
�

1
2n l . (40)

Proof: Since P∗
n
Pn is positive and selfadjoint, Theorem 5 yields

ρ(P∗
n
Pn) = lim

l→∞

�

1− k(P∗n Pn)l
�

1
l .

By the Rayleigh-Ritz principle (see e.g. [5]) it follows that

sup
f ∈L2

0,1(π)
〈P∗

n
Pn f , f 〉π = lim

l→∞

�

1− k(P∗n Pn)l
�

1
l . (41)
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Since the left-hand side in (41) equals ||Pn||2
L2

0(π)
, we obtain

||Pn||
1
n

L2
0(π)
= lim

l→∞

�

1− k(P∗n Pn)l
�

1
2n l .

Now n→∞ leads to the assertion.

�

Corollary 5. Assume that there exists an n0 ∈N such that

P∗
n
Pn = (P∗P)n ∀n≥ n0. (42)

Then
ρ(P) =

p

ρ(P∗P) = lim
n→∞

�

1− kP∗n Pn

�
1

2n

and
δ0 ≤ ρ(P)≤

p

δ2. (43)

Proof: From Theorem 7 it follows that

ρ(P) = lim
n→∞

lim
l→∞

�

1− k(P∗n Pn)l
�

1
2n l

= lim
n→∞

lim
l→∞

�

1− k(P∗P)n l

�
1

2n l

=
p

ρ(P∗P)

= lim
n→∞

�

1− k(P∗P)n
�

1
2n

= lim
n→∞

�

1− k(P∗n Pn)

�
1

2n . (44)

The inequalities (43) can be shown in the same way as in the proof of Theorem 6.

�

The upper bound in (43) is better than that in (37). To show this, note that since we do not know
the exact value of κ, the estimate (37) can only be applied with κ = 1. Therefore we have to prove
that

p

δ2 ≤

r

1−
1

8

�

1−δ2
2

�2
,

which is equivalent to
1

8
(1−δ2)

2(1+δ2)
2 ≤ 1−δ2.

Actually,
p

δ2 is smaller than the right-hand side of (37) whenever
maxδ∈[0,1](1−δ)(1+δ)2 ≤ 8/κ. This is the case as long as κ≤ 27/4.

Observe that normality of a MC implies condition (42). Let us again consider the example of Sec-
tion 2 to show that this implication cannot be reversed. Let P and P∗ be given by (12) and (17),
respectively. It can be readily seen that for i ≥ 2 and j ∈N we have

(P∗P)i, j =
1

2
π j +

1

2
δi, j
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and

(PP∗)i, j =
1

2
δ0, j +

1

2
δi, j .

This implies that P∗P 6= PP∗, so the MC is not normal. However, a short calculation shows that

((P∗P)2)i, j =
3

4
π j +

1

4
δi, j = (P

∗2 P2)i, j . (45)

By (45),

P∗
3
P3 = P∗(P∗

2
P2)P = P∗(P∗P)2P = P∗

2
PP∗P2

= P∗
2
P2(P−1P∗

−1
)P∗

2
P2 = (P∗P)2(P∗P)−1(P∗P)2

= (P∗P)3. (46)

By complete induction, it is now seen that (42) is satisfied with n0 = 2.

The spectral gap in this example has already been determined in [14]. We give a very short alterna-
tive derivation. From Corollary 5 it follows that

ρ(P) =
p

ρ(P∗P).

But

P∗P =
1

2
I +

1

2
Π, (47)

where I denotes the identity operator, i.e., I f = f . Since P∗P is selfadjoint, we obtain

ρ(P) =
p

ρ(P∗P) =
Æ

||P∗P||L2
0(π)

=

r

||
1

2
I +

1

2
Π||L2

0(π)

=

r

1

2
. (48)

Note that the inequality ρ ≤
p

δ2 =
Æ

1
2
, which has been derived in Corollary 5, is in fact sharp!

We can use this in order to obtain an estimate for κ. Insert ρ =
Æ

1
2

into (37) we obtain that

κ≤
64

9
.

The computations in the proof of Theorem 3 lead to the following modification of Corollary 5:

Corollary 6. If the operator P of a geometrically ergodic MC satisfies (42) and the invariant distribution
π has a finite (1+ ε)-moment for some ε > 0, then

δ2 ≤ ρ ≤
p

δ2.

The following result provides lower bounds for δ0 and δ2.
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Theorem 8. If the MC is GE,
δ2 ≥ sup

A⊂Ω
limsup

n→∞
|1− k2n(A)|

1
2n . (49)

δ0 ≥ sup
A⊂Ω:min(|A|,|Ac |)<∞

limsup
n→∞

|1− k2n(A)|
1

2n . (50)

If for every A⊂ Ω the sequence (|1− k2n(A)|
1

2n )n∈N is nondecreasing, we even have

δ2 ≥ lim
n→∞

|1− k2n|
1

2n . (51)

Moreover, for every sequence (A2n)n∈N with limn→∞

�

1
π(An)π(Ac

n)

�
1

2n
= 1 we have

δ2 ≥ lim sup
n→∞

|1− k2n(A2n)|
1

2n . (52)

Proof: We only show the third inequality of Theorem 8 because the proofs of the others are
similar. We have by assumption that, for arbitrary δ > δ2,

|1− k2n0
(A)|

1
2n0 ≤ lim

n→∞
|1− k2n(A)|

1
2n

= lim
n→∞

�

�

�

�

�

1−
1

π(A)π(Ac)

∑

i∈A

p2n(i, Ac)π(i)

�

�

�

�

�

1
2n

≤ lim
n→∞

�

1

π(A)π(Ac)

�
1

2n

lim sup
n→∞

 

∑

i∈A

||p2n(i, ·)−π||T Vπ(i)

!
1

2n

≤ limsup
n→∞

 

∑

i∈Ω
||p2n(i, ·)−π||T Vπ(i)

!
1

2n

≤ limsup
n→∞

C(δ)
1

2nδ = δ. (53)

Now δ→ δ2 and n0→∞ yields the result.

�

Let us apply this result to our example. A good choice of the set A is of key importance in order to
obtain a non-trivial lower bound. We try A= {2,4, 6,8, . . .}. Then

k2n(A) =
1

π(A)π(Ac)

∑

i∈A

p2n(i, Ac)π(i)

=
1

π(A)π(Ac)

n
∑

i=1

π(Ac)π(2i) = 3
1/4− (1/4)n+1

3/4
= 1−

�

1

4

�n

.

(54)

This implies that

(1− k2n(A))
1

2n =
1

2
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for all n. Applying Theorem 8 yields

δ2 ≥
1

2
.

By what has been shown before, this bound is again sharp. One can prove that the above choice of
A is optimal in the sense that

k2n(A) = k2n.

So we have just seen that in our example we have

(1− k2n)
1

2n = δ2 ∀n. (55)

It would be nice to have this relation in general, at least asymptotically, but this result fails to be
true. In the next section we consider an example (originally due to Häggström [3]) of a MC that is
GE and satisfies k2n = 0 for all n ∈N. In this example the left-hand side in (55) is equal to one for
every n, but by geometric ergodicity the right-hand side in (55) is less than one.

6 Example [GE 6=⇒ SGP]

Consider the MC with state space

Ω = {0} ∪ {(a, b) : a ≥ 1, b ∈ {1, 2, . . . , a}}

and transition kernel

p((a, b), (a, b− 1)) = 1, for b ≥ 2, p((a, 1), 0) = 1,

p(0, 0) = 1
2

and

p(0, (a, b)) =

¨

2−(a+1) : a = b
0 : otherwise

.

The invariant distribution π can be calculated to be

π(0) =
1

2
and π((a, b)) = 2−(a+2) for b ∈ {1, 2, . . . , a}. (56)

Häggström [3] has shown that this MC is GE with δ0 =
1
2
. In order to prove that kn = 0 for all

n ∈N, it suffices to show that k1 = 0 (see [15]). This can be seen as follows: Define

An,n = {(n, n), (n, n− 1), . . . , (n, 1)} and An,1 = {(n, 1)}.

Then we have

k1 ≤ k(An,n) =
1

n · 2−(n+2)

1

1− n · 2−(n+2)

∑

i∈An,n

p(i, Ac
n,n)π(i)

≤
2

n · 2−(n+2)

∑

i∈An,1

π(i) =
2

n
. (57)

Letting n→∞ yields k1 = 0.
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Kontoyiannis and Meyn [4] have proved that geometric ergodicity and SGP are not equivalent using
the same example, but a different argument based on an Lyapunov function approach.

Häggström [3] originally used the example in order to present a sequence of random variables
connected to a geometrically ergodic MC with finite second moments but not following the central
limit theorem. In fact, this result implies that the MC cannot satisfy SGP, since by a theorem due to
Cogburn [1] for every sequence of random variable connected to a Markov chain satisfying SGP and
having finite second moments the central limit theorem holds.

We now show that

δ0 = δ1 = δ2 =
1

2
.

We start from the observation

pn(0,0) =
1

2
∀n ∈N. (58)

Define
d(0, (a, b)) = a− b+ 1 ∀(a, b) : a ≥ 1, b ∈ {1,2, . . . , a}

and
d((a, b), 0) = b ∀(a, b) : a ≥ 1, b ∈ {1,2, . . . , a}.

Using equality (58) it is not difficult to see that for all n≥ d(0, (a, b)) we have

pn(0, (a, b)) = π((a, b)). (59)

But this implies that for n≥ d((a, b), 0) = b

||pn((a, b), ·)−π||T V ≤ ||pn−b(0, ·)−π||T V

≤ π({(a, b) : d(0, (a, b))> n− b, a ≥ 1, b ∈ {1,2, . . . , a}})

≤ C 2b
�

1

2

�n

for some C > 0. (60)

This yields that 1
2

is an upper bound for δ0. To see that 1
2

is also a lower bound, note that

||pn(0, ·)−π||T V ≥ |pn(0, (n+ 1,1))−π((n+ 1, 1))|= π((n+ 1,1)) = 2−4
�

1

2

�n

.

Next we show that δ2 ≤
1
2
. Similar calculations as in (59) yield for all ε ∈ (0, 1

2
] and n ≥

d((a, b), 0) = b

||pn((a, b), ·)−π||T V ≤ C (2− ε)b
�

1

2
+ ε
�n

for some C > 0.

Since f defined by f ((a, b)) = (2− ε)b is in ∈ L1(π), the desired inequality follows.

To see that 1
2

is also a lower bound for δ2, we calculate 1− k2n(A2n) for

A2n = {0} ∪ {(a, a) : a ∈ {1,2, . . . , 2n}}, n≥ 2.

It is not difficult to show that
p2(0, ( j, j)) = π(( j, j)) ∀ j ∈N.
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This implies
pk(0, ( j, j)) = π(( j, j)) ∀ j ∈N,∀k ≥ 2. (61)

Applying (58) and (61) we obtain

k2n(A2n) =
1

π(Ac
2n)
−

1

π(A2n)π(Ac
2n)

∑

i∈A2n

p2n(i, A2n)π(i)

=
1

π(Ac
2n)
−

1

π(Ac
2n)

1

π(A2n)

2n
∑

i=0

p2n−i(0, A2n)π(i)

=
1

π(Ac
2n)
−

1

π(Ac
2n)

1

π(A2n)

�
2n−2
∑

i=0

π(A2n)π(i)

+π(2n− 1)p(0, A2n) +π(2n)
�

=
1

π(Ac
2n)
−

1

π(Ac
2n)π(A2n)

[π(A2n)
2−π(A2n)(π(2n− 1) +π(2n))

+π(2n− 1)p(0, A2n) +π(2n)]

= 1−
−π(A2n)(π(2n− 1) +π(2n)) +π(2n− 1)p(0, A2n) +π(2n)

π(Ac
2n)π(A2n)

= 1−
1+ 2p(0, A2n)− 3π(A2n)

π(Ac
2n)π(A2n)

π(2n) (62)

Now it can be easily deduced that

lim
n→∞

|1− k2n(A2n)|
1

2n =
1

2
.

Apply inequality (52) of Theorem 8 to conclude that δ2 ≥
1
2
. Altogether we have now shown that

δ0 = δ1 = δ2 =
1
2
. Note that the infima δ1 and δ2 are not attained but the infimum δ0 is.
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