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1 Introduction and Main Results

Let (X(t),Y), t € R, be a random element, where X(t) is a random process taking values in R, and
Y is an arbitrary random element. We say X (t) is a conditionally Gaussian process if the conditional
distribution of X(-) given Y is Gaussian. We investigate the probabilities of large extremes,

P,(T):=P( sup X(t)>u),
te[0,T]

as u — oo where T > 0. Denote the random mean of X conditioned on Y by
m(t,Y):=EX(t)|Y)
and the random covariance by
C(s,t,Y) := E((X(s) —m(s, Y)IX(t) —m(t,Y)) | V),

so that
V3(t,Y):=C(t,t,Y)

is the random variance of X.

Such processes were introduced in applications in finance, optimization and control problems. To
our best knowledge, the paper by Adler et al. [[1]] was the first mathematical work where probabilities
of large extremes of conditionally Gaussian processes where considered. The authors considered
sub-Gaussian processes as an example of stable processes, that means processes of the type X(t) =
\/E E(t), where £(t) is a stationary Gaussian process and { is a stable random variable, independent

of £(-). That is, in our notations, Y = \/Z and X (t) = Y&(t). Therefore we have a Gaussian process
with random variance. This paper dealt with the mean of the number of upcrossings of a level u,
as in the Rice formula, which can be applied for smooth Gaussian processes. Further results on this
problem are dealt with in [[9], [2]], [I7]], [8]]. For examples, Doucet et al [2]] considered to model
the behavior of latent variables in neural networks by Gaussian processes with random parameters.
Lototsky [[7] studied stochastic parabolic equations with solutions of Gaussian processes, where the
coefficients are modeled by a dynamic system. We consider in our paper more general Gaussian
processes.

The aim of the present paper and subsequent ones which are in preparation, is to develop asymp-
totic methods for large extremes of conditional Gaussian processes. Our intention is to expand the
Gaussian tools to wider class of random processes. The asymptotic theory for large extremes of
Gaussian processes and fields is already well developed, see [[11]], [I3]], and the references therein.

A good part of this asymptotic theory for large extremes of conditional Gaussian processes is mainly
based on the corresponding theory for Gaussian processes. The last one was began from the cele-
brated Pickands’ theorem [[10] on large extremes of stationary Gaussian processes and its extension
to non-stationary Gaussian processes, as in Hiisler [5]] for certain types of non-stationarity, and in
Piterbarg and Prisyazhn’uk [[12]] where the non-stationary process has a non constant variance with
a unique point of maximum. In [J6] we consider also the type of processes £(t)n(t), but with smooth
processes 1(t). In this paper we investigate the case of less smooth processes 7). Also we let £(t) to
be a locally stationary Gaussian process &(t), instead of a stationary Gaussian process in [6]].
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Now, let £(t), 0 < t < T be a standard locally stationary Gaussian process with the covariance
function r(t) satisfying that uniformly in t

r(t,t+s)=1—=C(t)|s|*+o(]s|*), ass = 0,0<a <2
with C(t) a positive continuous function on some interval [0, T] with T < co. Assume that
r(t,t+s)<1 foralls,t > 0.

Let n(t) be another stochastic process with n(t) > 0 (a.s.), which is independent of £(t). We are
interested in the exceedance probabilities of the product process £(t)n(t), i.e.

P{&(t)n(t) > u, for some t € [0,T]} as u — oo,

where T < oo; here n(t) can be interpreted as the random standard deviation of the Gaussian
process &(t). In this paper we further assume that

n(t) =n-¢t’,
where 7 and { are non-negative bounded random variables, being independent of £(+); and assume

that n > s, (a.s.) for some sy > 0.

For keeping the random standard deviation 7(t) strictly positive, we consider that the time interval
is small enough. Hence we study the probability of exceedance occurring in a time interval [0, T],
ie.
P,z:=P{ ma t Py > s
up = P{ max £(0(n—Ct) > u}
where 0 < T < (a(é}/n))l/ﬁ and o({/n) = sup{x : P({/n < x) < 1} is assumed to be finite. In

general, we will denote by o(U) = sup{x : P(U < x) < 1} for any random variable U.

We approximate the tail of the standard normal distribution by the well-known relation

W(u):= e W2 o P(E(0) > u) as u — oo.

V2mnu

We use Pickands constant H, which is defined by
H, = lim ~E ( ()
= lim — Eexp( max ,
¢ T T P t€[0,T] x

where the process y(t) is a shifted fractional Brownian motion with expectation Ey(t) = —|t|* and
covariance function cov(y (t), y(s)) = [t|* + |s|* — |t —s|*.

First we assume that the conditional expectation E [{ ~1/B In] is bounded for all n given, which
implies ( is strictly positive with probability one. If the Gaussian process is stationary, we note
that for almost all given 1 and { the conditions in Theorem D.3 of Piterbarg [[11]] also hold for the
conditional probability

¢ gy U
P{tg[lg’?]i(t)(l— Et ) > EM,@'}-

It can be considered as a ruin probability for Gaussian processes with deterministic variance. In
the following theorems, we show that under the condition above, the results can be generalized for
locally stationary Gaussian processes with a random variance.
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Theorem 1.1. Let £(t) be a standard locally stationary Gaussian process with a € (0,2]. Suppose
that the random variable n has a bounded density function f,(y), which is k times continuously dif-

ferentiable in a neighborhood of o = o(n), for some k = 0,1,2,..., and satisfies fér)(a) = 0 for
r=0,1,...,k—1and fn(k)(a) # 0. Further assume that the function E(y) :=E[{"YP|n=y] is
bounded in [sy, o). For any T € (0,(c(Z/n))~/F),

(@) if a < B €(0,00), and E€)(y) is continuous at y = o, then

1/a
C/*(0)H,I'(1/B) o3/6-2/a+3k+3p(O) ()

B
% ngk)(O_)u2/a72/[37272k\11(u/o.)

Pu,ﬁ ~ (_1)k

as u — oo;

@) if a =B €(0,2], and H,(¥) := E[ exp (max,c[g,00)(x (t) — %)) |n = y] is continuous at

y = 0o, then

Py g~ (_1)k03k+3f»,§k)(U)Ha(o')u_z_qu/(u/o') as u — oo;

(0 if0< B <ae(0,2], then

Pyp~ (—1)k03k+3f7§k)(G)M_Z_Zk\lf(u/cr) as u — oo.

If the conditional expectation E@(y) does not exist or is not bounded for y € [Sp, 0], then we have
to consider the joint density f; ,(x,y) of { and 7, and restrict appropriately the local behavior of
the conditional density e(x,y) := fy(x|n = y) = f; ,(x,¥)/f,(¥). The following results on P, g as
u — oo depend also on the values a and 3. The possible set (a, ) € (0,2] x (0,00) is split into
six subsets or cases which are shown and labeled in Figure 1. The results for the cases depend on
suitable assumptions.

For the first three cases a), b) and c), we need to assume a particular regularity condition R: Assume
that e(0, y) is continuous at y = o = o(n) and e(x, y) is positive in a neighborhood of x = 0, and
continuous for any given y € [sy, 0 ].

B
2t d
1—b
a f
1 2 «a

Figure 1: The 6 different domains of a and 8 dealt with in Theorem 1.2.
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Theorem 1.2. Let £(t) be a standard locally stationary Gaussian process with a € (0,2]. Let the
density function f, of m satisfy the same assumptions as in Theorem Suppose that { and 7 have
a joint density function fy ,(x,y), and the conditional density function e(x,y) := fy(x|n = y) =

fen(x,¥)/ f(3) is bounded in [0,0({)] x [so,0(n)]. Let T € (0, (c(/n))~/F).

(@) If a, B €(0,1), then assuming condition R
T 1/a
C(s
Pyg~ (—1)*H,e(0,0) ( J & ds) 05+3k’2/“f(k)(o)uz/“”'*Zk\IJ(u/o).
5 0 Sﬁ n

(b) Ifa€(0,1] and B = 1, then assuming condition R

Pup ~ (=1)*2Hqe(0,0)(C(0)) /403 2/ £ 0 (g )u =+ loguW(u/o)

(c) If 1 = a > f3, then assuming condition R

T
Pp~ (_1)ko.3+3k (1 +¢(0, O‘)f0 % ds)fqgk)(o')u_z—quj(u/o_)

(d ifa<pe(1,00)and E(O(y) is continuous at y = o, then

)k(C(O))”“HaF(l/ﬁ)
B

><03//5_2/“+3k+3E(C)(0)f£k)(o)uz/“_z/ﬁ_z_Zk\I!(u/a) as u — oo;

Pu,ﬁ ~ (—1

(e) ifa = €(1,2] and Hy(y) := E[ exp (max,eqg,00)(x(t) — %)) |n = y] is continuous at
y =0, then

P~ (1) 0¥ (0)Hy (o> B(u/o)  asu— oo;

() ifa> P and a > 1, then

Pup~ (—1)k03k+3f15k)(U)U_Z_Zk‘lf(u/G) as u — 0o.

These results show that the exact asymptotic behavior of the ruin probability P, g3 depends on the
local behavior of the marginal density f,(y) at o(n) and on the relation between a and f8: ff < a,
= a and > a. We also notice that the impact of the function C(t) of the locally stationary Gaussian
process is restricted in some cases on C(0), if a < 8 > 1, and that the whole function C(t) plays a
role only in the case 8 < 1.

Remark: In case C(t) = C, as for stationary Gaussian processes £(t), the integral on the C(t)
function in (a) and (c) simplifies to C/*T1~# /(1 — f8) in the case 8 < 1.

In the next section we introduce some necessary lemmas, and prove Theorem 1.1 in Section 3 and
Theorem 1.2 in Section 4.
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2 Lemmas

For our derivations, some useful lemmas are stated in this section.
The first lemma is a reformulation of Lemma 6.1 of Piterbarg [[11]] for the case of a stationary
Gaussian process with general C(t) = C > 0, by use of a time transformation.

Lemma 2.1. For any 2 > 0and h > 0, as u — oo,

P{ max &(t)(1—zt)>u}~V(wEexp( max y(t)-— zC_l/“uz_z/“t).
te[0,hu=2/] [0,hC1/2]

The more general random variance case with (1 — {t#)? is dealt with in Lemma For the deriva-
tion of the asymptotic behavior, we state the common result based on saddle-point approximation,
in the following proposition.

Proposition 2.2. Let g(x), x € [0,0], be a bounded function, which is k times continuously differen-
tiable in a neighborhood of o and satisfies that g (o) =0 for r = 0,1,...,k — 1, and g¥(o) # 0.
Then for any € € (0,0)

(o2
f g()T(u/x)dx = (—1) a3 g® () 272 W(u/o)(1 + 0(1)) as u — oco. @Y
€
If g(x) = g1(x)go(x), g1(x) is continuous at o with g;(c) > 0, and g,(x) satisfies the above condi-
tions on g, one can change g*(o) in to gl(a)ggk)(a).

To prove this, we make the variable change y = u?(x — o) in the integral and use the saddle-point
approximation, or simply see Fedoruk [4].

Another asymptotic approximation concerns a particular case of “delta-wise” sequences.

Lemma 2.3. Let g(x) be a non-negative and bounded function on [0, b], b > 0, which is positive and
continuous at 0. Then for any h> 1, a > 0 and any a € (0,1],

1 Jb 1 —exp(—axu?) 2g(0)

glx)dx = ——.

lim
o 1—exp(—hxu?-2/*) h

u—00 112/(1—-2 10g u

Proof: Choose ¢ > 0 arbitrarily small, and let 6 > 0 be such that |g(x) — g(0)| <eand 1 —e™* §
(1% €)x, for all x € [0,6]. Then we have

b _ ) 2/a=2 [6/h 4 _ a2
1 — exp(—axu®) < u 1 — exp(—axu®)
= +e)——8
JO 2_2/a)g(X)dx = (¢(0) e)h(1 7o . . dx

L exp(—axu?)
+ 2-2/a
5 )

1 — exp(—hxu

x)dx.
n 1 —exp(—hxu 8(x)

Change variable y = axu? in the first integral, and check that

sau?

) 1 hl—e Y
lim dy =1.
u—oo 2logu [, y
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If a < 1, we can bound the second integral by

b
c ! dx < co NELTS)
sml— exp(—hxu2-2/2) 1—exp(—&u2-2/@) &

where C > max(s/; 5] g(X) is some constant. If @ = 1, it is easy to see that the second integral is
bounded by a constant. Then the statement follows by letting € — 0. O

We need in the proof of Theorem 1.2 a result which is necessary in other cases too. It is an extention
of Lemma 6.3 in Piterbarg [[11]] for a stationary zero mean Gaussian process &(t), t € [0, T] with
the usual correlation assumption: r(t) =1 — C|t|* 4+ o(|t]|*) with C > 0 and a € (0, 2].

Then there exists some ¢ > 0 such that

1-2[cYet|* <r(t) <1-(1/2)|CcY*t|*, t € [0,¢].
Lemma 6.3. in [[11]] assumes C = 1, which means that we have to apply a time change. Let
a =min(1,2%°1).

Lemma 2.4. Let £(t), t € [0, T], be a stationary Gaussian process. Let the functions s; = s;(u), t; =
t:(w), i = 1,2 of u > 0, with values in [0, T), be such that 0 < s; < t; —2u™%/* < s, —4u™%/* <
ty — 6u~%/*. Suppose that ty —s; — 0 as u — oo. Then for all u > uy = inf{u: t, —s; < C~/%e/4},
aC
P(max&(t) > u,i=1,2) < CyCy¥(u) exp (—?((sz - tl)uz/“ — 1)“) )
Si>ti

where C is the absolute constant from Lemma 6.3 of [[11]] and

K Ky
C, = ZZexp (ali+ %)
i=0 j=0
where K, := [(t; — s )u?/*].
Proof: Split  the intervals  [s;,t;], [ = 1,2 into subintervals

Ay =[5 +iw e sp+ @+ Du 2], 1 =1,2,i =0,1,2,..,K = [(t; —s)u?*], | = 1,2,
where the intervals A x,,[ = 1,2, cover the points t; and t,, respectively. We have

P(max&(t)>u,l=1,2) < (2)
[s1,t1]

< ZZP{IR?Xg(t) > u, rRaxi(t) > u} =: Zzpij-
i 2,j j

i=0 j=0 : i
Apply Lemma 6.3 in [[11]] to any term p;; in the sum. The distance between A, ; and A, ; is at least
S —ty+ju 4 (Ky —i— Du 2% =5, — t7 4+ (j — i + K; — 1)u"?/%. We have,

1
piy = Cowtaexp (~(C/* (s =t j =i+ Ky = 1)

Ca 2/a a . a
< Co¥(u)exp (—?((52 —tu”*—1) ) exp (a(j —i+Kp)%)

for all u sufficiently large. To get the second inequality we use the inequality (x + y)* > a(x*+y?),
valid for all positive x, y. By summing the bounds, we get the stated assertion. O
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3 Proof of Theorem 1.1

We are approximating the locally stationary Gaussian process in small intervals by stationary Gaus-
sian processes. Since C(t) is positive and continuous at 0, we have for any small ¢ > 0 and &
sufficiently small that supp, 57|C(t) — C(0)| < €. Let X *(t) and X (t) be two standard stationary
Gaussian processes with covariance functions r*(t) and r~(t) respectively, where for all t #s > 0,
rt(lt—=s)<r(t,s)<r (Jt—s|)<1and

rH()=1—=(CO)+e)t|*+o(|t|*), r (t)=1—(C(0)—e)|t|* +o(|t|*) as t — O.

Such stationary Gaussian processes exist. We apply Slepian’s lemma (cf. Theorem C.1 of Piterbarg
[11) to derive the bounds

P{maxX ~(t)(1 — ¢tP) > u|{} < P{max&(t)(1 — ¢tP) > ul ¢}
[0,6] [0,6]

< P{maxX*(t)(1 - {tF) > u| ¢}
[0,6]

In the same way we define further stationary Gaussian processes X;' (t) and X, (t) on intervals
I = [ku=%P (k 4+ 1)u~%/P) with Crnink = Minger, < C(t) < max,ep, C(t) = Cpax k- These processes
approximate the locally stationary Gaussian process £(t) in the intervals I, with Slepian’s inequality.

Lemma 3.1. Let £(t),0 < t < T, be a locally stationary Gaussian process. Suppose that { is a

bounded nonnegative random variable which is independent of £(-), with E{™Y/F < co. For any T €

(0,(a ()R,
(@) ifa< B €(0,00), then as u — o

H, Cl/a(o)ra//o’)uz/a-z/ﬁq,(u)Eg—l/ﬁ )
ﬁ b

P{ max E()(1-¢tPy>u} ~

(b) ifa=p <(0,2], then as u — oo,

P{ max £(0)(1 - (P> u} ~ E(HY “O)w(w),

where 0 < HY, := E exp (max(g o)(x () — {t9)|{) < o0;

(c) if2>a>p >0, thenasu— oo

P{ tg{l(é)l’)]("] E)(1-¢tPy>u} ~w(u).

Proof: (a) We use the intervals I; as partition of the interval [0, T]. Since an interval with length
smaller than u~%/# has here no asymptotic effect on the probability, we assume without loss of
generality that k < n := [Tu®/#] = Tu?P.

For any given ¢, by Theorem D.2 of Piterbarg [[11]], the stationarity of £(t) and the time transforma-
tion such that C =1 as in Lemma [2.1} we get the upper bound of the conditional probability, which
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is used for the dominating convergence.

n—1
P{ max £()(1-¢t")>ulc} < ;P{ max, X[ (0)>u/(1 =L P)

[y

=

1/a —2/B 2/a u
< >l I (Y ()
Lk -2 _ -2
= max CkPu 1—C¢kPu
n—1
< ClHauz/a_z/ﬁ\I/(u)exp(—{kﬁ)
k=0
o
< ClHauz/a_z/ﬁ\I/(u)[l + ﬁ‘lg‘l/ﬁf y1/B-1 exp(—v)dv]
0

= CHuY 2P [1+11/pB P,
where C; is some constant, not depending on ¢ and k.

By a reformulation of Theorem D.3 (i) in Piterbarg [[11]] for stationary Gaussian processes, (in which

the author considered that the variance reaches its maximum at an interior point of the segment

[0,8] (with some & > 0); here our variance attains its maximum at 0 which is the boundary point

of [0, 6], which implies the factor 2 is replaced by the factor 1 in that theorem), and with the time

transformation to standardize C(0) + € to 1 as in Lemma we know that for any given ¢ > 0,
P{ maX:ero 5]X+(t)(1 - Ctﬁ) > ul C}

Jm, RR=T e = Hy(C(0)+&)/*T(1/B)B' VP (3

The analogous result holds for the X~ (t) processes with C(0) — . With Slepian’s inequality we get
the bounds for the conditional probability of the analogous event with £(t), for any ¢ > 0. Similar
inequalities hold for the other processes X ]j (t) and X, (t) as mentioned. This implies that for the
upper bound

P{ max ()1~ CtP)>ul¢} < P{ max X (01 ~Ct") > ul(]}

4
+ Z P max X+(t) >u/(1- C’(ku—2/ﬁ)ﬁ)|g} (@)

te[ u=2/F]

with ng = [6u?/P]. The first term is approximated in (3). Each term of the sum can be approximated
by the upper bounds used as in the domination argument above.

n—1

ZP{ max X+(t)>u/(1—C(ku_z/ﬁ)ﬁ)M}

k=n,  telO u?/h]
n—1
< > CHuu* 2P u(u) exp(~LkP)
k=n,
n—1
< ClHauZ/“_z/ﬁ\I!(u) exp(—¢zP)dz
no—1
¢{nf
< ClHauz/az/ﬁ\I!(u)Cl/ﬁJ exp(—v)vl/ﬁfldv/[a’
C(no—l)ﬁ
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Taking the expectation on ¢, the integral term with the factor {~/# is dominated by E({"'/#) < .
Furthermore, since the integral is converging point wise to 0 for { > 0 (as u — 00), we have that
the sum is bounded by o(u?*2/P¥(u)). Hence, the first term in is dominating.

For the lower bound we use
P{ max &(t)(1—{tF)>u|¢} >P{ max X (t)(1 - ¢{tF)>ul{}
te[0,T] t€[0,6]

~H,(C(0)—e)/or(1/p)p 1 Yhu e~y (u)

Since E¢™YF < 00, we get the stated result by dominated convergence and letting & — 0.

(b) Split the interval [0, T] into subintervals with length u=2/# with again n := [Tu®/#] = Tu?P =
Tu?/®. The proof follows the steps of the proof in a). However, since a = 3, we need to apply
Lemma D.1 of Piterbarg [[11]] for any given ¢, to show the domination. Here we use that E{~Y/* =
E¢VP < .

By a reformulation of Theorem D.3 (ii) in Piterbarg [[11]], and with the time transformation to
standardize C(0) + ¢ to 1, as above, we know that for any given {,

+
i PAImaXepo s X (OO0 =8> ule} _cpn
u—00 \Il(u) ¢

where HS := E [ exp (max;g ) x(t) — {t*)|¢] € (0,00). The analogous result holds for the lower
approximation with X~ (t) and C(0) — . The approximation for the maximum of the process in the
interval [8, T] of part a) can be used again. Since E{™V/* = E{~Y/F < 00, we get the stated result
by dominated convergence and letting ¢ — 0. The domination shows also that EHg/ ¢ < o0, since
E¢(VP < 0.

(c) For this case, we split the interval [0,T] into subintervals I, = [k&,
(k + 1)6] of length 6 with 0 < 6 < min(1,T), and define new standard stationary Gaussian
processes X ,j (t) with C,j = max,¢j, C(t). Then with the result of part b) we get by stationarity

_otb
P{ max £(0)(1 - L) >ul}

[1/8]

< kZp{%x;(txl—c(r+k6)ﬁ)>u|4}

=0
[1/5)
< 2

k=0

P{r[%%)](X;(t)(l—Ctﬁ)>u|g}
< (T/5]+1)~P{r[ga§)]<X§(t)(1—Cf“)>U|C}
< ([T/8]+1CHY“¥(w),

where X (t) is that one of the X} (t) with Cf = max, Cf, and C > 0 some constant. We mentioned

already that E(H E/ Ck ) is finite. By Theorem D.3 (iii) of Piterbarg [[11l], we know that for any given
¢

lim P{maxc[o5Xg (0)(1 = {tP) >u|} _,
u—00 W(u)
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The same result holds for the lower approximation with X (t). The interval (5, T] does not play
a role in the asymptotic result, since using Theorem D.2 of Piterbarg [11]] and the argument in the
domination part as in proof of part a) above, we have

[T/5]
> P{maxX; ()1 - {(t + k&)P) > u|¢}
= [0
(r/s] P
+ —
< ; P{r[%%)](Xk ()1 = ¢(k8)P) >u| ¢}

< [T/a]-P{r[g%)]cxg(t)>u/(1—c6ﬁ)|z:}
< [T/5]56Hau2/a\11(u)exp(—{6/3u2)

for some constant C > 0. We note that E(exp(—{&fu?)) = O(w 28y = o(u2%), since
E(I"YP) < 00 and a > .

For E(exp(—{8Pu?)) = (6Pu2)~1/P f(;jg e‘z‘sﬂuz(z5ﬁu2)1/ﬁz_1/ﬁfg(z)dz < C(8Pu?)~P since e
is bounded. Then by using the dominated convergence, the third statement follows. O

This lemma is now applied in combination with Proposition to prove the first main theorem.

Proof of Theorem [1.1}
(a) If a < 8 € (0, 00). Then by Lemma 3.1] (a) and Proposition we get for u — 0o

u
P = EP{ max £(0(1- = ¢9)> Yy
’ te[0,T] n n

H,C*(0)r(1/p)
B
1/a a(n)
HaC (g)r(l/ﬁ)uz/a—Z/ﬁf ywﬁ_z/aE(O(y)fn(y)\ll(u/y)dy
H,C'/*(0)r(1/6)
—1)k=2
(-1 i

where in Propositionwe use g1(y) = y3¥/P~2/2E&)(y) and g,(y) = fn(¥)-
(b) If a = 8 € (0,2], we apply Lemma [3.1] (b) and Proposition[2.2] to get

¢
7

E[(=)Ye2Py(D)E[(2) VP |n]]
7 1

0

oS/ﬁ—2/a+3k+3E(§)(O)fn(k)(G)uZ/a—Z/ﬁ—z—zk\I,(u/a)

u
Pp = EP{ max £(0)(1— = tF)> L)
’ te[0,T] Ui Ui

~ E[E[exp ( max (2(0)~ geot) In]v ()]

C(0)n
o(n) 4
_ f  Elew (G0 o ) = W)y

~ (—1)k03k+3f£k)(o)ﬁa(a)u_2_2k‘IJ(u/U) as u — 0.
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() If2>a > f > 0. Then by Lemma [3.1] (c) and Proposition [2.2] we obtain
P, = EP{ max &)1 tF)> %1} ~ E[9(u/n)]
wp t€[0,T] n n 1 N

o(n)
= J W(u/y)f,y () dy ~ (~1F o3 002 (/o)

as u — 0o. O

4 Proof of Theorem |1.2

In the following lemmas, we always assume that { is a non-negative bounded random variable
independent of £(+) and its density function f; is bounded. Denote fy := sup,c(q ()] f¢(2) < 0.

From the stated theorem, we have to discuss different cases, depending on § <,= or > a and
whether a <,= or > 1 as shown in Figure 1. The following lemmas deal with the different cases in
the given order of a) - ), by applying similar ideas. We begin with case (a).

Lemma 4.1. Let a, 3 € (0,1). Suppose that the density f,(x), x = 0, is positive and continuous at 0.
Then for any T € (0, (c(¢)"F), as u — oo

T

P{ max E()(Q - ¢tP)>u} ~HaJ ct/ee)e=Pae - £, (0 * 29 (w)
te[o, 0

Proof: Split the interval [0, T] into subintervals with length u=%/%logu and denote these subin-
tervals by A, = [ku=?/%logu, (k + 1)u"?/*logu]. Without loss of generality assume again n =
T/(u=%/*logu) is a integer.

In each interval A, we approximate the locally stationary Gaussian process £(t) by the stationary
Gaussian processes X, (t) (with C(t) +&; = C*(ty)) and X, (t) (with C(t;) — &1 = C~(t;)) where
C(ty) —e1 < C(t) £ C(ty) + &, for t € Ay, for some £; — 0 as u — oco. We apply Slepian’s lemma
again as in Lemma to get the following approximations.

First, we estimate the upper bound of the probability, by using the stationarity of X ; (t) and Theorem

D.2 in Piterbarg [[11]], with the time transformation since C*(t;) is in general not equal to 1. For u
sufficiently large, we have

1¢}]

n—1
_ B u
Pimax&(0)(1 - ¢t") > u} SE[;P{r&a}(xm > T f e ogay

n—1
u
< E P{maxX/(t) >
< [kZ:O {maxX (0> T 163]
n-l1 + —2/a 1/a
ct(k 1 ]
< (1+Y(u))E[Ha (€7 (ku""*logu)) 25/;;1 ( _uz/a ﬁ)]
im0 (1—¢(ku=?/*logu)P) 1—¢(ku=2/*logu)
S (CF (ku /% logu))!/#e ¢k v oguf
<

1+ y(w)H, logu ¥(u)E
(1+7(u)H, logu W(w) [kZ:O 0 L 2 Tog )7
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IA

(1+y(u)H, logu ¥ (u) [C+(0)

T2/

+E ( f Togw (CH(acu /% logu)(1 + 0(1)))Y/ @~ ¢x 1 logu)” ; ”
X
0 (1—¢(xu?/e logu)/j)z/"‘_1
Hu?/*=2/By(y)
B

1 2/a—1
(1 _ vu—z) (C+((é)l/ﬁ))l/a€_vvl/’3_l dv] , (5)

(1+y(w)H,C*(0)logu ¥(u)+ (1+7'(u))

E [g—l//sj

0

TPy

where y(u) < y’(u) | 0 as u — oo and does not depend on ¢ and k, because C(t) is continuous and
bounded.

By the assumptions of f,(x), for any arbitrarily small € > 0, there exists some & > 0 satisfying that
forall 0 < x <6, |f,(x) — f¢(0)| < e. Hence the expectation in is bounded by (f(0) + €) times

2

° 1 Thes 1/6-1 1 2/a—1 Y 31/ 11
z /ﬁ[ e vi/P- ( __2) (C((—=) ’FY) /“dv] dz+C
0 0 1—vu ZU
2/p—2 [ TPu?s y ~
_u -1/ —v,1/B-1 1 2/a=1 LV 18 yl/a
= JO y e e (1) eGPy eav]dy +c

using the transformation y = TPu?z, where C is some constant for the remaining integral on
[6,0(&)]. By Fubini’s theorem and dominated convergence, the above double integral equals

TPu2s  ~TPu?5 v 1 2/a—1
f (J y_l/ﬁ(c+((_)1/[3’ T))l/a dy)e_vvl/ﬁ_l(—_z) dv. (6)
0 v Y

1—vu

Let us consider the inner integral; we use the variable transformation s = (v/ YVET:

T

TPu2s
v
J y VBT (VP T)V*dy = BTty YE J sTP(Ct () ds.
v y (v/u2s)/F

For v = o(u?) the last integral is tending to the constant f OT sTB(C*(s))/2ds = J*(T). Thus we split
the outer integral in (@ into two parts for v < g(u)u? and v > g(u)u?® with g(u) — 0 such that
g(u)u? — oo. The integral on v > g(u)u? is of smaller order than the first integral part because of
the exponential function. Thus we approximate the first part which is equal to

HOUy 1 2/a-1
a +o(1))/5J+(T)T/5—1J IV P ()7 dy
0 1—-vu
o0
=(1+o0(1)BJT(T) TP f eVdv =(1+0()BIJT(T) TP asu— .
0
Since the first term of |l equals o(u?/*2¥(u)) as u — oo, we obtain by combining the approxima-
tions

P{ max. E()(1 —CtFy>u} < (1+y"(W)HgI T (T)(f(0) + eu? * 2P (w),
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where y”(u) | 0 as u — oo. Note also that J*(T) — J(T) = f s~Pcl/e(s)ds as u — oo, by letting
&1 — 0.
For the lower bound, by with the same intervals A; and Bonferroni’s inequality we have

u

1—Z((k+ 1Du~2/*logu)P €3

n—1
P{{g}e})](ﬁ(t)(l—g’tﬁ)>u} ZE[;p{nﬁxg(tp i
7

u u
_Z Z Pimax&(1) > - o max £(t) > _{(lu_z/alogu)ﬁm]

=01=k+1

With the approximating stationary Gaussian process X, (t) and Theorem D.2 of Piterbarg [11]], the
expectation of the first sum in is bounded below in a similar way by

ot (C™(ku=?/*logu))"/* logu u
E|H,» (1- v
[ kZ:o( ) (1—¢((k+ Du~?2logu))?* 1 - ¢((k+ 1u-2/= logu)ﬁ)]
> (1—y1(u)H¥(wu** logu

T(logu)™! 9 B 5
1/a u 2{(xlogu) {(xlogu) 9
XE L_z/a(C (xlogu))™/“exp [ (1 ~{(xlogu)? + (1 — Z,’(xlogu)ﬁ) )] dx]

)

> (1 - 1 (W)((0) — H B w(wu?/* /P J -y
0

Thu?z v vzu
X(J C ((— )1/ﬁ))1/aexp( — = = 2)vl/ﬁ_ldv) dz,
z(logu)fu—26/a zu —vu 2(1- )

= (A =71W)(f(0) - E)Haﬁ_l\lj(u)uz/a—Z/ﬁ

Pu?s % v2u=2
X J(T)ex (— — )vl/ﬁ_ldv 8
L u (T)exp 1—vu=2 2(1—vu2)? (@)

by interchanging the integration, and using again Fubini’s theorem and dominated convergence,
where y;(u) | 0 as u — oo not depending on ¢, and

6*

J, (T) ZJ (c” (( )l/ﬁ))l/a ~1 4z
T-Bu=2y

where §* = min{§, vu?#/%=2 /(logu)P}. By transforming the variable z to s = (v/zu?)"/F we get

T
I (T (Bu?P =2y 111 = f (C™()Ms7P ds = J(T) +o0(1)

by letting u — oo and & — 0, since so := max{(v/5u?)"/? u=?/*logu} — 0 as u — oo for v = o(u?).

Now we consider the approximation of the integral in from below, similar to the upper approxi-

1267



mation with g(u) — 0 such that g(u)u? — oo as u — co.

TPu5 v v2u=?
- _ _ 1/p-1
JO Ju (T) exp ( 1—vu=?2 2(1- vu‘z)z)v dv
glwu? 2,,-2
v viu
> Bu?P(J(T) +0(1)) exp T s vu_z)z) dv 9)

g(u)u

> ﬁuz/ﬁ(J(T) + 0(1))f exp —v(1+ 0(1))) dv = ﬁuz/ﬁ(J(T) +o0(1)).

Combining the bounds we note that the lower bound of the first sum in converges to the same
bound as the corresponding upper approximation by letting u — oo and ¢;, € — 0.

It remains to approximate the double sum in by deriving an upper bound. The double-sum in
is bounded by

7
N
-

n—

u
P t > , t
k:oz;1 {Hiakxf( ) — {(ku=?*logu)P max&( )> 1—¢(ku=2/*logu)P <3
= Sy (0> —— 50> . 123
< max ax
per B — Z(ku=2/*logu)P’ Ak 1—¢(ku=%/*logu)P
n—3 N-—1 u u
+ t) > , t) >
Z)l;r {rriakxi( ) 1-¢(ku=2/ logu)ﬁ 5( ) 1-¢(ku=2/*1logu)P 14
n-N n
+ P{max &(t)+ &(s) > 2u} (10)
AR XA
k=0 I=k+N
where N := [€/(4u=**logu)], with &€ € (0,T A 1/2) which is chosen such that

1- maX2|t|"‘ > 1(t) = 1 —2C 4 t]* for all t € [0, €], with Cpax = max,cpo 7 C(t).

For the third sum of (10), note that for all k + N < [ < n, the variance of the Gaussian field
g(t) + 5(5), Wlth (t,S) (S Ak X Al,

Var(E(t) +&(s)) =2+ 2r(t,s) <4-2 |t_m|i>rl/4(1 —r(t,s)) < 4;

there exists a constant b satisfying

A

P{Arilggl(é(t) +&(s)) > b} P{ [0,7!?3[)6,T](§(t) +&(s)) > b}

= P (t)>b <1
= {{g%é 2}_2

Therefore by the Borel theorem (cf. Theorem D.1 in Piterbarg [11]]), we get

n—N n

Tu?* , 2u—b
P{ < w( ) = oW * 2w (w)),
kZ=(:)Z=Z+IN Apx Ay logu /4_8'
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as u — oo, where § := 2ming_g>¢/4(1 —r(t,s)) > 0.

In the conditional probabilities with respect to the neighboring intervals A, and A; with[ —k <N,
we approximate £(t) by X T(t) with C,, + &, = C instead of C*(t;) and C*(¢;), not depending on
k. By stationarity and Theorem D.2 of Piterbarg [[11]], we estimate the first sum of (10):

:Z:P (maxX (0> TS X (0> T |4
— : [2P{ maxX (1) > — g(ku_L;/alogu)ﬁ Is;
- P A$2f+1x+(t) 1= C(ku‘L;/“ logu)P | g}]

ne2 ~1/a

= & [2(1 (W) (1- gizc—:/azzz)ﬁ)z/“ vz g(ku—i/a logu)ﬁ)
e

- (1-YW) (- ;;5_12/3 lljgg;)ﬁ)z/a ¥z C(ku‘L;/a logu)P )]

=2(y(w) + ¥(w) [:z:: (1- gif_z:zz)ﬁ)m o 1- C(ku—t/a logu)ﬁ)]’

where y(u),y(u) | 0 as u — oo, not depending on k and ¢. Then with the proof for the upper bound
of the probability, we obtain that the expectation of the first term of equals o(u?/*2W(u)) as
u — o0.

For the second term of (10), we apply Lemma letting

$1=0, t; =u"¥%logu, s, = lu"?*logu, t, = (1 + 1)u"**logu.

We have,
n N-1 )
P{maxX*(t) > =0l
k=01= { A © 1—¢(ku=2/2logu)P 1¢}
< N-1 .
u aC
< C,C W o [~ 1 - Dioeu — 1)
G2, (1_§(ku_2/“logu)ﬁ) 2 P( (- Dlogu—1) )
< CoC1¥( )Xn: _Ckﬂ(logu)ﬁuzzf’/aNZ_l aé((l » e
= u e exp | —— _ ogi—
0C1 2, ) .

n
< Gya(u) Y JemeH
k=0

for a suitable constant C,. The expectation of the last sum is at most

T2/

(%) o
) exp(—zxP (logw)Pu?=2P/*)dx ] f(z)dz + 1
¢
0 0
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T2/

logu
<
0

Tuz/a ~ ~
logu fc Tl_ﬁfg

dx+1< logu) 'u?/*2 41 = o(u?/*2
0 (logu)Pu2-2b/axh -B (logu) ( )

o(?)
[f{ f exp(—zxP(logu)Pu?~2P/*)dz] dx + 1
0

as u — oo.
Therefore the expectation of the second sum of 1} is o(U(W)u?*2), as u — oo.

Since € and ¢; are arbitrary, we conclude

P{ max E(0)(1~ L") > u} ~ HoJ(T) f(0) u?/* 2w (u)

as u — oo. O

Now we deal with the case (b).

Lemma 4.2. Let a € (0,1] and B = 1. Suppose that the density f;(x), x = 0, is positive and
continuous at 0. Then for any T € (0,(o({)™Y),

P{ ngglx] E()(1 - ¢t) > u} ~ 2¢V*(0)H, g(O)uz/“_z\I/(u) logu  asu— oo.
te[0,T

Proof: For any h > 1 and u sufficiently large, we split the interval [0, T] into subintervals with
length hu~2/%, denote these subintervals by A, = [khu_z/ @ (k4 1)hu~?/*] and assume again n =
T/(hu=?%) e ]N without loss of generality. Let t; = khu™?

By using the approximation as above with the stationary Gaussian processes X ,j (t) with C*(t), its
stationarity, Slepian’s lemma, Lemma [2.1] and finally Lemma [2.3]in the last step, we estimate the
upper bound of the probability in a similar way, by denoting h, = (C*(t;))"/h.

14

n—1
P{ max E)1—-¢t)>u} < E[;P{ rriaoxX;(t)(l —{t)> W

n—1

<1+ 7)E| Y

k=0

W) [exp ( max x(t)) IC]]

o) n-1
<1+ Y(u))\ll(u)f Z exp(—kzhu® "%/ *)E exp ( max )((t))fg(z) dz

where y(u) | 0 as u — oo, not depending on k and {. Now we split the sum into two parts for
k < en and > en with some & > 0. In the first partial sum we use the bound E exp ( max(o ] x(t)) <
Eexp (max[o’h o] x(t)) +7'(¢) with y/(e) — 0 as ¢ — 0. Hence the first partial sum is bounded above
by

70 1 exp(—eTzu?)

29— Z/a)fi:( )dz

(14 7y()¥(u)[E exp ( max X(t)) +7(e)] J — exp(—zhu

) [Eexp( max  x(t)) +y(e)]u¥*2W(u)logu.
[0,(C*(0)/*h]

< Ayl
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The second partial sum is of smaller order since exp(—eTzu?) — 0 and also
E(exp(—eTzu?))— 0, and we can use C = Cpoy + £ in Eexp(max[o’hk]x(t)) to get the
upper bound E exp (max(q p¢1/a) ¥ (t)) with &, > 0.

For the lower bound, by Bonferroni’s inequality, we have

n—1
E[P{ max €01 ~¢0)>ul¢}] ZE[;P{%xat)(l—cr)>u|¢}] -
-E[ > P{ max £(6)(1 ~ £8) > u,max E(1)(1 ~ £6) > u] 23],
0<k<Il<n-1
Choose € > 0 small and let u be large enough. Then with Lemma [2.1] the first sum in (1I) is

bounded below now with the use of X~ (t) with C(t;) > C(0)—&; = C~(0) (not depending on k for
k <en) by

[en]
43 u
E[ZP{maxX ()1 - —kghu—Z/a) S P—Tr IC}]

Len) {t u

[Zp{maxx OO =26 ™ T ktha = 4]
[en]

u

>(1-11(W)E| ) V(—F—)
! [; 1—kChu=?/
(C(0)) u 2-2/a
Elep( max 20~ T 0@ Tk e 914]] (12)
en] kChu?2/®

> (1 = 11 (W)T)(1 - eTa(C))E[kZ:Oexp e pprosrc)

Z(C=(0))" Ve u 2-2/a
<Elewp( max YO~ ro Uk 1]
1—exp(—e(1—€eTo(0)2Tlu?)
1—exp(—(1 —eTo(L)) "2 hu-2/*)
Z(C(0)" Vet

> (1- 1, )¥W)(1 - eTo(O)E|

X E| ex max ) — ,
where y;(u) | 0 as u — 0o, not depending on k and ¢, and using 2 — 2/a < 0. Note that

_ 2C(0) 7Vt
s@=Elon () O~ T oy

is positive and continuous at 0, hence so is g(z)f;(z). Then with Lemma we obtain that is
bounded below by

(1= 71 ()1 — eTo ))Jam 1—exp(—e(1—eTo({))2Tzu?) @), (2)d
[ ! eTolt 1—exp(—(1- eTU(C))_Zzhuz_z/a)g 2)fe(z)dz
>(1-yiW)(1—-eTo (9)5 Bl (O)Eexp( max x(t))uz/a_z\lf(u) logu,

hC~(0)!/*]



where y7(u) | 0 as u — oo, not depending on ¢.
Note that E exp ( maxq jc-(oyv/e) X (t))/h — (C=(0)Y*H, as h — 0.
The double sum in is split again into three parts,

-1

Z PLmaxE0 = L0 > 1, maxEO(1 - 0 > ul ¢}

=
I

k=0 I=k+
n—2
< P{<max§(t)>; max E(t) > ;lC}
= A 1— CkTu2/%" A 1— (kTu2/a
n—2N-1 (13)
+Z p{maxg(t)>u+kgTu1 2/a maxg(z:)>u+kgTu1 e}
k=0 1=2
n—2n—1
+ P{Ank1>a<1)A(l E(t) +&(s) > 2ul,
k=01=N
where N = [5/(4u_2/“T)] with € € (0,T A %) which is chosen such that
= 2Cmat]* < r(t) < 1= 2Calt|* forall t € [0,€].

The third sum in (13)) can be estimated similarly as in the proof of Lemma 4.1} i.e. with the Borel’s
lemma, we have

2n—1
P{ max £(6) +£(s)> 2u} < 2(au2/“)2\IJ( b

0l=N 4-5

=),

TTM|

where & := 2miny_g>¢/4(1 — r(t,s)) > 0, and b is a constant, as in the proof of Lemma
Therefore the third sum is o(u?*~2¥(u)logu) as u — oo.

By stationarity, Theorem D.2 of Piterbarg [[11]] and Lemma|2.3} we bound the expectation of the first
sum in (13) as in the proof of Lemma with the use of X*(t) and € = C,., + £; (not depending
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on k) by

E:Z: [ZP{HE)XXJF(Q > PCIEIW Ie; —P{Argﬁ(lx*(t) W | C}]
<2(1+y,(w)E [:2;2: ] _Izaiizla)z/a W k;lu—z/a)]
n-2 %1/a
— (1= ryW)E [; a _iéi;_zz/ﬁ)z/a \I’(l _ kcjl;lu—z/“ )]
n—2 “1/a
= 2(yo(w) + ry(W)E [k; a _Izg;i-;a)z/a i k;w—z/a )]

o) n-1
< F(WH,CYh-(1 - To ()% *¥(u) J Z exp (— kzhu®"%) f,(z) dz
0 k=0

(9 — exp(—Tzu?)

P Z/a)fC(Z) dz

< FWH,EVoh- (1 - To(C))lz/a‘I’(“)J 1- exp(—zhu

< 27w + 15 W)HLCV£,(0)(1 — To(O)' ¥ *u?/*2¥(w)logu
:o(uz/a_z‘ll(u)logu),

since v, (u), y5(u),y5 () | 0 as u — oo, not depending on k and ¢ with 7(u) = 2(y(u) + y5(w)).

We estimate the expectation of the second sum in (13) by Lemma 6.3 of Piterbarg [11]], since its
conditions are satisfied by X *(t) with C.

)

p{ rriaxXJr(t) >u+ kghul—z/a,mAaxX+(t) > u+ k¢hu'=2/%| g}}
0 1

M|
= ||M|

k=01
n—2 1
<E [ 1h2\l/(u +kChul %) exp (- (1 — 1)“h“)]
k=0 1=2 8
N-3 n—1
< CR*W(w) Y exp (- 2°*h*(1% +1))E [Zexp (- kCth‘Z/“)]
=0 k=0

(&) 1 —exp(—Tzu?)

- 2/a)fg(z)dz

< Cyh? exp(—2%*h*)W(u)
1 — exp(—zhu

< (1475 W)2C;hexp(—2%~ 4h“)f (0)u?*~2W(u)logu
= o(u¥*2¥(u) logu)

as h — oo, where C; and C, are some constants, not depending on h, and by using the concavity of
the function x*. We applied also Lemma 2.3 in the second last step.
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Thus we have

2f,(0) P{max,c[o 71 E(t)(1 —{t) > u}
h Eexp ( lglax (t)) = ulggo tez/a—z
[0,(C/2(0)+&1)h] u W(u)logu
fg( )

>(1-eTo({))}———Eexp( max 2(t)) —o(1).

[0,n(CY/%(0)—¢1)]

We may select h arbitrarily large, thus using E exp ( max(q jc1/e(o)se, )y ¥ (£)) /h ~ (CY*(0) + &)H,.
Since € and ¢; can tend to 0, we get the stated result. O

The next lemma considers the case (c) of Figure 1.

Lemma 4.3. Let 1 = a > 3. Suppose that the density f,(x), x = 0, is positive and continuous at 0.
Then for any T € (0, (a(O)~VA,

P{ max E(0)(1- (P> u} ~ (f(OW(T)+1)T(w)  as u— co.

Proof: Note that

P{ max E(0)(1 - {tP)>u} = EP{ Jmax £(6)(1~ (ePy>u| ¢}
u2f—2+8

= J P{ max i(t)(l—Ctﬁ)>u|C=z}f¢(z)dz (14)
0 te[0,T]

a(f)
+J P{ max E(0A = tP)>u|¢ =2} fy(2)dz,

u2B-2+6

where 6 is chosen in such a way that 0 < 6 <2 — 2.

a) Considering the first term of , we split [0, T] into subintervals with length u=2logu, denote
the subintervals by A, = [ku"?logu, (k + 1)u~?logu] and without loss of generality assume again
n=T/(u?logu). We use again the approximating Gaussian processes X,j(t) with C*(t;) on Ay,
where t; = ku"?logu. Then with Theorem D.2 of Piterbarg [[11]] and the fact that H, = 1, the first
term of has the upper bound

W2B-245 4

f [ZP{niaxi(t) >u/(1 —z(ku_zlogu)ﬁ)}]fg(z)dz
0 k=0 k

(2B-2+6

n—1 (C+(tk))1/a logu
< J;) [Z:(l +Y(u)) (1 _z(ku_z logu)ﬁ)z ‘Ij(l —z(ku‘z logu)ﬁ )]fc(Z)dz

W2B-2+5 (15)

" Lexp(~zkPu> P ogw))y L
Z 1—z(ku=2logu)P ](C (t)) fl(z)dz

zﬁ 2438, Tu

< (1 +7y)logu¥(u) [u?f~2+° +f f

<(1+y)loguw(u) J

=0
—zxﬁuz’zﬁ (logu)P c*( tlogu )

1—z(xu"2logu)P dxf(:(z)dz] ’

where y(u) | 0 as u — 0o, not depending on k and { = z, and we write C*(t) := CY/%(t) + 2¢;.
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For any small € > 0, let u be sufficiently large so that for all 0 < z < u?/=2+9 | fe(2) — f(0)] < €
since the density f, is positive and continuous at 0. Hence by Fubini’s theorem and dominated
convergence, we bound the integral in (15)),

uz_z/ﬁ u2h—-2+8 ) TBu%z C*((V/z)l/ﬁu) B _
u2—2/B utf=240 TPu?s C*((V/Z)l/ﬁu)
< 0 -1/B A R P Y l/ﬁ 1d d
<@+ g f z (J (e v)dz
0)+e)ri=p [T Cc*((v ”ﬁT
_ (f{( ) ) _1//5( ( (( /}’) )) _Vvl//j_ldv)dy
Blogu 1—vu~
_ ﬁu2ﬁ+5 T8 26+5
(fr(0)+e)TF [T 1
= C’* ]-/ﬁT _1/ﬁd R W 4 1//3—].d
Flogu (v/¥)PTy Yy =) v
As in the proof of Lemma 4.1, we get for the inner integral that
T8y 2P+ T
J /NPTy Pdy = ﬁ(vTﬁ)l-”ﬁf C*(s)s7F ds
v V1/By—2-5/p

— JN(T)+0(e) =J(T)+O(e1)

as u — oo, since the lower boundary of the integral tends to 0 for v < g(u)u?*?® with g(u) — 0

such that g(u)u®$*% — oo, and ¢, is small. Therefore we obtain the upper bound for the first part
(v < g(w)u?P*9) of the outer integral

2B+6

(

(fr(0)+e)(TH(T)+0(1)) gWu
logu

1
——)e”

0 1—vu

_ O+ e)J(T) +0(1)) .

(14+0(1)) asu— oo.

logu

The second part of the outer integral is of much smaller order because of the exponential term which
implies that the first term of (14), is bounded by

((1+ y@)u?P 2+ logu + (1 4y (W)(F(0) + )I(T) +0(1)) ) ¥(u)
~ 0+ T (T)W(w)

as u — 0o, where y'(u) | 0 as u — oo.
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To derive the lower bound of the first term of (14), we use Bonferroni’s inequality,

(2B-2+6

J P{ max &(6)(1-¢tP)>ull =2}f(2)dz
0 te[0,T]
u2B-2+8 L 4
> p = d
JO [; {ngixé(tb 1—(((k+1)u‘210gu)/3|8; Z}}fc(z) z 6

y2P-2+5

u
_L [ Z P{rriakxg(t) ~ 1—¢(ku2logu)f’

0<k<I<n-1

u
max&(0) > 1o o |6 =5} )

From (8) and (9) in the proof of Lemma [4.1] we know the lower bound of the first term in by
setting the upper endpoint of the integration interval as u*) =%  to derive the lower bound, similar
to the upper bound,

w2246 g

f [ > P{maxx;c (0> /(1= ¢ ((k+ Du2logu) )¢ = 2} | fe(z) dz
0 k=0 k
> (1 =y @)(f(0) — )T (T) = 0(1)) ¥(u),

where yj(u) | 0 as u — 0o, and J ~(T) = fOT C(s)s™Pds — J(T) as &; — 0, where we set C™(s) =
C(t) — 2¢; instead of C*(t).

As in (10), we divide the double sum in the second term of (16) into three parts. Then from the
proof of Lemma we know that the integrand in the second term of (16) can be bounded by
C1¥(u), where C; is some constant. Hence we have

y2B-2+6

f [ Z P{mAaXE(t)>u/(1—§(ku‘210gu)ﬁ),
0 k

0<k<l<n-1

max&(1) > u/(1 ~{(lu~logu)’) | =2} | f(z) dz

(2B-2+5

< f C1¥(u)fy(2)dz < Clﬁuzﬁ_y”s\l/(u) =o(¥(u)) asu— oo.
0

b) For the second term of (14)), we use the following derivation which is also needed in the proof of
Lemma dealing with the case (f). Therefore we formulate it for both cases together, assuming
a>1and a> f where 0 <6 <2—2f/a. We have

()
f P{térgg§] EWQA-¢tP)>ull =z} fr(2)dz

2B/a—2+6
a(®)

< J P{ max E(t)(l—Ctﬁ)>u|§:z}f§(z)dz 17)
u2B/a—2+8 [0,u2/a=6/F]

(9]
- f P{ max &O1-{tP)>ull=3}f(=)ds,

2B/a—2+8 [u=2/a=6/6 T]
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where § € (0,6).
With Theorem D.4 of Piterbarg [[11]], the second term of is bounded by

o) ~
f P{ max E(6)(1 — zu2B/a=8) >ul|l =z}fr(z)dz
u2Bla—2+8 [u=2/a=0/6 T

a(®) u
< CTu? "y — ) fr(z)dz
Juzﬁ/am (1 — Zu—Zﬁ/a—é) ¢

(18)
a(®) 5
<C'fy Tu? *W(u) f exp(—zu®2P/2=9) 4z
u

2B/a—2+86

< C'F T “+?P/ 4452 exp(—u®~%) — exp(—o (O ~2F/478)] = o(w(w)

as u — 00, where C and C’ are some constants.

Since u=2/%=%/F = o(u=2*) as u — oo, we get for any € > 0, with Lemma D.1 of Piterbarg [[11]]
using X (t) and C*(0), that the first term of is bounded by

a(d)
J P{ max XT(t) > u}fe(z)dz

2B/a—2+5 [0,eu—2/2]
a(®) . (19)
< J / (1+11W)Hy(e(CTONY)T(w)f (2) dz
uzﬁ a—2+6

< (1411 ()Hg(e(CT(ONY*)W(w)

where y;(u) | 0 as u — oo, not depending on . Since H,(e) — 1 as € — 0, the estimate for the
upper bound is obtained.

The lower bound of the probability is obvious, for any { > 0
P{ max E()(1—¢eP)y > ulg} > P{E(0) > u} ~ ¥(w)
tefo,
as u — oo, and thus
P{ max &(t)(1— Py > ul ~¥(u)
te[0,T]

as u — oQ.

c¢) Finally, putting the derived bounds together, using ¢ and &; — 0, we conclude
P{ max E()(1 =Py >u} ~ (F(0)J(T)+1)¥(w)

as u — oo. O

In the next lemma we consider the two cases d) and e) of Figure 1 together.

Lemma 4.4. For any T € (0,(c({))"V/P),
(@) ifa<f €(1,00), then as u — oo,

/a
c! (O)P;ar(l//s)uz,a_z/ﬁ N

P{ max. E(t)(1-¢tPy>u} ~
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(b) ifa=p <(1,2], then as u — oo,
P{ max &(t)(1—¢tP)>u} ~ EHYCOw(w),
te[0,T]

where 0 < Hg := Eexp (maxg oo)(x (t) = {t)|{) < 0.

Proof: It is easy to see that if f > 1, then

-1/ _ i -1/B - [ -1/B fC B 1/p+1
EC = z7 P fr(z)dz < fr z - Pdz= 51 ( (9)n < oo.
0 0

Hence the conditions of Lemma are fulfilled, and the results follow. O
It remains to consider the case (f) in Figure 1.

Lemma 4.5. Let a > 3, where a > 1. Then for any T € (0, (a(O)~VA,
P{ max &(t)(1—{tF)>u} ~ () as u — oo.
t€[0,T]

Proof: For an upper bound of the probability, note that

P{ max E(0)(1 - {tF)>u} = EP{ Jmax £(6)(1~ (ePy>u| ¢}
y2Bla—2+6

= J P{ max S(t)(l—é'tﬁ)>u|§=z}f§(z)dz (20)
0 t€[0,T]

a(f)
+f P{ max E((1 = {tP) > ull =2} f (=) dz,

u2Bla—2+6
where 6 is chosen such that 0 < 6 <2 —2f/a.

For the first term in , we split [0, T] into subintervals with length u~%/¢ and assume again
n = Tu®* without loss of generality. On the subintervals we use X*(t) with ¢ = C,, + &1 as

approximating stationary Gaussian process and use the stationarity and Theorem D.2 of Piterbarg
[11]], to bound the first term of (20) for u large.

u2ﬁ/a72+6

n—1
J [ZP{ ma, ]X+(t)>u/(1—z(ku_Z/a)ﬁ)}]fC(z)dz
0 te /a
< J o [nf]my(u)) A S— R
—Jo =0 (1 z(ku‘z/“)ﬁ)z/a 1 —z(ku=2/a)p ‘
u2h/a—2+6 Tl 1 B2 2[3/(1
1/a exp(—zkPu )
< (1+7W)HC \If(u)J Z R FIAOL" .
Zﬁ/a 246 Tl 1
c\I/(u)J exp(—zkﬁu2 2ﬁ/"‘)]dz

uzﬁ/a72+5

<c¥(u) [2u2ﬁ/a_2+6 + f

Tu?/@
J exp (— zxPu?2P/%) dx dz]
0 1

Tu?/

<c¥(u) [Zuzﬁ/o‘_2+5 + y?Pla=2 J iﬁ dx]
1 x
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by interchanging the integrals, where y(u) | 0 as u — oo, not depending on k and {, ¢ a suitable

- 2/a
constant and using f(z) < f. If § =1, since flTu x 1dx = log(Tuz/“),
(21) = cW(u) [2u?P/*720 4 2P/a=210g(Tu?/*)] = o(W(w));

. . Tu?'® “BAv — (1 _ R\-1r71-B,.2/a—2B/a _
if B # 1, since fl x Pdx=0Q-6)"(T"Pu 1),

1—

B
qp = cW(u) [zuzﬁ/a—2+5 + I plema (g ﬁ)_luzﬁ/“_z)] = o(¥(w)).

1-p

Therefore we conclude that the first term of is infinitely smaller than ¥(u) for any f < a € (1, 2]
as u — oo.

The second term of is approximated in the proof of Lemma [4.3] showing that

(%)
f P{,max &(0)(1~ (Y > ulg =2} f(2)ds ~ P(u)

2B/a—2+6

as u — oo. O

Proof of Theorem [1.2} We use the same ideas as in the proof of Theorem[1.1] Write

P, = P{max&(t)(n — {t) > u} = EP{max &(e)(1 — (§/m)tP) > u/n | n}
[0,T] [0,T]

and apply Lemma and [4.5| with fixed n. Then taking the expectation on 7, we get
the assertions of Theorem [1.2] from Proposition O
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