
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 16 (2011), Paper no. 45, pages 1254–1280.

Journal URL
http://www.math.washington.edu/~ejpecp/

Extremes of Gaussian Processes with Random Variance

Jürg Hüsler∗

University of Bern
Vladimir Piterbarg†

Moscow Lomonosov State University
Yueming Zhang‡

University of Bern

Abstract

Let ξ(t) be a standard locally stationary Gaussian process with covariance function 1− r(t, t +
s) ∼ C(t)|s|α as s → 0, with 0 < α ≤ 2 and C(t) a positive bounded continuous function.
We are interested in the exceedance probabilities of ξ(t) with a random standard deviation
η(t) = η− ζtβ , where η and ζ are non-negative bounded random variables. We investigate the
asymptotic behavior of the extreme values of the process ξ(t)η(t) under some specific condi-
tions which depends on the relation between α and β .
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1 Introduction and Main Results

Let (X (t), Y ), t ∈R, be a random element, where X (t) is a random process taking values in R, and
Y is an arbitrary random element. We say X (t) is a conditionally Gaussian process if the conditional
distribution of X (·) given Y is Gaussian. We investigate the probabilities of large extremes,

Pu(T ) := P( sup
t∈[0,T]

X (t)> u),

as u→∞ where T > 0. Denote the random mean of X conditioned on Y by

m(t, Y ) := E(X (t) |Y )

and the random covariance by

C(s, t, Y ) := E((X (s)−m(s, Y ))(X (t)−m(t, Y )) | Y ),

so that
V 2(t, Y ) := C(t, t, Y )

is the random variance of X .

Such processes were introduced in applications in finance, optimization and control problems. To
our best knowledge, the paper by Adler et al. [1]was the first mathematical work where probabilities
of large extremes of conditionally Gaussian processes where considered. The authors considered
sub-Gaussian processes as an example of stable processes, that means processes of the type X (t) =
p

ζξ(t), where ξ(t) is a stationary Gaussian process and ζ is a stable random variable, independent

of ξ(·). That is, in our notations, Y =
p

ζ and X (t) = Yξ(t). Therefore we have a Gaussian process
with random variance. This paper dealt with the mean of the number of upcrossings of a level u,
as in the Rice formula, which can be applied for smooth Gaussian processes. Further results on this
problem are dealt with in [9], [2], [7], [8]. For examples, Doucet et al [2] considered to model
the behavior of latent variables in neural networks by Gaussian processes with random parameters.
Lototsky [7] studied stochastic parabolic equations with solutions of Gaussian processes, where the
coefficients are modeled by a dynamic system. We consider in our paper more general Gaussian
processes.

The aim of the present paper and subsequent ones which are in preparation, is to develop asymp-
totic methods for large extremes of conditional Gaussian processes. Our intention is to expand the
Gaussian tools to wider class of random processes. The asymptotic theory for large extremes of
Gaussian processes and fields is already well developed, see [11], [3], and the references therein.

A good part of this asymptotic theory for large extremes of conditional Gaussian processes is mainly
based on the corresponding theory for Gaussian processes. The last one was began from the cele-
brated Pickands’ theorem [10] on large extremes of stationary Gaussian processes and its extension
to non-stationary Gaussian processes, as in Hüsler [5] for certain types of non-stationarity, and in
Piterbarg and Prisyazhn’uk [12] where the non-stationary process has a non constant variance with
a unique point of maximum. In [6] we consider also the type of processes ξ(t)η(t), but with smooth
processes η(t). In this paper we investigate the case of less smooth processes η. Also we let ξ(t) to
be a locally stationary Gaussian process ξ(t), instead of a stationary Gaussian process in [6].
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Now, let ξ(t), 0 ≤ t ≤ T be a standard locally stationary Gaussian process with the covariance
function r(t) satisfying that uniformly in t

r(t, t + s) = 1− C(t)|s|α+ o(|s|α), as s→ 0, 0< α≤ 2

with C(t) a positive continuous function on some interval [0, T] with T <∞. Assume that

r(t, t + s)< 1 for all s, t > 0.

Let η(t) be another stochastic process with η(t) > 0 (a.s.), which is independent of ξ(t). We are
interested in the exceedance probabilities of the product process ξ(t)η(t), i.e.

P
�

ξ(t)η(t)> u, for some t ∈ [0, T]
	

as u→∞,

where T < ∞; here η(t) can be interpreted as the random standard deviation of the Gaussian
process ξ(t). In this paper we further assume that

η(t) = η− ζtβ ,

where η and ζ are non-negative bounded random variables, being independent of ξ(·); and assume
that η≥ s0 (a.s.) for some s0 > 0.

For keeping the random standard deviation η(t) strictly positive, we consider that the time interval
is small enough. Hence we study the probability of exceedance occurring in a time interval [0, T],
i.e.

Pu,β := P
�

max
t∈[0,T]

ξ(t)(η− ζtβ)> u
	

,

where 0 < T < ( 1
σ(ζ/η))

1/β and σ(ζ/η) = sup{x : P(ζ/η ≤ x) < 1} is assumed to be finite. In
general, we will denote by σ(U) = sup{x : P(U ≤ x)< 1} for any random variable U .

We approximate the tail of the standard normal distribution by the well-known relation

Ψ(u) :=
1

p
2πu

e−u2/2 ∼ P(ξ(0)> u) as u→∞.

We use Pickands constant Hα which is defined by

Hα = lim
T→∞

1

T
E exp

�

max
t∈[0,T]

χ(t)
�

,

where the process χ(t) is a shifted fractional Brownian motion with expectation Eχ(t) =−|t|α and
covariance function cov(χ(t),χ(s)) = |t|α+ |s|α− |t − s|α.

First we assume that the conditional expectation E
�

ζ−1/β |η
�

is bounded for all η given, which
implies ζ is strictly positive with probability one. If the Gaussian process is stationary, we note
that for almost all given η and ζ the conditions in Theorem D.3 of Piterbarg [11] also hold for the
conditional probability

P
�

max
t∈[0,T]

ξ(t)(1−
ζ

η
tβ)>

u

η
|η,ζ

	

.

It can be considered as a ruin probability for Gaussian processes with deterministic variance. In
the following theorems, we show that under the condition above, the results can be generalized for
locally stationary Gaussian processes with a random variance.
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Theorem 1.1. Let ξ(t) be a standard locally stationary Gaussian process with α ∈ (0,2]. Suppose
that the random variable η has a bounded density function fη(y), which is k times continuously dif-
ferentiable in a neighborhood of σ = σ(η), for some k = 0,1, 2, . . ., and satisfies f (r)η (σ) = 0 for

r = 0,1, . . . , k− 1 and f (k)η (σ) 6= 0. Further assume that the function E(ζ)(y) := E
�

ζ−1/β |η = y
�

is

bounded in [s0,σ]. For any T ∈ (0, (σ(ζ/η))−1/β),

(a) if α < β ∈ (0,∞), and E(ζ)(y) is continuous at y = σ, then

Pu,β ∼ (−1)k
C1/α(0)HαΓ(1/β)

β
σ3/β−2/α+3k+3E(ζ)(σ)

× f (k)η (σ)u
2/α−2/β−2−2kΨ(u/σ)

as u→∞;

(b) if α = β ∈ (0, 2], and eHα(y) := E
�

exp
�

maxt∈[0,∞)(χ(t)−
ζ tα

C(0)η)
�

|η = y
�

is continuous at
y = σ, then

Pu,β ∼ (−1)kσ3k+3 f (k)η (σ) eHα(σ)u
−2−2kΨ(u/σ) as u→∞;

(c) if 0< β < α ∈ (0,2], then

Pu,β ∼ (−1)kσ3k+3 f (k)η (σ)u
−2−2kΨ(u/σ) as u→∞.

If the conditional expectation E(ζ)(y) does not exist or is not bounded for y ∈ [s0,σ], then we have
to consider the joint density fζ,η(x , y) of ζ and η, and restrict appropriately the local behavior of
the conditional density e(x , y) := fζ(x |η = y) = fζ,η(x , y)/ fη(y). The following results on Pu,β as
u → ∞ depend also on the values α and β . The possible set (α,β) ∈ (0, 2]× (0,∞) is split into
six subsets or cases which are shown and labeled in Figure 1. The results for the cases depend on
suitable assumptions.

For the first three cases a), b) and c), we need to assume a particular regularity condition R: Assume
that e(0, y) is continuous at y = σ = σ(η) and e(x , y) is positive in a neighborhood of x = 0, and
continuous for any given y ∈ [s0,σ].

1 2 α

1

2
β

�
�
�
�

a

b

c

d

e

f

Figure 1: The 6 different domains of α and β dealt with in Theorem 1.2.
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Theorem 1.2. Let ξ(t) be a standard locally stationary Gaussian process with α ∈ (0, 2]. Let the
density function fη of η satisfy the same assumptions as in Theorem 1.1. Suppose that ζ and η have
a joint density function fζ,η(x , y), and the conditional density function e(x , y) := fζ(x |η = y) =
fζ,η(x , y)/ fη(y) is bounded in [0,σ(ζ)]× [s0,σ(η)]. Let T ∈ (0, (σ(ζ/η))−1/β).

(a) If α,β ∈ (0, 1), then assuming condition R

Pu,β ∼ (−1)kHαe(0,σ)
�

∫ T

0

(C(s))1/α

sβ
ds
�

σ5+3k−2/α f (k)η (σ)u
2/α−4−2kΨ(u/σ).

(b) If α ∈ (0,1] and β = 1, then assuming condition R

Pu,β ∼ (−1)k2Hαe(0,σ)(C(0))1/ασ5+3k−2/α f (k)η (σ)u
2/α−4−2k log uΨ(u/σ)

(c) If 1= α > β , then assuming condition R

Pu,β ∼ (−1)kσ3+3k
�

1+ e(0,σ)

∫ T

0

C(s)

sβ
ds
�

f (k)η (σ)u
−2−2kΨ(u/σ)

(d) if α < β ∈ (1,∞) and E(ζ)(y) is continuous at y = σ, then

Pu,β ∼ (−1)k
(C(0))1/αHαΓ(1/β)

β

×σ3/β−2/α+3k+3E(ζ)(σ) f (k)η (σ)u
2/α−2/β−2−2kΨ(u/σ) as u→∞;

(e) if α = β ∈ (1, 2] and eHα(y) := E
�

exp
�

maxt∈[0,∞)(χ(t)−
ζtα

C(0)η)
�

|η = y
�

is continuous at
y = σ, then

Pu,β ∼ (−1)kσ3k+3 f (k)η (σ) eHα(σ)u
−2−2kΨ(u/σ) as u→∞;

(f) if α > β and α > 1, then

Pu,β ∼ (−1)kσ3k+3 f (k)η (σ)u
−2−2kΨ(u/σ) as u→∞.

These results show that the exact asymptotic behavior of the ruin probability Pu,β depends on the
local behavior of the marginal density fη(y) at σ(η) and on the relation between α and β: β < α,
= α and > α. We also notice that the impact of the function C(t) of the locally stationary Gaussian
process is restricted in some cases on C(0), if α ≤ β ≥ 1, and that the whole function C(t) plays a
role only in the case β < 1.

Remark: In case C(t) ≡ C , as for stationary Gaussian processes ξ(t), the integral on the C(t)
function in (a) and (c) simplifies to C1/αT1−β/(1− β) in the case β < 1.

In the next section we introduce some necessary lemmas, and prove Theorem 1.1 in Section 3 and
Theorem 1.2 in Section 4.

1258



2 Lemmas

For our derivations, some useful lemmas are stated in this section.

The first lemma is a reformulation of Lemma 6.1 of Piterbarg [11] for the case of a stationary
Gaussian process with general C(t) = C > 0, by use of a time transformation.

Lemma 2.1. For any z > 0 and h> 0, as u→∞,

P
�

max
t∈[0,hu−2/α]

ξ(t)(1− zt)> u
	

∼Ψ(u)E exp
�

max
[0,hC1/α]

χ(t)− zC−1/αu2−2/α t
�

.

The more general random variance case with (1−ζtβ)2 is dealt with in Lemma 3.1. For the deriva-
tion of the asymptotic behavior, we state the common result based on saddle-point approximation,
in the following proposition.

Proposition 2.2. Let g(x), x ∈ [0,σ], be a bounded function, which is k times continuously differen-
tiable in a neighborhood of σ and satisfies that g(r)(σ) = 0 for r = 0,1, . . . , k− 1, and g(k)(σ) 6= 0.
Then for any ε ∈ (0,σ)

∫ σ

ε

g(x)Ψ(u/x)dx = (−1)kσ3k+3 g(k)(σ)u−2−2kΨ(u/σ)(1+ o(1)) as u→∞. (1)

If g(x) = g1(x)g2(x), g1(x) is continuous at σ with g1(σ) > 0, and g2(x) satisfies the above condi-
tions on g, one can change g(k)(σ) in (1) to g1(σ)g

(k)
2 (σ).

To prove this, we make the variable change y = u2(x −σ) in the integral and use the saddle-point
approximation, or simply see Fedoruk [4].

Another asymptotic approximation concerns a particular case of “delta-wise” sequences.

Lemma 2.3. Let g(x) be a non-negative and bounded function on [0, b], b > 0, which is positive and
continuous at 0. Then for any h> 1, a > 0 and any α ∈ (0, 1],

lim
u→∞

1

u2/α−2 log u

∫ b

0

1− exp(−axu2)

1− exp(−hxu2−2/α)
g(x)dx =

2g(0)
h

.

Proof: Choose ε > 0 arbitrarily small, and let δ > 0 be such that |g(x)− g(0)| ≤ ε and 1− e−x Ñ
(1± ε)x , for all x ∈ [0,δ]. Then we have

∫ b

0

1− exp(−axu2)

1− exp(−hxu2−2/α)
g(x)dx Ñ (g(0)± ε)

u2/α−2

h(1∓ ε)

∫ δ/h

0

1− exp(−axu2)
x

dx

+

∫ b

δ/h

1− exp(−axu2)

1− exp(−hxu2−2/α)
g(x)dx .

Change variable y = axu2 in the first integral, and check that

lim
u→∞

1

2 log u

∫
δau2

h

0

1− e−y

y
dy = 1.
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If α < 1, we can bound the second integral by

C

∫ b

δ/h

1

1− exp(−hxu2−2/α)
dx ≤

C b

1− exp(−δu2−2/α)
∼

C b

δ
u2/α−2,

where C ≥ max[δ/h,b] g(x) is some constant. If α = 1, it is easy to see that the second integral is
bounded by a constant. Then the statement follows by letting ε→ 0. �

We need in the proof of Theorem 1.2 a result which is necessary in other cases too. It is an extention
of Lemma 6.3 in Piterbarg [11] for a stationary zero mean Gaussian process ξ(t), t ∈ [0, T] with
the usual correlation assumption: r(t) = 1− C |t|α+ o(|t|α) with C > 0 and α ∈ (0, 2].

Then there exists some ε > 0 such that

1− 2|C1/α t|α ≤ r(t)≤ 1− (1/2)|C1/α t|α, t ∈ [0,ε].

Lemma 6.3. in [11] assumes C = 1, which means that we have to apply a time change. Let
a =min(1, 2α−1).

Lemma 2.4. Let ξ(t), t ∈ [0, T], be a stationary Gaussian process. Let the functions si = si(u), t i =
t i(u), i = 1, 2 of u > 0, with values in [0, T ), be such that 0 ≤ s1 < t1 − 2u−2/α < s2 − 4u−2/α <

t2− 6u−2/α. Suppose that t2− s1→ 0 as u→∞. Then for all u≥ u0 := inf{u : t2− s1 ≤ C−1/αε/4},

P(max
[si ,t i]

ξ(t)> u, i = 1,2)≤ C0C1Ψ(u)exp
�

−
aC

8
((s2− t1)u

2/α− 1)α
�

,

where C0 is the absolute constant from Lemma 6.3 of [11] and

C1 =
K1
∑

i=0

K2
∑

j=0

exp
�

a(i+ j)α
�

where Kl := [(t l − sl)u2/α].

Proof: Split the intervals [sl , t l], l = 1,2 into subintervals
∆l,i = [sl + iu−2/α, sl + (i + 1)u−2/α], l = 1,2, i = 0, 1,2, . . . , Kl := [(t l − sl)u2/α], l = 1,2,
where the intervals ∆l,Kl

, l = 1, 2, cover the points t1 and t2, respectively. We have

P(max
[sl ,t l]

ξ(t)> u, l = 1,2)≤ (2)

≤
K1
∑

i=0

K2
∑

j=0

P
�

max
∆1,i

ξ(t)> u, max
∆2, j

ξ(t)> u
	

=:
∑

i

∑

j

pi j .

Apply Lemma 6.3 in [11] to any term pi j in the sum. The distance between ∆1,i and ∆2, j is at least
s2− t1+ ju−2/α+ (K1− i− 1)u−2/α = s2− t1+ ( j− i+ K1− 1)u−2/α. We have,

pi j ≤ C0Ψ(u)exp
�

−
1

8
(C1/α((s2− t1)u

2/α+ j− i+ K1− 1))α
�

≤ C0Ψ(u)exp
�

−
Ca

8
((s2− t1)u

2/α− 1)α
�

exp
�

a( j− i+ K1)
α�

for all u sufficiently large. To get the second inequality we use the inequality (x+ y)α ≥ a(xα+ yα),
valid for all positive x , y. By summing the bounds, we get the stated assertion. �
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3 Proof of Theorem 1.1

We are approximating the locally stationary Gaussian process in small intervals by stationary Gaus-
sian processes. Since C(t) is positive and continuous at 0, we have for any small ε > 0 and δ
sufficiently small that sup[0,δ] |C(t)− C(0)| ≤ ε. Let X+(t) and X−(t) be two standard stationary
Gaussian processes with covariance functions r+(t) and r−(t) respectively, where for all t 6= s ≥ 0,
r+(|t − s|)≤ r(t, s)≤ r−(|t − s|)< 1 and

r+(t) = 1− (C(0) + ε)|t|α+ o(|t|α), r−(t) = 1− (C(0)− ε)|t|α+ o(|t|α) as t → 0.

Such stationary Gaussian processes exist. We apply Slepian’s lemma (cf. Theorem C.1 of Piterbarg
[11]) to derive the bounds

P{max
[0,δ]

X−(t)(1− ζtβ)> u |ζ} ≤ P{max
[0,δ]

ξ(t)(1− ζtβ)> u |ζ}

≤ P{max
[0,δ]

X+(t)(1− ζtβ)> u |ζ}

In the same way we define further stationary Gaussian processes X+k (t) and X−k (t) on intervals
Ik = [ku−2/β , (k+ 1)u−2/β) with Cmin,k = mint∈Ik

≤ C(t) ≤ maxt∈Ik
C(t) = Cmax,k. These processes

approximate the locally stationary Gaussian process ξ(t) in the intervals Ik with Slepian’s inequality.

Lemma 3.1. Let ξ(t), 0 ≤ t ≤ T, be a locally stationary Gaussian process. Suppose that ζ is a
bounded nonnegative random variable which is independent of ξ(·), with Eζ−1/β < ∞. For any T ∈
(0, (σ(ζ))−1/β),

(a) if α < β ∈ (0,∞), then as u→∞

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼
HαC1/α(0)Γ(1/β)

β
u2/α−2/βΨ(u)Eζ−1/β ;

(b) if α= β ∈ (0,2], then as u→∞,

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼ E(Hζ/C(0)α )Ψ(u) ,

where 0< Hζα := E exp
�

max[0,∞)(χ(t)− ζtα)|ζ
�

<∞;

(c) if 2≥ α > β > 0, then as u→∞

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼Ψ(u) .

Proof: (a) We use the intervals Ik as partition of the interval [0, T]. Since an interval with length
smaller than u−2/β has here no asymptotic effect on the probability, we assume without loss of
generality that k ≤ n := [Tu2/β] = Tu2/β .

For any given ζ, by Theorem D.2 of Piterbarg [11], the stationarity of ξ(t) and the time transforma-
tion such that C = 1 as in Lemma 2.1, we get the upper bound of the conditional probability, which
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is used for the dominating convergence.

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ
	

≤
n−1
∑

k=0

P
�

max
[0,u−2/β ]

X+k (t)> u/(1− ζ(ku−2/β)β) |ζ
	

≤
n−1
∑

k=0

C1/α
max,kHαu−2/β� u

1− ζkβu−2

�2/αΨ
� u

1− ζkβu−2

�

≤
n−1
∑

k=0

C1Hαu2/α−2/βΨ(u)exp(−ζkβ)

≤ C1Hαu2/α−2/βΨ(u)[1+ β−1ζ−1/β

∫ ∞

0

v1/β−1 exp(−v)dv]

= C1Hαu2/α−2/βΨ(u)[1+Γ(1/β)β−1ζ−1/β],

where C1 is some constant, not depending on ζ and k.

By a reformulation of Theorem D.3 (i) in Piterbarg [11] for stationary Gaussian processes, (in which
the author considered that the variance reaches its maximum at an interior point of the segment
[0,δ] (with some δ > 0); here our variance attains its maximum at 0 which is the boundary point
of [0,δ], which implies the factor 2 is replaced by the factor 1 in that theorem), and with the time
transformation to standardize C(0) + ε to 1 as in Lemma 2.1, we know that for any given ζ > 0,

lim
u→∞

P
�

maxt∈[0,δ] X
+(t)(1− ζtβ)> u |ζ

	

u2/α−2/βΨ(u)
= Hα(C(0) + ε)

1/αΓ(1/β)β−1ζ−1/β . (3)

The analogous result holds for the X−(t) processes with C(0)− ε. With Slepian’s inequality we get
the bounds for the conditional probability of the analogous event with ξ(t), for any ζ > 0. Similar
inequalities hold for the other processes X+k (t) and X−k (t) as mentioned. This implies that for the
upper bound

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ
	

≤ P
�

max
t∈[0,δ]

X+(t)(1− ζtβ)> u |ζ
	

+
n
∑

k=n0

P
�

max
t∈[0,u−2/β ]

X+k (t)> u/(1− ζ(ku−2/β)β) |ζ
	

(4)

with n0 = [δu2/β]. The first term is approximated in (3). Each term of the sum can be approximated
by the upper bounds used as in the domination argument above.

n−1
∑

k=n0

P
�

max
t∈[0,u2/β ]

X+k (t)> u/(1− ζ(ku−2/β)β) |ζ
	

≤
n−1
∑

k=n0

C1Hαu2/α−2/βΨ(u)exp(−ζkβ)

≤ C1Hαu2/α−2/βΨ(u)

∫ n−1

n0−1

exp(−ζzβ)dz

≤ C1Hαu2/α−2/βΨ(u)ζ−1/β

∫ ζnβ

ζ(n0−1)β
exp(−v)v1/β−1dv/β
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Taking the expectation on ζ, the integral term with the factor ζ−1/β is dominated by E(ζ−1/β)<∞.
Furthermore, since the integral is converging point wise to 0 for ζ > 0 (as u → ∞), we have that
the sum is bounded by o(u2/α−2/βΨ(u)). Hence, the first term in (4) is dominating.

For the lower bound we use

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ
	

≥ P
�

max
t∈[0,δ]

X−(t)(1− ζtβ)> u |ζ
	

∼ Hα(C(0)− ε)1/αΓ(1/β)β−1ζ−1/βu2/α−2/βΨ(u)

Since Eζ−1/β <∞, we get the stated result by dominated convergence and letting ε→ 0.

(b) Split the interval [0, T] into subintervals with length u−2/β , with again n := [Tu2/β] = Tu2/β =
Tu2/α. The proof follows the steps of the proof in a). However, since α = β , we need to apply
Lemma D.1 of Piterbarg [11] for any given ζ, to show the domination. Here we use that Eζ−1/α =
Eζ−1/β <∞.

By a reformulation of Theorem D.3 (ii) in Piterbarg [11], and with the time transformation to
standardize C(0) + ε to 1, as above, we know that for any given ζ,

lim
u→∞

P
�

maxt∈[0,δ] X
+(t)(1− ζtα)> u |ζ

	

Ψ(u)
= Hζ/(C(0)+ε)α .

where Hζα := E
�

exp
�

max[0,∞)χ(t)− ζtα
�

|ζ
�

∈ (0,∞). The analogous result holds for the lower
approximation with X−(t) and C(0)− ε. The approximation for the maximum of the process in the
interval [δ, T] of part a) can be used again. Since Eζ−1/α = Eζ−1/β <∞, we get the stated result
by dominated convergence and letting ε → 0. The domination shows also that EHζ/Cα < ∞, since
Eζ1/β <∞.

(c) For this case, we split the interval [0, T] into subintervals Ik = [kδ,
(k + 1)δ] of length δ with 0 < δ < min(1, T ), and define new standard stationary Gaussian
processes X+k (t) with C+k =maxt∈Ik

C(t). Then with the result of part b) we get by stationarity

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ
	

≤
[T/δ]
∑

k=0

P
�

max
[0,δ]

X+k (t)(1− ζ(t + kδ)β)> u |ζ
	

≤
[T/δ]
∑

k=0

P
�

max
[0,δ]

X+k (t)(1− ζtβ)> u |ζ
	

≤ ([T/δ] + 1) · P
�

max
[0,δ]

X+K (t)(1− ζtα)> u |ζ
	

≤ ([T/δ] + 1)CHζ/CK
α Ψ(u),

where X+K (t) is that one of the X+k (t) with C+K =maxk C+k , and C > 0 some constant. We mentioned

already that E(Hζ/CK
α ) is finite. By Theorem D.3 (iii) of Piterbarg [11], we know that for any given

ζ

lim
u→∞

P
�

maxt∈[0,δ] X
+
0 (t)(1− ζtβ)> u |ζ

	

Ψ(u)
= 1
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The same result holds for the lower approximation with X−0 (t). The interval (δ, T] does not play
a role in the asymptotic result, since using Theorem D.2 of Piterbarg [11] and the argument in the
domination part as in proof of part a) above, we have

[T/δ]
∑

k=1

P
�

max
[0,δ]

X+k (t)(1− ζ(t + kδ)β)> u |ζ
	

≤
[T/δ]
∑

k=1

P
�

max
[0,δ]

X+k (t)(1− ζ(kδ)
β)> u |ζ

	

≤ [T/δ] · P
�

max
[0,δ]

X+K (t)> u/(1− ζδβ) |ζ
	

≤ [T/δ]δCHαu2/αΨ(u)exp(−ζδβu2)

for some constant C > 0. We note that E(exp(−ζδβu2)) = O(u−2/β) = o(u−2/α), since
E(ζ−1/β)<∞ and α > β .
For E(exp(−ζδβu2)) = (δβu2)−1/β

∫ σζ

0
e−zδβu2

(zδβu2)1/βz−1/β fζ(z)dz ≤ C(δβu2)−1/β since e−v v
is bounded. Then by using the dominated convergence, the third statement follows. �

This lemma is now applied in combination with Proposition 2.2 to prove the first main theorem.

Proof of Theorem 1.1:

(a) If α < β ∈ (0,∞). Then by Lemma 3.1 (a) and Proposition 2.2, we get for u→∞

Pu,β = EP{ max
t∈[0,T]

ξ(t)(1−
ζ

η
tβ)>

u

η
|η}

∼
HαC1/α(0)Γ(1/β)

β
E
�

(
u

η
)2/α−2/βΨ(

u

η
)E[(

ζ

η
)−1/β |η]

�

=
HαC1/α(0)Γ(1/β)

β
u2/α−2/β

∫ σ(η)

s0

y3/β−2/αE(ζ)(y) fη(y)Ψ(u/y)dy

∼ (−1)k
HαC1/α(0)Γ(1/β)

β
σ3/β−2/α+3k+3E(ζ)(σ) f (k)η (σ)u

2/α−2/β−2−2kΨ(u/σ)

where in Proposition 2.2 we use g1(y) = y3/β−2/αE(ζ)(y) and g2(y) = fη(y).

(b) If α= β ∈ (0, 2], we apply Lemma 3.1 (b) and Proposition 2.2, to get

Pu,β = EP{ max
t∈[0,T]

ξ(t)(1−
ζ

η
tβ)>

u

η
|η}

∼ E
h

E
�

exp
�

max
t∈[0,∞)

(χ(t)−
ζ

C(0)η
tα)
�

|η
�

Ψ(
u

η
)
i

=

∫ σ(η)

s0

E
�

exp
�

max
t∈[0,∞)

(χ(t)−
ζ

C(0)η
tα)
�

|η= y
�

Ψ(u/y) fη(y)dy

∼ (−1)kσ3k+3 f (k)η (σ) eHα(σ)u
−2−2kΨ(u/σ) as u→∞.
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(c) If 2≥ α > β > 0. Then by Lemma 3.1 (c) and Proposition 2.2, we obtain

Pu,β = EP
�

max
t∈[0,T]

ξ(t)(1−
ζ

η
tβ)>

u

η
|η
	

∼ E
�

Ψ(u/η)
�

=

∫ σ(η)

s0

Ψ(u/y) fη(y)dy ∼ (−1)kσ3k+3 f (k)η (σ)u
−2−2kΨ(u/σ)

as u→∞. �

4 Proof of Theorem 1.2

In the following lemmas, we always assume that ζ is a non-negative bounded random variable
independent of ξ(·) and its density function fζ is bounded. Denote efζ := supz∈[0,σ(ζ)] fζ(z)<∞.

From the stated theorem, we have to discuss different cases, depending on β <,= or > α and
whether α <,= or > 1 as shown in Figure 1. The following lemmas deal with the different cases in
the given order of a) - f), by applying similar ideas. We begin with case (a).

Lemma 4.1. Let α,β ∈ (0,1). Suppose that the density fζ(x), x ≥ 0, is positive and continuous at 0.
Then for any T ∈ (0, (σ(ζ))−1/β), as u→∞

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼ Hα

∫ T

0

C1/α(t) t−βdt · fζ(0)u2/α−2Ψ(u)

Proof: Split the interval [0, T] into subintervals with length u−2/α log u and denote these subin-
tervals by ∆k = [ku−2/α log u, (k + 1)u−2/α log u]. Without loss of generality assume again n =
T/(u−2/α log u) is a integer.

In each interval ∆k we approximate the locally stationary Gaussian process ξ(t) by the stationary
Gaussian processes X+k (t) (with C(tk) + ε1 = C+(tk)) and X−k (t) (with C(tk)− ε1 = C−(tk)) where
C(tk)− ε1 ≤ C(t) ≤ C(tk) + ε1 for t ∈ ∆k, for some ε1 → 0 as u→∞. We apply Slepian’s lemma
again as in Lemma 3.1, to get the following approximations.

First, we estimate the upper bound of the probability, by using the stationarity of X+k (t) and Theorem
D.2 in Piterbarg [11], with the time transformation since C+(tk) is in general not equal to 1. For u
sufficiently large, we have

P{max
[0,T]

ξ(t)(1− ζtβ)> u} ≤ E
�

n−1
∑

k=0

P
�

max
∆k
ξ(t)>

u

1− ζ(ku−2/α log u)β
|ζ
	�

≤ E
�

n−1
∑

k=0

P
�

max
∆k

X+k (t)>
u

1− ζ(ku−2/α log u)β
|ζ
	�

≤ (1+ γ(u))E
h

Hα
n−1
∑

k=0

(C+(ku−2/α log u))1/α log u
�

1− ζ(ku−2/α log u)β
�2/α

Ψ
� u

1− ζ(ku−2/α log u)β

�i

≤ (1+ γ(u))Hα log uΨ(u)E
h

n−1
∑

k=0

(C+(ku−2/α log u))1/αe−ζkβu2−2β/α(log u)β

�

1− ζ(ku−2/α log u)β
�2/α−1

i
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≤ (1+ γ(u))Hα log uΨ(u)
h

C+(0)

+ E
�

∫
Tu2/α

log u

0

(C+(xu−2/α log u)(1+ o(1)))1/αe−ζxβu2−2β/α(log u)β

�

1− ζ(xu−2/α log u)β
�2/α−1

dx
�i

= (1+ γ(u))HαC+(0) log uΨ(u) + (1+ γ′(u))
Hαu2/α−2/βΨ(u)

β

· E
h

ζ−1/β

∫ Tβu2ζ

0

� 1

1− vu−2

�2/α−1
(C+((

v

ζu2 )
1/β))1/αe−v v1/β−1 dv

i

, (5)

where γ(u) ≤ γ′(u) ↓ 0 as u→∞ and does not depend on ζ and k, because C(t) is continuous and
bounded.

By the assumptions of fζ(x), for any arbitrarily small ε > 0, there exists some δ > 0 satisfying that
for all 0≤ x ≤ δ, | fζ(x)− fζ(0)| ≤ ε. Hence the expectation in (5) is bounded by ( fζ(0) + ε) times

∫ δ

0

z−1/β
h

∫ Tβu2z

0

e−v v1/β−1
� 1

1− vu−2

�2/α−1
(C+((

v

zu2 )
1/β))1/α dv

i

dz+ C

=
u2/β−2

Tβ−1

∫ Tβu2δ

0

y−1/β
h

∫ y

0

e−v v1/β−1
� 1

1− vu−2

�2/α−1
(C+((

v

y
)1/β T ))1/α dv

i

dy + C

using the transformation y = Tβu2z, where C is some constant for the remaining integral on
[δ,σ(ζ)]. By Fubini’s theorem and dominated convergence, the above double integral equals

∫ Tβu2δ

0

�

∫ Tβu2δ

v

y−1/β(C+((
v

y
)1/β T ))1/α dy

�

e−v v1/β−1
� 1

1− vu−2

�2/α−1
dv. (6)

Let us consider the inner integral; we use the variable transformation s = (v/y)1/βT :

∫ Tβu2δ

v

y−1/β(C+((
v

y
)1/β T ))1/α dy = βTβ−1v1−1/β

∫ T

(v/u2δ)1/β
s−β(C+(s))1/α ds.

For v = o(u2) the last integral is tending to the constant
∫ T

0
s−β(C+(s))1/αds = J+(T ). Thus we split

the outer integral in (6) into two parts for v ≤ g(u)u2 and v > g(u)u2 with g(u) → 0 such that
g(u)u2 →∞. The integral on v > g(u)u2 is of smaller order than the first integral part because of
the exponential function. Thus we approximate the first part which is equal to

(1+ o(1))β J+(T ) Tβ−1

∫ g(u)u2

0

v1−1/β e−v v1/β−1
� 1

1− vu−2

�2/α−1
dv

= (1+ o(1))β J+(T ) Tβ−1

∫ ∞

0

e−v dv = (1+ o(1))β J+(T ) Tβ−1 as u→∞.

Since the first term of (5) equals o(u2/α−2Ψ(u)) as u→∞, we obtain by combining the approxima-
tions

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

≤ (1+ γ′′(u))HαJ+(T )( fζ(0) + ε)u
2/α−2Ψ(u),
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where γ′′(u) ↓ 0 as u→∞. Note also that J+(T )→ J(T ) =
∫ T

0
s−βC1/α(s)ds as u→∞, by letting

ε1→ 0.

For the lower bound, by with the same intervals ∆k and Bonferroni’s inequality we have

P{max
[0,T]

ξ(t)(1− ζtβ)> u} ≥ E
h

n−1
∑

k=0

P{max
∆k
ξ(t)>

u

1− ζ((k+ 1)u−2/α log u)β
|ζ}

−
n−2
∑

k=0

n−1
∑

l=k+1

P{max
∆k
ξ(t)>

u

1− ζ(ku−2/α log u)β
,max
∆l
ξ(t)>

u

1− ζ(lu−2/α log u)β
|ζ}
i

.

(7)

With the approximating stationary Gaussian process X−k (t) and Theorem D.2 of Piterbarg [11], the
expectation of the first sum in (7) is bounded below in a similar way by

E
h

Hα
n−1
∑

k=0

(1− γ(u))
(C−(ku−2/α log u))1/α log u

�

1− ζ
�

(k+ 1)u−2/α log u
�β�2/α

Ψ
� u

1− ζ
�

(k+ 1)u−2/α log u
�β

�

i

≥ (1− γ1(u))HαΨ(u)u
2/α log u

×E
h

∫ T (log u)−1

u−2/α

(C−(x log u))1/α exp
h

−
u2

2

� 2ζ(x log u)β

1− ζ(x log u)β
+
� ζ(x log u)β

1− ζ(x log u)β
�2
�i

dx
i

≥ (1− γ1(u))( fζ(0)− ε)Hαβ−1Ψ(u)u2/α−2/β

∫ δ

0

z−1/β

×
�

∫ Tβu2z

z(log u)βu2−2β/α

(C−((
v

zu2 )
1/β))1/α exp

�

−
v

1− vu−2 −
v2u−2

2(1− vu−2)2
�

v1/β−1 dv
�

dz,

= (1− γ1(u))( fζ(0)− ε)Hαβ−1Ψ(u)u2/α−2/β

×
∫ Tβu2δ

0

J−u (T ) exp
�

−
v

1− vu−2 −
v2u−2

2(1− vu−2)2
�

v1/β−1 dv (8)

by interchanging the integration, and using again Fubini’s theorem and dominated convergence,
where γ1(u) ↓ 0 as u→∞ not depending on ζ, and

J−u (T ) =

∫ δ∗

T−βu−2v

(C−((
v

zu2 )
1/β))1/αz−1/β dz

where δ∗ =min{δ, vu2β/α−2/(log u)β}. By transforming the variable z to s = (v/zu2)1/β we get

J−u (T )/(βu2/β−2v1−1/β) =

∫ T

s0

(C−(s))1/αs−β ds = J(T ) + o(1)

by letting u→∞ and ε1→ 0, since s0 :=max{(v/δu2)1/β , u−2/α log u} → 0 as u→∞ for v = o(u2).

Now we consider the approximation of the integral in (8) from below, similar to the upper approxi-
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mation with g(u)→ 0 such that g(u)u2→∞ as u→∞.

∫ Tβu2δ

0

J−u (T ) exp
�

−
v

1− vu−2 −
v2u−2

2(1− vu−2)2
�

v1/β−1 dv

≥ βu2/β(J(T ) + o(1))

∫ g(u)u2

0

exp
�

−
v

1− vu−2 −
v2u−2

2(1− vu−2)2
�

dv

≥ βu2/β(J(T ) + o(1))

∫ g(u)u2

0

exp
�

− v(1+ o(1))
�

dv = βu2/β(J(T ) + o(1)).

(9)

Combining the bounds we note that the lower bound of the first sum in (7) converges to the same
bound as the corresponding upper approximation by letting u→∞ and ε1, ε→ 0.

It remains to approximate the double sum in (7) by deriving an upper bound. The double-sum in
(7) is bounded by

n−2
∑

k=0

n−1
∑

l=k+1

P{max
∆k
ξ(t)>

u

1− ζ(ku−2/α log u)β
, max
∆l
ξ(t)>

u

1− ζ(ku−2/α log u)β
|ζ}

≤
n−2
∑

k=0

P{max
∆k
ξ(t)>

u

1− ζ(ku−2/α log u)β
, max
∆k+1

ξ(t)>
u

1− ζ(ku−2/α log u)β
|ζ}

+
n−3
∑

k=0

N−1
∑

l=k+2

P{max
∆k
ξ(t)>

u

1−ζ(ku−2/α log u)β
, max
∆l
ξ(t)>

u

1−ζ(ku−2/α log u)β
|ζ}

+
n−N
∑

k=0

n
∑

l=k+N

P{ max
∆k×∆l

ξ(t) + ξ(s)> 2u} (10)

where N := [eε/(4u−2/α log u)], with eε ∈ (0, T ∧ 1/2) which is chosen such that
1− Cmax

1
2
|t|α ≥ r(t)≥ 1− 2Cmax|t|α for all t ∈ [0, eε ], with Cmax =maxt∈[0,T] C(t).

For the third sum of (10), note that for all k + N ≤ l ≤ n, the variance of the Gaussian field
ξ(t) + ξ(s), with (t, s) ∈∆k ×∆l ,

Var
�

ξ(t) + ξ(s)
�

= 2+ 2r(t, s)≤ 4− 2 min
|t−s|≥eε/4

(1− r(t, s))< 4;

there exists a constant b satisfying

P
�

max
∆k×∆l

(ξ(t) + ξ(s))> b
	

≤ P
�

max
[0,T]×[0,T]

(ξ(t) + ξ(s))> b
	

= P
�

max
[0,T]

ξ(t)>
b

2

	

≤
1

2
.

Therefore by the Borel theorem (cf. Theorem D.1 in Piterbarg [11]), we get

n−N
∑

k=0

n
∑

l=k+N

P
�

max
∆k×∆l

(ξ(t) + ξ(s))> 2u
	

≤ 2
�Tu2/α

log u
�2Ψ

� 2u− b
p

4− eδ

�

= o(u2/α−2Ψ(u)),
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as u→∞, where eδ := 2min|t−s|≥eε/4(1− r(t, s))> 0.

In the conditional probabilities with respect to the neighboring intervals ∆k and ∆l with l − k ≤ N ,
we approximate ξ(t) by X+(t) with Cmax+ ε1 = C̃ instead of C+(tk) and C+(t l), not depending on
k. By stationarity and Theorem D.2 of Piterbarg [11], we estimate the first sum of (10):

n−2
∑

k=0

P{max
∆k

X+(t)>
u

1− ζ(ku−2/α log u)β
, max
∆k+1

X+(t)>
u

1− ζ(ku−2/α log u)β
|ζ}

=
n−2
∑

k=0

h

2P
�

max
∆k

X+(t)>
u

1− ζ(ku−2/α log u)β
|ζ
	

− P
�

max
∆k∪∆k+1

X+(t)>
u

1− ζ(ku−2/α log u)β
|ζ
	

i

≤
n−2
∑

k=0

h

2(1+ γ(u))
HαC̃1/α log u

�

1− ζ(ku−2/α log u)β
�2/α
Ψ
� u

1− ζ(ku−2/α log u)β
�

− (1− eγ(u))
HαC̃1/α2 log u

�

1− ζ(ku−2/α log u)β
�2/α
Ψ
� u

1− ζ(ku−2/α log u)β
�

i

= 2(γ(u) + eγ(u))
h

n−2
∑

k=0

HαC̃1/α log u
�

1− ζ(ku−2/α log u)β
�2/α
Ψ
� u

1− ζ(ku−2/α log u)β
�

i

,

where γ(u),eγ(u) ↓ 0 as u→∞, not depending on k and ζ. Then with the proof for the upper bound
of the probability, we obtain that the expectation of the first term of (10) equals o(u2/α−2Ψ(u)) as
u→∞.

For the second term of (10), we apply Lemma 2.4, letting

s1 = 0, t1 = u−2/α log u, s2 = lu−2/α log u, t2 = (l + 1)u−2/α log u.

We have,

n
∑

k=0

N−1
∑

l=2

P
�

max
∆i

X+(t)>
u

1−ζ(ku−2/α log u)β
, i = 0, l |ζ

	

≤ C0C1

n
∑

k=0

Ψ

�

u

1− ζ(ku−2/α log u)β

� N−1
∑

l=2

exp

�

−
aC̃

8
((l − 1) log u− 1)α

�

≤ C0C1Ψ(u)
n
∑

k=0

e−ζkβ (log u)βu2−2β/α
N−1
∑

l=2

exp

�

−
aC̃

8
((l − 1) log u− 1)α

�

≤ C2Ψ(u)
n
∑

k=0

e−ζkβ (log u)βu2−2β/α
,

for a suitable constant C2. The expectation of the last sum is at most

∫ σ(ζ)

0

�

∫
Tu2/α

log u

0

exp(−zxβ(log u)βu2−2β/α)dx
�

fζ(z)dz+ 1
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≤
∫

Tu2/α

log u

0

�

efζ

∫ σ(ζ)

0

exp(−zxβ(log u)βu2−2β/α)dz
�

dx + 1

≤
∫

Tu2/α

log u

0

efζ
(log u)βu2−2β/αxβ

dx + 1≤
T1−β

efζ
1− β

(log u)−1u2/α−2+ 1= o(u2/α−2)

as u→∞.

Therefore the expectation of the second sum of (10) is o(Ψ(u)u2/α−2), as u→∞.

Since ε and ε1 are arbitrary, we conclude

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼ HαJ(T ) fζ(0)u
2/α−2Ψ(u)

as u→∞. �
Now we deal with the case (b).

Lemma 4.2. Let α ∈ (0,1] and β = 1. Suppose that the density fζ(x), x ≥ 0, is positive and
continuous at 0. Then for any T ∈ (0, (σ(ζ))−1),

P
�

max
t∈[0,T]

ξ(t)(1− ζt)> u
	

∼ 2C1/α(0)Hα fζ(0)u
2/α−2Ψ(u) log u as u→∞.

Proof: For any h > 1 and u sufficiently large, we split the interval [0, T] into subintervals with
length hu−2/α, denote these subintervals by ∆k = [khu−2/α, (k + 1)hu−2/α] and assume again n =
T/(hu−2/α) ∈N without loss of generality. Let tk = khu−2/α.

By using the approximation as above with the stationary Gaussian processes X+k (t) with C+(tk), its
stationarity, Slepian’s lemma, Lemma 2.1 and finally Lemma 2.3 in the last step, we estimate the
upper bound of the probability in a similar way, by denoting hk = (C+(tk))1/αh.

P
�

max
t∈[0,T]

ξ(t)(1− ζt)> u
	

≤ E
h

n−1
∑

k=0

P
�

max
∆0

X+k (t)(1− ζt)>
u

1− kζhu−2/α
|ζ
	

i

≤ (1+ γ(u))E
h

n−1
∑

k=0

Ψ(
u

1− kζhu−2/α
)E
�

exp
�

max
[0,hk]

χ(t)
�

|ζ
�

i

≤ (1+ γ(u))Ψ(u)
∫ σ(ζ)

0

n−1
∑

k=0

exp(−kzhu2−2/α)E exp
�

max
[0,hk]

χ(t)
�

fζ(z)dz

where γ(u) ↓ 0 as u → ∞, not depending on k and ζ. Now we split the sum into two parts for
k ≤ εn and> εn with some ε > 0. In the first partial sum we use the bound E exp

�

max[0,hk]χ(t)
�

≤
E exp

�

max[0,h0]χ(t)
�

+γ′(ε) with γ′(ε)→ 0 as ε→ 0. Hence the first partial sum is bounded above
by

(1+ γ(u))Ψ(u)[E exp
�

max
[0,h0)

χ(t)
�

+ γ′(ε)]

∫ σ(ζ)

0

1− exp(−εTzu2)

1− exp(−zhu2−2/α)
fζ(z)dz

≤ (1+ γ(u))
2 fζ(0)

h
[E exp

�

max
[0,(C+(0))1/αh]

χ(t)
�

+ γ′(ε)]u2/α−2Ψ(u) log u.
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The second partial sum is of smaller order since exp(−εTzu2) → 0 and also
E(exp(−εTzu2))→ 0, and we can use C̃ = Cmax + ε1 in E exp

�

max[0,hk]χ(t)
�

to get the
upper bound E exp

�

max[0,hC̃1/α]χ(t)
�

with ε1 > 0.

For the lower bound, by Bonferroni’s inequality, we have

E
h

P
�

max
t∈[0,T]

ξ(t)(1− ζt)> u |ζ
	

i

≥ E
h

n−1
∑

k=0

P
�

max
∆k
ξ(t)(1− ζt)> u |ζ

	

i

−E
h

∑

0≤k<l≤n−1

P
�

max
∆k
ξ(t)(1− ζt)> u,max

∆l
ξ(t)(1− ζt)> u |ζ

	

i

.
(11)

Choose ε > 0 small and let u be large enough. Then with Lemma 2.1, the first sum in (11) is
bounded below now with the use of X−(t) with C(tk)> C(0)−ε1 = C−(0) (not depending on k for
k ≤ εn) by

E
h

[εn]
∑

k=0

P
�

max
∆0

X−(t)(1−
ζt

1− kζhu−2/α
)>

u

1− kζhu−2/α
|ζ
	

i

≥ E
h

[εn]
∑

k=0

P
�

max
∆0

X−(t)
�

1−
ζt

1− εTσ(ζ)
�

>
u

1− kζhu−2/α
|ζ
	

i

≥ (1− γ1(u))E
h

[εn]
∑

k=0

Ψ(
u

1− kζhu−2/α
)

× E
�

exp
�

max
[0,hC−(0)1/α]

χ(t)−
ζ(C−(0))−1/α

1− εTσ(ζ)
� u

1− kζhu−2/α

�2−2/α t
�

|ζ
�

i

≥ (1− γ1(u))Ψ(u)(1− εTσ(ζ))E
h

[εn]
∑

k=0

exp
�

−
kζhu2−2/α

(1− εTσ(ζ))2
�

× E
�

exp
�

max
[0,h(C−(0))1/α]

χ(t)−
ζ(C−(0))−1/α

1− εTσ(ζ)
� u

1− kζhu−2/α

�2−2/α t
�

|ζ
�

i

≥ (1− γ1(u))Ψ(u)(1− εTσ(ζ))E
h 1− exp(−ε(1− εTσ(ζ))−2Tζu2)

1− exp(−(1− εTσ(ζ))−2ζhu2−2/α)

× E
�

exp
�

max
[0,h(C−(0))1/α]

χ(t)−
ζ(C−(0))−1/α t

(1− εTσ(ζ))3−2/α

�

|ζ
�

i

,

(12)

where γ1(u) ↓ 0 as u→∞, not depending on k and ζ, and using 2− 2/α≤ 0. Note that

g(z) := E
�

exp
�

max
[0,hC−(0)1/α]

χ(t)−
zC−(0)−1/α t

(1− εTσ(ζ))3−2/α

��

is positive and continuous at 0, hence so is g(z) fζ(z). Then with Lemma 2.3, we obtain that (12) is
bounded below by

(1− γ1(u))Ψ(u)(1− εTσ(ζ))

∫ σ(ζ)

0

1− exp(−ε(1− εTσ(ζ))−2Tzu2)

1− exp(−(1− εTσ(ζ))−2zhu2−2/α)
g(z) fζ(z)dz

≥ (1− γ′1(u))(1− εTσ(ζ))3
2 fζ(0)

h
E exp

�

max
[0,hC−(0)1/α]

χ(t)
�

u2/α−2Ψ(u) log u,
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where γ′1(u) ↓ 0 as u→∞, not depending on ζ.
Note that E exp

�

max[0,h(C−(0))1/α]χ(t)
�

/h→ (C−(0))1/αHα as h→∞.

The double sum in (11) is split again into three parts,

n−2
∑

k=0

n−1
∑

l=k+1

P
�

max
∆k
ξ(t)(1− ζt)> u, max

∆l
ξ(t)(1− ζt)> u |ζ

	

≤
n−2
∑

k=0

P
�

<max
∆k
ξ(t)>

u

1− ζkTu−2/α
, max
∆k+1

ξ(t)>
u

1− ζkTu−2/α
|ζ
	

+
n−2
∑

k=0

N−1
∑

l=2

P
�

max
∆0

ξ(t)> u+ kζTu1−2/α, max
∆l
ξ(t)> u+ kζTu1−2/α |ζ

	

+
n−2
∑

k=0

n−1
∑

l=N

P
�

max
∆k×∆l

ξ(t) + ξ(s)> 2u
	

,

(13)

where N := [eε/(4u−2/αT )], with eε ∈ (0, T ∧ 1
2
) which is chosen such that

1− 2Cmax|t|α ≤ r(t)≤ 1− 1
2
Cmax|t|α for all t ∈ [0, eε ].

The third sum in (13) can be estimated similarly as in the proof of Lemma 4.1, i.e. with the Borel’s
lemma, we have

n−2
∑

k=0

n−1
∑

l=N

P
�

max
∆k×∆l

ξ(t) + ξ(s)> 2u
	

≤ 2(au2/α)2Ψ
� 2u− b
p

4− eδ

�

,

where eδ := 2 min|t−s|≥eε/4(1 − r(t, s)) > 0, and b is a constant, as in the proof of Lemma 4.1.
Therefore the third sum is o(u2/α−2Ψ(u) log u) as u→∞.

By stationarity, Theorem D.2 of Piterbarg [11] and Lemma 2.3, we bound the expectation of the first
sum in (13) as in the proof of Lemma 4.1 with the use of X+(t) and C̃ = Cmax + ε1 (not depending
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on k) by

E
n−2
∑

k=0

h

2P
�

max
∆0

X+(t)>
u

1− ζkhu−2/α
|ζ
	

− P
�

max
∆0∪∆1

X+(t)>
u

1− ζkhu−2/α
|ζ
	

i

≤ 2(1+ γ2(u))E
h

n−2
∑

k=0

HαC̃1/αh

(1− kζhu−2/α)2/α
Ψ(

u

1− kζhu−2/α
)
i

− (1− γ′2(u))E
h

n−2
∑

k=0

HαC̃1/α2h

(1− kζhu−2/α)2/α
Ψ(

u

1− kζhu−2/α
)
i

= 2(γ2(u) + γ
′
2(u))E

h
n−2
∑

k=0

HαC̃1/αh

(1− kζhu−2/α)2/α
Ψ(

u

1− kζhu−2/α
)
i

≤ γ̃(u)HαC̃1/αh · (1− Tσ(ζ))1−2/αΨ(u)

∫ σ(ζ)

0

n−1
∑

k=0

exp
�

− kzhu2−2/α� fζ(z)dz

≤ γ̃(u)HαC̃1/αh · (1− Tσ(ζ))1−2/αΨ(u)

∫ σ(ζ)

0

1− exp(−Tzu2)

1− exp(−zhu2−2/α)
fζ(z)dz

≤ 2γ̃(u)(1+ γ′′2 (u))HαC̃1/α fζ(0)(1− Tσ(ζ))1−2/αu2/α−2Ψ(u) log u

=o(u2/α−2Ψ(u) log u),

since γ2(u),γ′2(u),γ
′′
2 (u) ↓ 0 as u→∞, not depending on k and ζ with γ̃(u) = 2(γ2(u) + γ′2(u)).

We estimate the expectation of the second sum in (13) by Lemma 6.3 of Piterbarg [11], since its
conditions are satisfied by X+(t) with C̃ .

E
h

n−2
∑

k=0

N−1
∑

l=2

P
�

max
∆0

X+(t)> u+ kζhu1−2/α, max
∆l

X+(t)> u+ kζhu1−2/α |ζ
	

i

≤ E
h

n−2
∑

k=0

N−1
∑

l=2

C1h2Ψ(u+ kζhu1−2/α)exp
�

−
1

8
(l − 1)αhα

�

i

≤ C1h2Ψ(u)
N−3
∑

l=0

exp
�

− 2α−4hα(lα+ 1)
�

E
h

n−1
∑

k=0

exp
�

− kζhu2−2/α�
i

≤ C2h2 exp(−2α−4hα)Ψ(u)

∫ σ(ζ)

0

1− exp(−Tzu2)

1− exp(−zhu2−2/α)
fζ(z)dz

≤ (1+ γ′′2 (u))2C2hexp(−2α−4hα) fζ(0)u
2/α−2Ψ(u) log u

= o(u2/α−2Ψ(u) log u)

as h→∞, where C1 and C2 are some constants, not depending on h, and by using the concavity of
the function xα. We applied also Lemma 2.3 in the second last step.
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Thus we have

2 fζ(0)

h
E exp

�

max
[0,(C1/α(0)+ε1)h]

χ(t)
�

≥ lim
u→∞

P
�

maxt∈[0,T] ξ(t)(1− ζt)> u
	

u2/α−2Ψ(u) log u

≥ (1− εTσ(ζ))3
2 fζ(0)

h
E exp

�

max
[0,h(C1/α(0)−ε1)]

χ(t)
�

− o(1).

We may select h arbitrarily large, thus using E exp
�

max[0,h(C1/α(0)±ε1)]χ(t)
�

/h∼ (C1/α(0)± ε1)Hα.
Since ε and ε1 can tend to 0, we get the stated result. �
The next lemma considers the case (c) of Figure 1.

Lemma 4.3. Let 1 = α > β . Suppose that the density fζ(x), x ≥ 0, is positive and continuous at 0.
Then for any T ∈ (0, (σ(ζ))−1/β),

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼
�

fζ(0)J(T ) + 1
�

Ψ(u) as u→∞.

Proof: Note that

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

= EP
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ
	

=

∫ u2β−2+δ

0

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz

+

∫ σ(ζ)

u2β−2+δ
P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz,

(14)

where δ is chosen in such a way that 0< δ < 2− 2β .

a) Considering the first term of (14), we split [0, T] into subintervals with length u−2 log u, denote
the subintervals by ∆k = [ku−2 log u, (k+ 1)u−2 log u] and without loss of generality assume again
n = T/(u−2 log u). We use again the approximating Gaussian processes X+k (t) with C+(tk) on ∆k,
where tk = ku−2 log u. Then with Theorem D.2 of Piterbarg [11] and the fact that H1 = 1, the first
term of (14) has the upper bound

∫ u2β−2+δ

0

h
n−1
∑

k=0

P
�

max
∆k
ξ(t)> u/(1− z(ku−2 log u)β)

	

i

fζ(z)dz

≤
∫ u2β−2+δ

0

h
n−1
∑

k=0

(1+ γ(u))
(C+(tk))1/α log u

�

1− z(ku−2 log u)β
�2Ψ

� u

1− z(ku−2 log u)β
�

i

fζ(z)dz

≤ (1+ γ(u)) log uΨ(u)

∫ u2β−2+δ

0

h
n−1
∑

k=0

exp(−zkβu2−2β(log u)β)

1− z(ku−2 log u)β

i

(C+(tk))
1/α fζ(z)dz

≤ (1+ γ(u)) log uΨ(u)
�

u2β−2+δ+

∫ u2β−2+δ

0

∫
Tu2

log u

0

e−zxβu2−2β (log u)βC∗( t log u
u2 )

1− z(xu−2 log u)β
dx fζ(z)dz

�

,

(15)

where γ(u) ↓ 0 as u→∞, not depending on k and ζ= z, and we write C∗(t) := C1/α(t) + 2ε1.

1274



For any small ε > 0, let u be sufficiently large so that for all 0 ≤ z ≤ u2β−2+δ, | fζ(z)− fζ(0)| ≤ ε;
since the density fζ is positive and continuous at 0. Hence by Fubini’s theorem and dominated
convergence, we bound the integral in (15),

u2−2/β

β log u

∫ u2β−2+δ

0

z−1/β�
∫ Tβu2z

0

�C∗((v/z)1/βu)
1− vu−2

�

e−v v1/β−1 dv
�

fζ(z)dz

≤ ( fζ(0) + ε)
u2−2/β

β log u

∫ u2β−2+δ

0

z−1/β�
∫ Tβu2z

0

�C∗((v/z)1/βu)
1− vu−2

�

e−v v1/β−1 dv
�

dz

=
( fζ(0) + ε)T1−β

β log u

∫ Tβu2β+δ

0

y−1/β�
∫ y

0

�C∗((v/y)1/βT )
1− vu−2

�

e−v v1/β−1 dv
�

dy

=
( fζ(0) + ε)T1−β

β log u

∫ Tβu2β+δ

0

∫ Tβu2β+δ

v

C∗((v/y)1/βT )y−1/β dy
� 1

1− vu−2

�

e−v v1/β−1 dv

As in the proof of Lemma 4.1, we get for the inner integral that

∫ Tβu2β+δ

v

C∗((v/y)1/βT )y−1/β dy = β(vTβ)1−1/β

∫ T

v1/βu−2−δ/β
C∗(s)s−β ds

→ J+(T ) +O(ε1) = J(T ) +O(ε1)

as u → ∞, since the lower boundary of the integral tends to 0 for v ≤ g(u)u2β+δ with g(u) → 0
such that g(u)u2β+δ →∞, and ε1 is small. Therefore we obtain the upper bound for the first part
(v ≤ g(u)u2β+δ) of the outer integral

( fζ(0) + ε)(J+(T ) + o(1))

log u

∫ g(u)u2β+δ

0

� 1

1− vu−2

�

e−v dv

=
( fζ(0) + ε)(J+(T ) + o(1))

log u
(1+ o(1)) as u→∞.

The second part of the outer integral is of much smaller order because of the exponential term which
implies that the first term of (14), is bounded by

�

(1+ γ(u))u2β−2+δ log u+ (1+ γ′(u))( fζ(0) + ε)(J
+(T ) + o(1))

�

Ψ(u)

∼ ( fζ(0) + ε)J
+(T )Ψ(u)

as u→∞, where γ′(u) ↓ 0 as u→∞.
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To derive the lower bound of the first term of (14), we use Bonferroni’s inequality,

∫ u2β−2+δ

0

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz

≥
∫ u2β−2+δ

0

h
n−1
∑

k=0

P
�

max
∆k
ξ(t)>

u

1− ζ
�

(k+ 1)u−2 log u
�β
|ζ= z

	

i

fζ(z)dz

−
∫ u2β−2+δ

0

h
∑

0≤k<l≤n−1

P
�

max
∆k
ξ(t)>

u

1− ζ(ku−2 log u)β
,

max
∆l
ξ(t)>

u

1− ζ(lu−2 log u)β
|ζ= z

	

i

fζ(z)dz.

(16)

From (8) and (9) in the proof of Lemma 4.1, we know the lower bound of the first term in (16) by
setting the upper endpoint of the integration interval as u2β−2+δ, to derive the lower bound, similar
to the upper bound,

∫ u2β−2+δ

0

h
n−1
∑

k=0

P
�

max
∆k

X−k (t)> u/(1− ζ
�

(k+ 1)u−2 log u
�β) |ζ= z

	

i

fζ(z)dz

≥ (1− γ′1(u))( fζ(0)− ε)(J
−(T )− o(1))Ψ(u),

where γ′1(u) ↓ 0 as u→∞, and J−(T ) =
∫ T

0
C−(s)s−βds→ J(T ) as ε1 → 0, where we set C−(s) =

C(t)− 2ε1 instead of C∗(t).

As in (10), we divide the double sum in the second term of (16) into three parts. Then from the
proof of Lemma 4.1, we know that the integrand in the second term of (16) can be bounded by
C1Ψ(u), where C1 is some constant. Hence we have

∫ u2β−2+δ

0

h
∑

0≤k<l≤n−1

P
�

max
∆k
ξ(t)> u/(1− ζ(ku−2 log u)β),

max
∆l
ξ(t)> u/(1− ζ(lu−2 log u)β) |ζ= z

	

i

fζ(z)dz

≤
∫ u2β−2+δ

0

C1Ψ(u) fζ(z)dz ≤ C1
efζu

2β−2+δΨ(u) = o(Ψ(u)) as u→∞.

b) For the second term of (14), we use the following derivation which is also needed in the proof of
Lemma 4.5 dealing with the case (f). Therefore we formulate it for both cases together, assuming
α≥ 1 and α > β where 0< δ < 2− 2β/α. We have

∫ σ(ζ)

u2β/α−2+δ
P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz

≤
∫ σ(ζ)

u2β/α−2+δ
P
�

max
[0,u−2/α−eδ/β ]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz

+

∫ σ(ζ)

u2β/α−2+δ
P
�

max
[u−2/α−eδ/β ,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz,

(17)
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where eδ ∈ (0,δ).

With Theorem D.4 of Piterbarg [11], the second term of (17) is bounded by

∫ σ(ζ)

u2β/α−2+δ
P
�

max
[u−2/α−eδ/β ,T]

ξ(t)(1− zu−2β/α−eδ)> u |ζ= z
	

fζ(z)dz

≤
∫ σ(ζ)

u2β/α−2+δ
C Tu2/αΨ

� u

1− zu−2β/α−eδ

�

fζ(z)dz

≤ C ′ efζTu2/αΨ(u)

∫ σ(ζ)

u2β/α−2+δ
exp(−zu2−2β/α−eδ)dz

≤ C ′ efζTΨ(u)u2/α+2β/α+eδ−2�exp(−uδ−
eδ)− exp(−σ(ζ)u2−2β/α−eδ)

�

= o(Ψ(u))

(18)

as u→∞, where C and C ′ are some constants.

Since u−2/α−eδ/β = o(u−2/α) as u → ∞, we get for any ε > 0, with Lemma D.1 of Piterbarg [11]
using X+(t) and C+(0), that the first term of (17) is bounded by

∫ σ(ζ)

u2β/α−2+δ
P
�

max
[0,εu−2/α]

X+(t)> u
	

fζ(z)dz

≤
∫ σ(ζ)

u2β/α−2+δ
(1+ γ1(u))Hα(ε(C

+(0))1/α)Ψ(u) fζ(z)dz

≤ (1+ γ1(u))Hα(ε(C
+(0))1/α)Ψ(u)

(19)

where γ1(u) ↓ 0 as u → ∞, not depending on ζ. Since Hα(ε) → 1 as ε → 0, the estimate for the
upper bound is obtained.

The lower bound of the probability is obvious, for any ζ > 0

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u|ζ
	

≥ P
�

ξ(0)> u
	

∼Ψ(u)

as u→∞, and thus
P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼Ψ(u)

as u→∞.

c) Finally, putting the derived bounds together, using ε and ε1→ 0, we conclude

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼
�

fζ(0)J(T ) + 1
�

Ψ(u)

as u→∞. �
In the next lemma we consider the two cases d) and e) of Figure 1 together.

Lemma 4.4. For any T ∈ (0, (σ(ζ))−1/β),

(a) if α < β ∈ (1,∞), then as u→∞,

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼
C1/α(0)HαΓ(1/β)

β
u2/α−2/βΨ(u)Eζ−1/β ;
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(b) if α= β ∈ (1,2], then as u→∞,

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼ EHζ/C(0)α Ψ(u),

where 0< Hζα := E exp
�

max[0,∞)(χ(t)− ζtα)|ζ
�

<∞.

Proof: It is easy to see that if β > 1, then

Eζ−1/β =

∫ σ(ζ)

0

z−1/β fζ(z)dz ≤ f̃ζ

∫ σ(ζ)

0

z−1/β dz =
f̃ζ β

β − 1
(σ(ζ))−1/β+1 <∞.

Hence the conditions of Lemma 3.1 are fulfilled, and the results follow. �
It remains to consider the case (f) in Figure 1.

Lemma 4.5. Let α > β , where α > 1. Then for any T ∈ (0, (σ(ζ))−1/β),

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

∼Ψ(u) as u→∞.

Proof: For an upper bound of the probability, note that

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u
	

= EP
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ
	

=

∫ u2β/α−2+δ

0

P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz

+

∫ σ(ζ)

u2β/α−2+δ
P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz,

(20)

where δ is chosen such that 0< δ < 2− 2β/α.

For the first term in (20), we split [0, T] into subintervals with length u−2/α and assume again
n = Tu2/α without loss of generality. On the subintervals we use X+(t) with C̃ = Cmax + ε1 as
approximating stationary Gaussian process and use the stationarity and Theorem D.2 of Piterbarg
[11], to bound the first term of (20) for u large.

∫ u2β/α−2+δ

0

h
n−1
∑

k=0

P
�

max
t∈[0,u−2/α]

X+(t)> u/(1− z(ku−2/α)β)
	

i

fζ(z)dz

≤
∫ u2β/α−2+δ

0

h
n−1
∑

k=0

(1+ γ(u))
HαC̃1/α

�

1− z(ku−2/α)β
�2/α
Ψ
� u

1− z(ku−2/α)β
�

i

fζ(z)dz

≤ (1+ γ(u))HαC̃1/αΨ(u)

∫ u2β/α−2+δ

0

h
n−1
∑

k=0

exp(−zkβu2−2β/α)
�

1− Tβu2β/α−2+δ�2/α−1

i

fζ(z)dz

≤ cΨ(u)

∫ u2β/α−2+δ

0

h
n−1
∑

k=0

exp
�

− zkβu2−2β/α�
i

dz

≤ cΨ(u)
h

2u2β/α−2+δ +

∫ u2β/α−2+δ

0

∫ Tu2/α

1

exp
�

− zxβu2−2β/α�dx dz
i

≤ cΨ(u)
h

2u2β/α−2+δ + u2β/α−2

∫ Tu2/α

1

1

xβ
dx
i

,

(21)
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by interchanging the integrals, where γ(u) ↓ 0 as u → ∞, not depending on k and ζ, c a suitable

constant and using fζ(z)≤ f̃ . If β = 1, since
∫ Tu2/α

1
x−1 dx = log(Tu2/α),

(21) = cΨ(u)
�

2u2β/α−2+δ + u2β/α−2 log(Tu2/α)
�

= o(Ψ(u));

if β 6= 1, since
∫ Tu2/α

1
x−β dx = (1− β)−1(T1−βu2/α−2β/α− 1),

(21) = cΨ(u)
h

2u2β/α−2+δ +
T1−β

1− β
u2/α−2− (1− β)−1u2β/α−2�

i

= o(Ψ(u)).

Therefore we conclude that the first term of (20) is infinitely smaller thanΨ(u) for any β < α ∈ (1, 2]
as u→∞.

The second term of (20) is approximated in the proof of Lemma 4.3, showing that

∫ σ(ζ)

u2β/α−2+δ
P
�

max
t∈[0,T]

ξ(t)(1− ζtβ)> u |ζ= z
	

fζ(z)dz ∼Ψ(u)

as u→∞. �

Proof of Theorem 1.2: We use the same ideas as in the proof of Theorem 1.1. Write

Pu,β = P{max
[0,T]

ξ(t)(η− ζtβ)> u}= EP{max
[0,T]

ξ(t)(1− (ζ/η)tβ)> u/η |η}

and apply Lemma 4.1, 4.2, 4.3, 4.4 and 4.5 with fixed η. Then taking the expectation on η, we get
the assertions of Theorem 1.2 from Proposition 2.2. �
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