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Abstract

We consider a critical branching particle system in Rd , composed of individuals of a finite num-
ber of types i ∈ {1, . . . , K}. Each individual of type i moves independently according to a sym-
metric αi-stable motion. We assume that the particle lifetimes and offspring distributions are
type-dependent. Under the usual independence assumptions in branching systems, we prove
extinction theorems in the following cases: (1) all the particle lifetimes have finite mean, or
(2) there is a type whose lifetime distribution has heavy tail, and the other lifetimes have finite
mean. We get a more complex dynamics by assuming in case (2) that the most mobile parti-
cle type corresponds to a finite-mean lifetime: in this case, local extinction of the population is
determined by an interaction of the parameters (offspring variability, mobility, longevity) of the
long-living type and those of the most mobile type. The proofs are based on a precise analysis of
the occupation times of a related Markov renewal process, which is of independent interest.
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1 Introduction

In critical branching and migrating populations, mobility of individuals counteracts the tendency to
asymptotic local extinction caused by the clumping effect of the branching. In fact, convergence to
a non-trivial equilibrium may occur in a spatially distributed population whose members perform
migration and reproduction, even if the branching is critical, provided that the mobility of individ-
uals is strong enough. This behavior has been investigated in several branching models, including
branching random walks [7, 9], Markov branching systems (both with monotype [6] and multitype
[3, 4, 8] branching), and age-dependent branching systems [15].

In [15] Vatutin and Wakolbinger investigated a monotype branching model in Euclidean space Rd ,
in which each particle moves according to a symmetric α-stable motion, and at the end of its lifetime
it leaves at its death site a random number of offsprings, with critical offspring generating function
f (s) = s+ 1

2
(1− s)1+β , β ∈ (0,1]. It turned out that, if the initial population is Poisson with uniform

intensity and the particle lifetime distribution has finite mean, such process suffers local extinction if
d ≤ α/β , while for d > α/β the system is persistent, i.e. preserves its intensity in the large time limit.
This result is consistent with the intuitive meaning of the population parameters: the exponent α > 0
is the mobility parameter of individuals in the sense that a smaller αmeans a more mobile migration
(i.e. more spreading out of particles) which is clearly in favor of persistence; β is the offspring
variability parameter, meaning that a smaller β causes a stronger clustering effect in the population,
which favors local extinction due to criticality of the branching. If the lifetime distribution has a
power tail t−γ for some γ ∈ (0, 1], then the critical dimension is αγ/β . Again, it is intuitively clear
that long lifetimes (i.e. small γ) enhance the spreading out of individuals. However, Vatutin and
Wakolbinger discovered that, in contrast with the case of finite-mean lifetimes, if the lifetimes have
a general distribution of the above sort, the “critical” dimension does not necessarily pertains to the
local extinction regime: when d = αγ/β persistence of the population is not excluded.

Our aim in the present paper is to get a better understanding about how population characteristics
such as mobility, offspring variability, and longevity of individuals determine the asymptotic local
extinction of branching populations. In order to attain this we deal with a multitype system, where
the most mobile migration (corresponding to the smallest α) and the life-time distribution with the
heaviest tail, may correspond to different particle types. More precisely, we consider a branching
population living in Rd , constituted of particles of different types i ∈ K := {1, . . . , K}. Each particle
of type i moves according to a symmetric αi-stable motion until the end of its random lifetime, which
has a non-arithmetic distribution function Γi . Then it branches according to a multitype offspring
distribution with generating function fi(s), s ∈ [0, 1]K , i ∈ K. The descendants appear where the
parent individual died, and evolve independently in the same manner. The movements, lifetimes
and branchings of particles are assumed to be independent; the only dependency in the system is
that the offsprings start where the parent particle died. In addition, we assume that the process
starts off at time 0 from a Poisson random population, with a prescribed intensity measure, and
that all particles at time 0 have age 0. Let M = (mi, j)Ki, j=1 denote the mean matrix of the multitype
branching law, that is

mi, j =
∂ fi

∂ x j
(1),

where 1 = (1,1, . . . , 1) ∈ RK . We assume that f(s) = ( f1(s), . . . , fK(s)) 6= Ms, and that M is an
ergodic stochastic matrix. This implies that the branching is critical, i.e. the largest eigenvalue of M
is 1.
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For the system described above, here we investigate parameter configurations under which the
population becomes locally extinct in the large time run. We deal first with the case when all
particle lifetimes have finite mean and prove that the process suffers local extinction if d < α/β ,
where the mobility parameter α = min1≤i≤K αi is the same as in the Markovian case [8], and the
offspring variability parameter β ∈ (0, 1] is determined by

x − 〈v,1− f(1− u x)〉 ∼ x1+β L(x) as x → 0,

where v denotes the (normalized) left eigenvector of the matrix M corresponding to the eigenvalue
1, and L is slowly varying at 0 in the sense that limx→0 L(λx)/L(x) = 1 for every λ > 0. In a way,
this case is similar to the one with exponentially distributed lifetimes.

Next we assume that exactly one particle type is long-living, i.e. its lifetime distribution has a power
tail decay t−γ, γ ∈ (0,1], while the other lifetime types have distributions with tails decaying not
slower than A t−η for some η > 1, A > 0. We consider two scenarios. In the first one we assume
that the most mobile particle type is, at the same time, long-living, and we prove that extinction
holds when d < αγ/β . Then we proceed with the most interesting case: the most mobile particle
type corresponds to a finite-mean lifetime. In this scenario, it turns out that local extinction of the
population is determined by a complex interaction of the parameters (offspring variability, mobility,
longevity) of the long-living type and those of the most mobile type. Assuming without loss of
generality that type 1 is the long-living type, we prove that the systems suffers local extinction
provided that d < d+, where

d+ =
γ

(β+1)γ
α
− 1
α1

.

The positive number γα1 can be considered as the “effective mobility” parameter of the long-living
type. If γα1 is very close to α (so that γ/α and 1/α1 are approximately the same), then d+ is also
close to α1γ/β and to α/β . Moreover, for fixed α,α1 and γ, the parameter d+ considered as a
function of β , is decreasing, which is consistent with previous known results.

The proofs of our results rely on a precise asymptotic analysis for the occupation times in the branch-
ing particle system. Some of our techniques combine parts of the approaches used in [3] and [15]
adapted to our model, however the adaptation to our case is far from being straightforward. In
Section 2 we provide a family tree analysis which allows us to compare the occupation times of the
particle system with the occupation times of an auxiliary Markov renewal process.

Then, in Section 3, we carry out the asymptotic analysis mentioned above by investigating the
occupation times of all types in the auxiliary renewal process, as well as the asymptotic number
of renewals in large time-intervals. This is the mathematical core of the paper, and we think it is
interesting on its own right. To achieve this, we need to control the tail decay of the renewal times
of all types simultaneously, which we were able to do assuming that there is only one long-living
particle type. Therefore, in its present form our approach is not yet applicable to treat a general
model with arbitrary lifetime distributions.

Finally, in Section 4 we give the extinction results in our various different setups. Let us remark that,
when the particle lifetimes have finite mean and the spatial dimension is small, local extinction of
the population can be proved without the occupation times analysis; in this case a simple estimation
yields the result, see the proof of Theorem 1. In contrast, the occupation time analysis is needed to
treat the case of long-living particle types.
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2 Family tree analysis

Following [3] (p. 553–558) we introduce the following auxiliary process. Consider a Markov re-
newal process with values in K, where in type i the process spends time according to a non-lattice
distribution Γi (whose distribution function we denote again by Γi), such that Γi(0) = 0, and then
jumps to type j with probability mi, j . We write µi =

∫∞
0

x Γi(dx) for the mean of the ith lifetime,
which can be infinite. Let t j(t) be the time that the process spends at state j up to time t. Put
r i, j(t, a) = Pi

¦

t̄ j(t)≥ a
©

, i, j ∈ K, where Pi stands for the probability when the process starts in
type i. We aim at finding an upper bound for the probabilities r i, j .

First we show the connection between the Markov renewal process and the multitype branching
system. We introduce the genealogical tree T of an individual, which comprises information on
the individual’s offspring genealogy, such as family relationships, mutations, death and birth times
of individuals. For t > 0, let Tt denote the genealogical tree restricted to the time interval [0, t].
Finally, T r

t stands for the reduced tree obtained from Tt by deleting the ancestry lines of those
particles, which die before t. We write Pi for the law of T , if the process started from an ancestor of
type i with age 0. From the context it will be always clear when Pi refers to the branching particle
system, or to the Markov renewal process.

For any given t > 0 and ancestry line w ∈ Tt , let t j(w) ≥ 0 be the total time up to t that w spends
in type j ∈ K. Introduce the variable

µ j(t) = min
w∈T r

t

t j(w), (2.1)

which is the minimal time spent in type j among those particles that are alive at time t, with the
usual convention that min;=∞. We also define the maximum spent time in type j up to time t:

σ j(t) =max
w∈Tt

t j(w).

(Notice that, in this case, the population procreated by the ancestor is not necessarily alive at time
t). Let

νi, j(t, a) = Pi{µ j(t)≤ a}

denote the probability that starting from i, there is a particle at time t, who spent less than a time
in j. Note that for t < a <∞,

νi, j(t, a) = Pi{µ j(t)≤ a}= Pi
�

the process is not extinct at t
	

→ 0,

as t →∞, and for arbitrary a <∞,

νi, j(t, a) = Pi{µ j(t)≤ a} ≤ Pi
�

the process is not extinct at t
	

→ 0,

as t →∞. Then by a renewal argument we obtain, for a < t, that

νi,i(t, a) =

∫ a

0

Γi(ds)
�

1− fi(1− ν·,i(t − s, a− s))
�

(2.2)

νi, j(t, a) = 1−Γi(t) +

∫ t

0

Γi(ds)
�

1− fi(1− ν·, j(t − s, a))
�

.
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Since 1− fi(1− z) ≤
∑K

k=1 mi,kzk, z = (z1, . . . , zK), we can compare the solution of (2.2) with the
solution of the linear version

αi,i(t, a) =

∫ a

0

Γi(ds)
K
∑

k=1

mi,kαk,i(t − s, a− s) (2.3)

αi, j(t, a) = 1−Γi(t) +

∫ t

0

Γi(ds)
K
∑

k=1

mi,kαk, j(t − s, a).

Notice that renewal argument implies again that αi, j(t) = Pi{t j(t) ≤ a} is the solution of the

equation system (2.3). Let α(0)i, j (t, a) = νi, j(t, a), and let α(n) = (α(n)i, j )i, j=1,...,K , where

α
(n+1)
i,i (t, a) =

∫ a

0

Γi(ds)
K
∑

k=1

mi,kα
(n)
k,i (t − s, a− s)

α
(n+1)
i, j (t, a) = 1−Γi(t) +

∫ t

0

Γi(ds)
K
∑

k=1

mi,kα
(n)
k, j (t − s, a).

By induction it is clear that νi, j(t, a) ≤ α(n)i, j (t, a) for all n. We show that the iteration converges to
the solution αi, j(t, a), and thus νi, j(t, a)≤ αi, j(t, a). Let us fix a t > 0, and introduce the notation

||x − y||t = sup{|x i, j(s, u)− yi, j(s, u)| : i, j ∈ K; 0≤ u< s ≤ t}.

Then we get that, for all n,

||α(n+1)−α(n)||t ≤max
i∈K

∫ t

0

K
∑

k=1

mi,k||α(n)−α(n−1)||tΓi(ds) =max
i∈K
Γi(t)||α(n)−α(n−1)||t ,

where we used that the mean matrix M satisfies
∑K

k=1 mi,k = 1 for all i. The last estimation implies
convergence to the solution of (2.3); the proof of uniqueness of solutions of (2.3) follows in the
same way. Therefore we showed that νi, j(t, a)≤ αi, j(t, a). Notice that we only have shown that any
solution of the equation system (2.2) is dominated by the unique solution of (2.3), which does not
imply that (2.2) has a unique solution. We have proved:

Lemma 1. For every a ∈ (0, t) we have that

Pi

¦

∃w ∈ T r
t : t j(w)≤ a

©

≤ Pi

¦

t̄ j(t)≤ a
©

,

where the left side is for the branching process, while the right is for the Markov renewal process.

Exactly the same way as in [3] Lemma 10, we can show a similar bound.

Lemma 2. For every a ∈ (0, t) we have that

Pi

¦

∃w ∈ Tt : t j(w)≥ a
©

≤ Pi

¦

t j(t)≥ a
©

,

where the left side is for the branching process, while the right is for the Markov renewal process.
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3 The Markov renewal process

In this section we are going to analyze the auxiliary Markov renewal process. First consider the
discrete Markov chain X1, X2, . . . with transition matrix M , and let p∗ = (p∗1, . . . , p∗K) denote its
stationary distribution. We have the following large deviation theorem for Markov chains ([5],
Lemma 2.13.): For all δ > 0 there exist positive constants C , c, such that

Pi

¨
�

�

�

�

t j(n)

n
− p∗j

�

�

�

�

> δ

«

≤ Ce−cn, i ∈ K, (3.4)

where Pi stands for the probability measure, when the chain starts from position i, and t j(n) is the
number of visits to state j among the first n steps:

t j(n) = #{l : X l = j, l = 1,2, . . . , n}.

Here and below, several different constants arise in the calculations whose precise values are not
relevant for our purposes. Therefore, for the reader’s convenience we chose not to enumerate
these constants. Hence the value of a constant may vary from line to line. In some proofs we use
enumerated constants like k1, k2, . . ., whose values are fixed only in the corresponding proof. Finally,
we use some global constants c1, c2, . . ., whose values are the same in the whole paper.

Let nt denote the number of renewals up to time t. With these notations we may write

t j(t) = ξ
( j)
1 + ξ

( j)
2 + · · ·+ ξ

( j)
t j(nt )

+η j(t) = S( j)t j(nt )
+η j(t), (3.5)

where ξ( j)1 ,ξ( j)2 , . . . are iid random variables with common distribution function Γ j , and

η j(t) =

¨

t − Znt
, if Xnt

= j,
0, otherwise;

that is η j(t) is non-zero only for one term, and stands for the spent lifetime. Here Zn is the sum of
the lifetimes up to the nth renewal, and therefore Zn is the sum of n independent, but not identically
distributed random variables.

3.1 A long living particle type

Let γ ∈ (0, 1]. Assume that

1−Γ1(x)∼ x−γ, as x →∞ and (3.6)

1−Γ j(x)≤ Ax−η j , j = 2,3, . . . , K ,

where A> 0 and η j > 1, j = 2,3, . . . , K . Put η = min{η j : j = 2,3, . . . , K}. We will show that with
high probability the process spends c t times in type 1.

Lemma 3. There exists c1 > 0 such that for every i ∈ K and t > 1

Pi

¨

t1(t)
t
≤ c1

«

≤ C t1−η,

for some C > 0.
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Proof. For simplicity we omit the lower index i. Recall that nt stands for the number of renewals
up to time t. For any k2 > 0 we may write

P

¨

t1(t)
t
≤ c1

«

= P

¨

t1(t)
t
≤ c1, nt > k2 t

«

+ P

¨

t1(t)
t
≤ c1, nt ≤ k2 t

«

.

The first term is easy to estimate. Due to (3.4), with probability ≥ 1− C e−c t we have t1(nt)/nt ≥
p∗1/2, and so on this set

t1(t)
t
≥

S(1)t1(nt )

t1(nt)
t1(nt)

nt

nt

t
≥

S(1)t1(nt )

t1(nt)

k2 p∗1
2

.

Truncation and Cramér’s large deviation theorem shows that for any d ∈ (0,∞) there exist C , c > 0,
such that for n ∈N,

P

(

S(1)n

n
≤ d

)

≤ C e−c n.

Applying this with n ∼ c t, the estimation above shows that the first term ≤ C e−c t (for some other
pair of constants C , c) for any choice of c1, k2.

Now let us investigate the second term. Clearly t1(t) ≤ c1 t implies that t j(t) > k3 t for some j ≥ 2,

with k3 = (1− c1)/K . If nt ≤ k2 t then t j(t)≤ S( j)t j(nt )+1 ≤ S( j)bk2 tc+1 by (3.5), therefore the probability

in question is less then

P







S( j)bk2 tc+1

t
> k3







≤ c t1−η j A,

which proves our lemma. In the last step we used Theorem 2 of Nagaev [10], which says that for
any c > 0 and x ≥ cn,

P
¦

S( j)n − nµ j ≥ x
©

≤ 2nx−η j A (3.7)

for n large enough. In particular, for any δ > 0,

P







S( j)n − nµ j

n
≥ δ







≤ cn1−η j A.

Notice that by using Lemma 6 below we obtain a stronger result. Namely, for any ε > 0

P

¨

t1(t)
t
≤ c1

«

≤ tγ+ε−η,

for t large enough. Combining this with Lemma 1 we obtain

Lemma 4. For any i ∈ K there is a c1 and C > 0 such that

Pi

�

µ1(t)
t
≤ c1

�

≤ C t1−η.
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3.2 Occupation times for j ≥ 2

To analyze the occupation times t j(t) for j = 2, . . . , K , we need a precise asymptotic for the number
of renewals nt .

We start by describing the asymptotic behavior of Sn = ξ1 + · · · + ξn, the sum of n independent
random variables with distribution function Γ, for which 1−Γ(x)∼ x−γ, γ ∈ (0, 1]. In the following,
limits of sequences are meant as n→∞. We use the same convention for the continuous parameter
t.

Lemma 5. Assume that dn→∞ if γ < 1, and log n/dn→ 0 when γ= 1. We have

P{Sn > n1/γdn} ≤ (1+ o(1))d−γn .

Moreover, for γ < 1 there exist constants cγ such that for any sequences cn for which cn → 0 and

nγ
−1−1cn→∞, the following holds

P
¦

Sn ≤ cnn1/γ
©

≤ 2 exp







−
c
− γ

1−γ
n

cγ







.

If there exists a constant L > 0 such that supn nγ
−1−1cn < L, γ ∈ (0,1], then for some c > 0

P
¦

Sn ≤ cnn1/γ
©

≤ e−c n,

for n large enough.

Note that in the case γ = 1 we can choose cn ≡ c > 0 arbitrary large. We will use this remark in the
proof of Lemma 6.

Proof. Let {tn} be a sequence of positive numbers such that n[1− Γ(tn)]→ 0 if γ < 1 (i.e. tn =
n1/γdn for some dn→∞), and n log tn/tn→ 0 when γ = 1 (that is, tn = ndn, where log n/dn→ 0).
Using a theorem of Cline and Hsing ([1], Theorem 3.3) we get that

lim
n→∞

sup
s≥tn

�

�

�

�

P{Sn > s}
n[1−Γ(s)]

− 1

�

�

�

�

= 0.

This follows immediately from [1] if γ < 1, while for γ = 1 one has to check that the sequence
which has to converge to 0, is

n

tn

∫ tn

1

xdΓ(x)∼
n log tn

tn
.

Writing s = tn in the form tn = n1/γdn we obtain the first statement.

Now we turn to the upper estimates for Sn/n
1/γ.

We use a truncation method. For a > 0 let denote

ξ(a) =

¨

ξ, if ξ≤ a,
a, otherwise,
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the truncated variable at a. For the first moment of this variable, as a→∞ we have

µa = Eξ(a) =

∫ a

0

xdΓ(x) + a[1−Γ(a)]∼
¨ 1

1−γa1−γ, for γ 6= 1,

log a, for γ= 1.

For the proof we need Bernstein’s inequality (cf. p. 855 of Shorack and Wellner [11]). Let X1, X2, . . .
be iid random variables with EX1 = 0, and let κ > 0 and v > 0 be constants such that E|X m| ≤
vκm−2m!/2. Then for the partial sum Sn = X1+ · · ·+ Xn the following holds:

P
�

|Sn|> t
	

≤ 2 exp

¨

−
t2

2vn+ 2κt

«

. (3.8)

Easy computations show that in our case (that is if 1−Γ(x)∼ x−γ) for m≥ 2

E[ξ(a)]m ∼
m

m− γ
am−γ, as a→∞.

Since E|ξ(a) − µa|m ≤ E[ξ(a)]m + µm
a , this shows that in Bernstein’s inequality (3.8) we can choose

v = 2 a2−γ and κ= a. Obviously P
¦

Sn ≤ cnn1/γ
©

≤ P
¦

S(a)n ≤ cnn1/γ
©

, and so we may write

P
¦

Sn ≤ cnn1/γ
©

≤ P
¦

S(a)n − nµa ≤ cnn1/γ− nµa

©

≤ P
¦

|S(a)n − nµa| ≥ nµa − cnn1/γ
©

,

where in the last inequality we assumed that nµa > cnn1/γ. Applying Bernstein’s inequality with
v = 2 a2−γ and κ= a we obtain

P
¦

Sn ≤ cnn1/γ
©

≤ 2 exp

¨

−
(nµa − cnn1/γ)2

4a2−γn+ 2a(nµa − cnn1/γ)

«

. (3.9)

Let nµa = 2n1/γcn, that is a ∼
�

2(1− γ)
�

1
1−γ n

1
γ c

1
1−γ
n =: an. By our assumptions, an tends to∞. Then

the numerator in the exponential of (3.9) is n2/γc2
n, while the denominator is

4(
�

2(1− γ)
�

1
1−γ n

1
γ c

1
1−γ
n )2−γn+ 2(

�

2(1− γ)
�

1
1−γ n

1
γ c

1
1−γ
n )cnn1/γ = cγ n2/γc

2−γ
1−γ
n ,

with cγ = (10− 8γ)[2− 2γ]
1

1−γ . In this way we obtain finally that

P
¦

Sn ≤ cnn1/γ
©

≤ 2 exp







−
c
− γ

1−γ
n

cγ







,

which is the desired bound. The last assertion in the lemma follows easily from Cramér’s large
deviation theorem, together with the truncation method.

Next we investigate the asymptotic behavior of the number of renewals nt in our Markov renewal
process, where the lifetime distributions Γ1, . . . ,ΓK are as in (3.6). We show that nt asymptotically
behaves like the number of renewals ñt in a standard renewal process, where the tail of the lifetime
distribution is ∼ x−γ.
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Lemma 6. Let c(·) be a function such that

lim
t→∞

c(t) = 0 if γ < 1, and lim
t→∞

c(t) log t = 0 if γ= 1. (3.10)

Then for all i ∈ K, for t > 0 large enough,

Pi

§nt

tγ
≤ c(t)

ª

≤ 2c(t), 0< γ≤ 1.

If γ < 1 then for any a ∈ (0, 1− γ), for all i ∈ K and all t > 0 large enough,

Pi

§nt

tγ
> ta

ª

≤ 2 exp
n

−c t
a

1−γ
o

.

If γ= 1, then for any a > 0 and i ∈ K there is a constant c > 0 such that for all t > 0 large enough,

Pi

§nt

t
> a
ª

≤ e−c t .

Proof. We drop the lower index i. In order to get an upper bound for nt let us define

Γ̃(x) =
K
∏

i=1

Γi(x) ,

which is the distribution function of the lifetime ξ̃
D
=max{ξ(1), . . . ,ξ(K)}, where ξ(1), . . . ,ξ(K) are

independent and distributed as Γ1, . . . ,ΓK respectively. Consider a standard renewal process ñt , S̃n
with this lifetime distribution. Recall that Zn is the sum of the lifetimes up to the nth renewal. Clearly

P
�

nt ≤ tγc(t)
	

= P
¦

Zbtγc(t)c > t
©

≤ P
¦

S̃btγc(t)c > t
©

.

According to Lemma 15 below, 1− Γ̃(x)∼ x−γ. Therefore using Lemma 5 we can write

P
¦

S̃btγc(t)c > t
©

≤ 2 c(t),

where we have assumed that for γ < 1 the convergence t/[tγc(t)]1/γ →∞ holds, which is equiva-
lent to c(t)→ 0, and that c(t) log t → 0 when γ= 1. This proves the first statement.

To obtain the lower bound we use the simple estimation Zn ≥ S(1)t1(n)
, that is, we simply drop the

lifetimes with finite mean. First consider the case γ < 1. Then we have

¦

Zbtγ+ac ≤ t
©

⊂
n

S(1)t1(btγ+ac) ≤ t
o

⊂
¨

S(1)b(p∗1−ε)tγ+ac ≤ t,
t1(btγ+ac)
btγ+ac

> p∗1−
ε

2

«

∪
¨

t1(btγ+ac)
btγ+ac

≤ p∗1−
ε

2

«

,
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hence using Lemma 5 and (3.4) we have

P
§nt

tγ
> ta

ª

= P
¦

nt > btγ+ac
©

= P
¦

Zbtγ+ac ≤ t
©

≤ P
§

S(1)b(p∗1−ε)tγ+ac ≤ t
ª

+ c e−c tγ+a

= P







S(1)b(p∗1−ε)tγ+ac

b(p∗1− ε)t
γ+ac1/γ

≤
t

b(p∗1− ε)t
γ+ac1/γ







+ c e−c tγ+a

≤ P







S(1)b(p∗1−ε)tγ+ac

b(p∗1− ε)t
γ+ac1/γ

≤ c t−a/γ







+ c e−c tγ+a

≤ 2 exp
n

−c t
a

1−γ
o

+ c e−c tγ+a
.

Taking into account that γ+ a > a/(1− γ), we obtain the statement. Finally, when γ = 1 we use
exactly the same method. Using the event-decomposition as before, the last part of Lemma 5 and
(3.4) we have

P
§nt

t
> a
ª

≤ P
n

S1
ba(p∗1−ε)tc

≤ t
o

+ c e−c t ≤ c e−c t ,

thus proving the last assertion of the lemma.

The preceding results allow us to obtain the following estimations for the probabilities of the small-
ness and largeness of t j(t)/tγ.

Lemma 7. Assume that (3.6) holds, and let c(·) be a function satisfying (3.10). Then for all i ∈ K, any
j = 2, 3, . . . , K, every ε > 0 and all t large enough,

Pi

¦

t j(t)≤ tγc(t)
©

≤ c (c(t) + tε−γ), 0< γ≤ 1.

If γ < 1 then for any 0< a < 1− γ,

Pi

¦

t j(t)≥ tγ+a
©

≤ t1−ηγ,

while for γ= 1,
Pi

¦

t j(t)≥ a t
©

≤ c t1−η

for any a > 0.

Proof. As before, for simplicity we omit the lower index i. Clearly, for any ε > 0,

P
¦

t j(t)≤ tγc(t)
©

≤ P
¦

t j(t)≤ tγc(t), nt ≥ tε
©

+ P
�

nt < tε
	

.

Due to (3.4), on the set {nt ≥ tε} we have, for any δ > 0, that t j(nt)/nt ∈ (p∗j − δ, p∗j + δ) with

probability ≥ 1− c e−c tε . Truncation method and Cramér’s large deviation theorem show that

P







S( j)t j(nt )

t j(nt)
<
µ j

2
, nt ≥ tε







≤ c e−c tε .
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Since

t j(t)

tγ
=

S( j)t j(nt )
+η j(t)

t j(nt)

t j(nt)

nt

nt

tγ
(3.11)

we have obtained that

P
¦

t j(t)≤ tγc(t), nt ≥ tε
©

≤ P
�

nt ≤ c tγc(t)
	

+ c e−c tε ≤ c (c(t) + e−c tε),

where in the last step we used Lemma 6. Taking into account that P
�

nt < tε
	

≤ c tε−γ, which
follows again from Lemma 6, the first inequality is proved.

For the second part we use a similar technique. We first deal with the case γ < 1. For any 0< b < 1
we may write

P
¦

t j(t)≥ tγ+a
©

= P
¦

t j(t)≥ tγ+a, nt ≥ t b
©

+ P
¦

t j(t)≥ tγ+a, nt < t b
©

.

If nt < t b, using that S( j)t j(nt )
+ η j(t) ≤ S( j)t j(nt )+1 we get t j(t) ≤ S( j)t j(nt )+1 ≤ S( j)

bt bc+1
. Therefore the tail

probabilities of the right-hand term satisfy the inequality

P
n

S( j)
bt bc+1

≥ tγ+a
o

≤ 21+η j
�

bt bc+ 1
�

t−η j(γ+a)A≤ t1−ηγ (3.12)

for all t large enough, where we used again Nagaev’s result (3.7). Note that we only needed that
γ+ a > b.

For the estimation of the other term we use again the decomposition (3.11). Since nt ≥ t b, by (3.4)
we have t j(nt)/nt ∈ (p∗j /2, 2p∗j ) with probability ≥ 1− c e−c t b

. Due to Lemma 6, for any ε′ < a/2

P
§nt

tγ
≥ tε

′
ª

≤ 2 exp
�

−c t
ε′

1−γ

�

.

Since the orders of these terms are smaller than that of t1−ηγ (given in the statement), we can work
on {t b ≤ nt < tγ+ε

′
} ∩ {t j(nt)/nt ∈ (p∗j /2, 2p∗j )}. On this event, by (3.11)

t j(t)

tγ
≤

S( j)t j(nt )+1

t j(nt)

t j(nt)

nt

nt

tγ
≤

S( j)t j(nt )+1

t j(nt)
2p∗j tε

′
,

and so t j(t)≥ tγ+a implies S( j)t j(nt )+1/t j(nt)≥ ta−ε′/(2p∗j ). Thus for t large enough

P

¨

t j(t)

tγ
> ta,

t j(nt)

nt
∈ (p∗j /2, 2p∗j ), t b ≤ nt ≤ tγ+ε

′

«

≤ P







S( j)t j(nt )+1

t j(nt)
≥ ta−ε′ , t j(nt)≥ t bp∗j /2







≤ 2 t1−η(a+b−ε′),

where the last inequality follows again from (3.7). Choosing b such that a+ b > γ and ε′ < a+ b−γ
we obtain the desired order t1−ηγ. This, together with (3.12) gives the statement.
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The proof in the case γ= 1 follows a similar approach. For any b > 0

P
¦

t j(t)≥ a t
©

≤ P
¦

t j(t)≥ a t, nt ≤ b t
©

+ P
�

nt > b t
	

.

The second summand in the right of the above inequality is exponentially small for any b > 0, and
we have already shown in the proof of Lemma 3 that the first one is less than c t1−η, provided that
b is small enough.

Combining the last result with Lemma 1 and Lemma 2 respectively we obtain

Lemma 8. Assume that (3.6) holds and that c(·) is a function satisfying (3.10). Then for all i ∈ K, all
j = 2, 3, . . . , K, each ε > 0 and all t large enough,

Pi

¦

∃w ∈ T r
t : t j(w)≤ tγc(t)

©

= Pi

¦

µ j(t)≤ tγc(t)
©

≤ c (c(t) + tε−γ).

If γ < 1, then for any 0< a < 1− γ

Pi

¦

∃w ∈ Tt : t j(w)≥ tγ+a
©

= Pi

¦

σ j(t)≥ tγ+a
©

≤ t1−ηγ,

while if γ= 1, then for any a > 0

Pi

¦

∃w ∈ Tt : t j(w)≥ a t
©

= Pi

¦

σ j(t)≥ a t
©

≤ c t1−η.

4 Extinction results

In this final section, we apply the results on occupation times proved earlier in the paper to analyze
extinction properties of our branching particle system. Let Nt denote the particle system at time t,
i.e. Nt is the point measure on Rd × K determined by the positions and types of individuals alive
at time t ≥ 0. We write N i

t for the point measure representing the population of type-i particles at
time t, that is N i

t (A) = Nt(A× {i}) for any A⊂ Rd , hence Nt = N1
t + · · ·+ N K

t . As before the lower
indices in P and E refer to the initial distribution. In particular, Px ,i and Ex ,i refer to a population
having an ancestor δ(x ,i) of type i ∈ K, initially at position x ∈Rd .

Let h :Rd ×K→ [0,∞) be continuous function with compact support. We write 〈µ,h〉=
∫

hdµ for

any measure µ onB(Rd ×K). Without danger of confusion we also write 〈x,y〉=
∑K

i=1 x i yi for the
scalar product of vectors x= (x1, . . . , xK) and y= (y1, . . . , yK). Assume that the initial population N0
is a Poisson process with intensity measure Λ = λ1 `δ{1} + · · ·+λK `δ{K}, where ` is d-dimensional
Lebesgue measure, and λi , i ∈ K, are non-negative constants.

The Laplace transform of our branching process is, for any t ≥ 0, given by

E
�

e−〈Nt ,h〉
�

= exp







−
K
∑

j=1

λ j

∫

Rd

Ex , j

�

1− e−〈Nt ,h〉
�

dx







= exp
¦

−
¬

Λ,1− E·,·e
−〈Nt ,h〉

¶©

.

We put Ui(h, t, x) = Ex ,i

�

1− e−〈Nt ,h〉
�

.
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To prove extinction of {Nt , t ≥ 0} it suffices to show that the Laplace transform of Nt converges to
the Laplace transform of the empty population, and for this it is enough to verify that

〈Λ, U·(h, t, ·)〉 → 0 as t →∞,

which is the same as

U+i (h, t) :=

∫

�

Ex ,i

�

1− e−〈Nt ,h〉
��

dx → 0 as t →∞ for all i ∈ K.

Let B ⊂Rd be a ball, and assume that B×K⊃ supph. Then

1− e−〈Nt ,h〉 ≤ I(Nt(B×K)> 0),

which implies
Ex ,i

�

1− e−〈Nt ,h〉
�

≤ Pi,x
�

Nt(B×K)> 0
	

.

Conversely, if h|B×K ≥ 1, then

1− e−〈Nt ,h〉 ≥ (1− e−1)I(Nt(B×K)> 0),

and so
Ex ,i

�

1− e−〈Nt ,h〉
�

≥ (1− e−1)Pi,x
�

Nt(B×K)> 0
	

.

In this way we get that

Lemma 9. Extinction of {Nt , t ≥ 0} occurs if, and only if for any bounded Borel set B ⊂Rd ,
∫

Rd

Pi,x
�

Nt(B×K)> 0
	

dx → 0 for all i ∈ K, as t →∞.

Put α=min{αi : i = 1, 2, . . . , K}. Recall the following result from [3]:

Lemma 10. (Fleischmann & Vatutin). For each bounded B ⊂Rd

sup
t≥1

∫

Rd\C(t,L)
Ex ,iNt(B×K)dx −→ 0 as L ↑ ∞,

where C(t, L) = {x ∈Rd : |x | ≤ Lt1/α}.

This means that extinction of {Nt , t ≥ 0} occurs if, and only if for any bounded Borel set B ⊂ Rd ,
and for L large enough

∫

C(t,L)
Pi,x
�

Nt(B×K)> 0
	

dx → 0 for all i ∈ K as t →∞. (4.13)
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4.1 Lifetimes with finite means

When the lifetimes have finite mean and the dimension is small, it is not necessary to analyze
the occupation times in order to prove local extinction. As we are going to show, in this case a
simple estimation and the asymptotics of the extinction probabilities of critical multitype branching
processes give the result.

Let F (i) denote the probability generating function of the process starting from a single particle of
type i:

F (i)(t; s1, . . . , sK) = Ei

�

s
N1

t (R
d )

1 · · · sN K
t (R

d )
K

�

, 0≤ s j ≤ 1, j ∈ K. (4.14)

Put Q(i)(t; s1, . . . , sK) = 1− F (i)(t; s1, . . . , sK) and q(i)(t; s) =Q(i)(t; s, . . . , s). Clearly

Pi,x
�

Nt(B×K)> 0
	

≤ Pi
�

the process is not extinct at time t
	

.

Consider the discrete–time multitype Galton–Watson process {Xn}, with the same offspring distribu-
tions as in the branching particle system. Let v and u respectively denote the left and right normed
eigenvectors of the mean matrix M , which are determined by:

vM = v, Mu= u, vu= 1, 1u= 1. (4.15)

Since by assumption M is stochastic, u= K−11. Let fn = ( f 1
n , . . . , f K

n ) denote the generating function
of the nth generation, that is f i

n(x) = Ei

�

xXn
�

and put f1(x) = f(x). It is well-known that fn+1(x) =
f(fn(x)). Let us assume that

x − 〈v,1− f(1− u x)〉 ∼ x1+β L(x) as x → 0, (4.16)

where β ∈ (0,1] and L is slowly varying at 0 in the sense that limx→0 L(λx)/L(x) = 1 for every
λ > 0. In this case, for the survival probabilities it is known that

1− fn(0) = (u+ o(1))n−1/β L1(n) as n→∞,

where L1 is slowly varying at∞ (see Theorem 1 in [12] or Theorem 1 in [13]). Moreover, assume
that

lim
n→∞

n[1−Γi(n)]
〈v,1− fn(0)〉

= 0, i = 1, 2, . . . , K . (4.17)

Then

Q(i)(t; 0) = Pi
�

the process is not extinct at t
	

∼ ui D
1
β t−

1
β L1(t) as t →∞, (4.18)

where D =
∑K

i=1 ui viµi; see Theorem 2 in [13].

Using the estimate above, we obtain the following theorem.

Theorem 1. Assume that (4.16) and (4.17) hold. Then for d < α/β the process {Nt , t ≥ 0} suffers
local extinction.

Proof. Due to (4.18), for any ε > 0

Q(i)(t; 0)≤ c t−
1−ε
β , i ∈ K.
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Plugging this into (4.13) we get
∫

C(t,L)
Pi,x
�

Nt(B×K)> 0
	

dx ≤ c t
d
α
− 1−ε

β .

Since by assumption d < α/β , for some ε > 0 the exponent of t in the above inequality is negative,
which implies that the integral in the left-hand side tends to 0.

Remark 1. When the generating functions fi , i ∈ K, are of the form fi(s, . . . , s) = fi(s) = s+ c (1−
s)1+βi where βi ∈ (0,1], it is easy to verify that (4.16) holds with β = min{βi : i ∈ K}, and that
(4.17) is fulfilled if for some ε > 0

lim
n→∞

n1+ 1
β
+ε[1−Γi(n)] = 0, i = 1, 2, . . . , K .

Remark 2. We remark that we do not need the precise asymptotic decay of the non-extinction
probabilities given in (4.18); it suffices to know an asymptotic order of decay. In order to get this,
instead of assuming in (4.16) that L(·) is slowly varying at 0, it is enough to suppose that L is an S–O
varying function, meaning that there exists an A > 0 such that lim supx→0 L(λx)/L(x) < A for any
λ > 0. S–O varying functions were introduced by Drasin and Seneta [2]. The definition immediately
implies that lim infx→0 L(λx)/L(x) > A−1 for all λ > 0. It was shown in [2] that every S–O varying
function admits a representation as the product of a slowly varying function and a bounded (away
from 0 and∞) function. A careful analysis of the proof of Theorem 1 in [12] shows that, under the
S–O varying assumption on L, we have that for any ε > 0 and for all n large enough,

|1− fn(0)| ≤ n−
1−ε
β .

Since this estimate is precisely what we use in the proofs of our extinction theorems, all these results
(including the infinite mean case) remain true in this more general setup. If (4.17) holds (which
in particular implies that the lifetimes have finite mean), we obtain that for any ε > 0 and for all t
large enough,

Q(i)(t; 0) = Pi
�

the process is not extinct at t
	

≤ t−
1−ε
β .

4.2 A lifetime with infinite mean – Case A

From now on we assume that there is exactly one lifetime distribution with infinite mean; more
precisely we assume (3.6). Moreover, in this subsection we additionally assume that α = min{αi :
i ∈ K}= α1, that is, the long-living particle type is the most mobile as well.

In the following, Pθx ,i denotes the distribution of the population starting with a single individual
δ(x ,i) of age θ ≥ 0.

Lemma 11. For all (x , i) ∈Rd ×K, all bounded Borel B ⊂Rd and all t > 0,

Pθx ,i

�

Nt(B×K)> 0
	

≤ c2

�

t−d/α+ t1−η
�

,

where the constant c2 is independent of θ , x and i.
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Proof. Put A = {µ1(t) ≤ c1 t}, i.e. A is the event that there exists a branch w ∈ T r
t such that

t1(w) ≤ c1 t, so the process spends less than c1 t time in type 1 for some branch w. Clearly, due to
Lemma 4, we may write

P{Nt(B×K)> 0} ≤ P{A}+ P{Nt(B×K)> 0, Ac}
≤ c t1−η+ E

�

Nt(B×K)IAc
�

.

Conditioning on the reduced tree and noting that A is T r
t measurable we have

Eθx ,i

�

Nt(B×K)IAc
�

= Eθx ,i

K
∑

j=1

N j
t (R

d )
∑

l=1

IAc I(W l
j (t) ∈ B)

= Eθx ,iE
θ
x ,i







K
∑

j=1

N j
t (R

d )
∑

l=1

IAc I(W l
j (t) ∈ B)

�

�

�

�

T r
t







= Eθx ,i






IAc

K
∑

j=1

N j
t (R

d )
∑

l=1

Pθx ,i

n

W l
j (t) ∈ B

�

�T r
t

o






,

where, given T r
t ,

W l
j (t)

D
=W (t1,α1) + · · ·+W (tK ,αK). (4.19)

Here t j is the time that a branch of the reduced tree spent in type j, t1+ · · ·+ tK = t, and {W (t,α j),
t ≥ 0} are independent symmetric α j-stable motions starting from 0, j = 1, . . . , K . Since on the
complement of A any branch spent at least c1 t time in type 1, we have

Pθx ,i

n

W l
j (t) ∈ B; Ac

�

�T r
t

o

=

∫

pt−t1
(x , dy)

∫

B−y

pα1
t1
(y, dz)

≤ c t−d/α1
1 = c t−d/α

(where pt−t1
(x , dy) stands for p(α2)

t2
∗ · · · ∗ p(αK )

tK
(x , dy)), and we may continue writing the long

equality as

≤ c t−d/α
K
∑

j=1

EN ( j)t (R
d)≤ c t−d/α.

Summarizing we obtain
Pθx ,i

�

Nt(B×K)> 0
	

≤ c t−d/α+ c t1−η.

Besides Lemma 11, our other key tool is an analogue of Lemma 3 in [15]. Recall the notations after
(4.14). The proof is an easy multidimensional extension of the proof in [15].

Lemma 12. If η− 1> d/α, then for any x ∈Rd , t > 0, i ∈ K and u ∈ (0, t − cα/d2 ),

Px ,i
�

Nt(B×K)> 0
	

≤ q(i)
�

u; 1− c2 (t − u)−d/α
�

,

where the constant c2 is given in Lemma 11.
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Proof. Let |Nr | ≡ (N1
r (R

d), . . . , N K
r (R

d)), r ≥ 0. For any u ∈ (0, t),

Px ,i
�

Nt(B×K)> 0
	

=
∑

k6=(0,...,0)

Px ,i
�

|Nu|= k, Nt(B×K)> 0
	

(4.20)

= Px ,i
�

|Nu| 6= 0
	

−
∑

k6=(0,...,0)

Px ,i
�

|Nu|= k, Nt(B×K) = 0
	

,

where

Px ,i
�

|Nu|= k, Nt(B×K) = 0
	

= E
�

P
¦

Nt(B×K) = 0
�

�|Nu|= k,Θk, Yk

©

I(|Nu|= k)
�

.

Here Θk is the vector of ages, and Yk the vector of positions of individuals alive at time u. Using
independence and Lemma 11, the conditional probability inside the above expectation gives

P
¦

Nt(B×K) = 0
�

�|Nu|= k,Θk, Yk

©

=
K
∏

j=1

k j
∏

l=1

P
θl, j

yl, j , j

�

Nt−u(B×K) = 0
	

=
K
∏

j=1

k j
∏

l=1

�

1− P
θl, j

yl, j , j

�

Nt−u(B×K)> 0
	

�

≥
�

1− c2 (t − u)−d/α
�|k|

,

where in the last inequality we used that 1− c2 (t − u)−d/α > 0. Therefore we obtain

Px ,i
�

|Nu|= k, Nt(B×K) = 0
	

≥
�

1− c2 (t − u)−d/α
�|k|

Pi
�

|Nu|= k
	

.

Substituting this estimate back into (4.20), we finally get

Px ,i
�

Nt(B×K)> 0
	

≤
∑

k∈Nd\0

�

1−
�

1− c2 (t − u)−d/α
�|k|
�

Pi
�

|Nu|= k
	

= Q(i)(u; 1− c2 (t − u)−d/α, . . . , 1− c2 (t − u)−d/α)

= q(i)(u; 1− c2 (t − u)−d/α).

Let us define the set
Λ = {s ∈ [0,1]K : f(s)≥ s}, (4.21)

where an inequality of the form (x1, . . . , xK) ≥ (y1, . . . , yK) means here that x i ≥ yi for i =
1,2, . . . , K .

We remark that, since 1− f(1−ux)≤ Mux = ux , we have 1−ux ∈ Λ for all x with 0< ux ≤ 1. In
our case u= K−11, and this implies that the diagonal {(s, . . . , s) : s ∈ [0, 1]} is contained in Λ.

For given matrix families A(t) = (ai j(t))i, j and B(t) = (bi j(t))i, j , t ≥ 0, let us define the matrix
convolution C = A∗ B by

ci j(t) =
K
∑

k=1

∫ t

0

aik(t − s)bk j(ds).
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The convolution of a matrix and a vector is defined analogously. Put M1
Γ(t) = (mi jΓi(t))i, j and

recursively define
M n+1
Γ (t) = M1

Γ(t) ∗M n
Γ(t), n= 1,2, . . . .

Put also M0
Γ(t) = (δi jΓ0

i (t))i, j , where Γ0
i (t) is the distribution function of a constant 0 random

variable. Notice that M0
Γ(t) constitutes the unit element in matrix convolution. The following

multidimensional comparison lemma is borrowed from [13], which is a generalisation of Goldstein’s
comparison lemma [5].

Lemma 13. For any t > 0, any natural n and for all s ∈ Λ,

1− fn(s)−M n
Γ ∗ [(1− s)⊗Γ](t) ≤ 1− F(t; s)

≤ 1− fn(s) +
n−1
∑

j=0

M j
Γ ∗ [(1− s)⊗ [1−Γ]](t).

Here x⊗ y := (x1 y1, x2 y2, . . . , xK yK) if x= (x1, . . . , xK) and y= (y1, . . . , yK).

We are going to use below the upper bound given in Lemma 13. The following lemma is Lemma 5
in [14].

Lemma 14. Consider two critical multitype branching processes sharing the same branching
mechanism, with corresponding lifetime distributions Γ(t) = (Γ1(t), . . . ,ΓK(t)) and Γ∗(t) =
(Γ∗1(t), . . . ,Γ∗K(t)). Assume that Γ(t)≥ Γ∗(t) for all t ≥ 0. Then for all t ≥ 0 and s ∈ Λ,

F(t; s)≤ F∗(t; s),

where F and F∗ are, respectively, the vector generating functions of the number of particles at time t in
the first and second process.

The main result in this section is the following theorem.

Theorem 2. Assume that (4.16) holds, the mean matrix M is stochastic, and the lifetimes satisfy
1−Γ1(t)∼ t−γ for some constant γ≤ 1, and

1−Γ j(x)≤ A x−η j , j = 2, 3, . . . , K ,

where η j > 1, j = 2,3, . . . , K. Put η=min{η j : j = 2, 3, . . . , K}. If η− 1> d/α and d < αγ

β
, then the

process suffers local extinction.

Proof. Define the distribution function

Γ̃(t) =
K
∏

i=1

Γi(t),

which is the distribution function of ξ̃ = max{ξ1, . . . ,ξK}, where the random variables ξi , i =
1, . . . , K , are independent with distribution function Γi . Lemma 15 below shows that 1− Γ̃(t)∼ t−γ.
Consider a new branching process where the branching mechanism is unchanged, but the lifetimes
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of all types have distribution Γ̃, and let F̃(t; s) denote its generating function at time t. Clearly, the
choice of Γ̃ shows that Lemma 14 is applicable, and so for s ∈ Λ,

F̃(t; s)≤ F(t; s). (4.22)

(Notice that Λ, as defined in (4.21), depends only on the branching mechanism of our process).
Now we apply the comparison lemma for this new process. Since now all the lifetimes have the
same distribution,

M n
Γ̃
(t) = M n Γ̃∗n(t),

where ∗n stands for the n-fold convolution. Moreover, for s= s 1,

M j
Γ̃
∗ [(1− s)(1− Γ̃)](t) = (1− s)(Γ̃∗ j(t)− Γ̃∗( j+1)(t))M j1= (1− s)(Γ̃∗ j(t)− Γ̃∗( j+1)(t))1,

where we used the simple fact that M j is stochastic if M is stochastic. Thus, in the rightmost
inequality of Lemma 13 we get a telescopic sum, and therefore we obtain

1− F̃(t;1s) = Q̃(t;1s)≤ 1− fn(1s) + (1− s)[1− Γ̃∗n(t)]1.

According to (4.16), for the survival probabilities we have

1− f (i)n (1s)≤ 1− f (i)n (0)≤ c n−
1
β .

Taking into account (4.22) we have, for s ∈ (0, 1),

Q(i)(t;1s) = 1− F (i)(t;1s)≤ c n−
1
β + (1− s)P

�

Sn > t
	

.

Choosing n= tγ/(1+ε) and using that, by Lemma 5,

P
�

Sn > t
	

= P
§

Sn > n
1+ε
γ

ª

≤ 2 n−ε = 2 t−γε/(1+ε),

we get

q(i)(t; 1− s) =Q(i)(t; (1− s)1)≤ c t−
γ

(1+ε)β + s t−γε/(1+ε).

Hence, choosing u= t/2 in Lemma 12 we obtain the inequality

q(i)(u; 1− c2 (t − u)−d/α)≤ c t−
γ

(1+ε)β + c t−
d
α t−

γε

1+ε . (4.23)

Multiplying by td/α, the second term in the right of (4.23) goes to 0, while in the first one the
exponent of t becomes

d

α
−

γ

(1+ ε)β
,

and this is negative if d < αγ/β and ε is small enough.

The simple lemma we used above is the following:

Lemma 15. Let X , Y be independent non-negative random variables with corresponding distribution
functions F and G. Assume that 1 − F(x) ∼ x−γ and EY < ∞. Then for the distribution of Z =
max{X , Y } we have

1−H(z) := P {Z > z} ∼ z−γ,

as z→∞.
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Proof. Since EY <∞, we have y(1− G(y))→ 0. Hence,

zγ[1−H(z)] = zγ [1− P {max{X , Y } ≤ z}]
= zγ [1− F(z)G(z)] = zγ [1− F(z) + F(z)(1− G(z))]

= zγ [1− F(z)] + zγF(z) [1− G(z)]→ 1.

4.3 A lifetime with infinite mean – Case B

Now let us investigate the case when α1 is not the minimal α = min{αi : i = 1, 2, . . . , K}. Without
loss of generality, let us assume that α= α2.

Notice that Lemma 11 is true in this case with exponent −d/α1, and so the variation of Lemma 12
also remains true. We state it for the easier reference.

Lemma 16. If η− 1> d/α1, then for any x ∈Rd , t > 0, i ∈ K and u ∈ (0, t − cα1/d
2 ),

Px ,i
�

Nt(B×K)> 0
	

≤ q(i)
�

u; 1− c2 (t − u)−d/α1
�

,

where the constant c2 is given in Lemma 11.

Put

v =max
�

1

α1
,
γ

α

�

. (4.24)

Lemma 17. Assume that γη > d/α+ 1. If γ < 1, then for any ε > 0, for any i ∈ {1, 2, . . . , K} and for
any bounded Borel set B,

lim
t→∞

∫

|x |≥t v+ε
Px ,i
�

Nt(B×K)> 0
	

dx = 0.

For γ= 1 (then necessarily v = 1/α),

lim
L→∞

limsup
t→∞

∫

|x |≥Lt v

Px ,i
�

Nt(B×K)> 0
	

dx = 0.

Proof. Without loss of generality, we will assume that B is a ball with radius r centered at the
origin. First, consider the case γ < 1. Put C(t) = {|x | ≤ t v+ε} and let ε′ < αε. Recall the definition
of σ j(t) after (2.1) and put

A= {σ2(t)≤ tγ+ε
′
,σ3(t)≤ tγ+ε

′
, . . . ,σK(t)≤ tγ+ε

′
},

namely A is the set where, for all ancestry lines, the spent time in type j up to t is less than tγ+ε
′
for

all j = 2,3, . . . , K .

First we work on the set Ac . By Lemma 8,

P{Ac} ≤
K
∑

j=2

P
¦

σ j(t)> tγ+ε
′©

≤ K t1−ηγ.
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According to Lemma 10,

sup
t≥1

∫

|x |≥L t1/α

Ex ,i
�

I(Ac)Nt(B×K)
�

dx → 0 as L→∞,

hence, it suffices to integrate on the region t v+ε ≤ |x | ≤ Lt1/α. On the other hand

Px ,i
�

Ac , Nt(B×K)> 0
	

≤ P{Ac},

and so
∫

Lt1/α≥|x |≥t v+ε
Px ,i
�

Ac , Nt(B×K)> 0
	

dx ≤ c td/α t1−ηγ→ 0

due to our assumption.

From now on we work on A. Translation invariance of the motion shows that
∫

Rd\C(t)
Ex ,i I(A)Nt(B×K)dx =

∫

Rd\C(t)
E0,i I(A)Nt((B− x)×K)dx .

By conditioning on the reduced tree, we can write

E0,i I(A)Nt((B− x)×K) = E0,i I(Nt 6= 0)I(A)
K
∑

j=1

N j
t (R

d )
∑

m=1

P0,i

n

W m
j (t) ∈ B− x |T r

t

o

,

where W m
j (t)

D
=W (t1,α1) + · · ·+W (tK ,αK) as in (4.19). Integrating we obtain
∫

Rd\C(t)
E0,i I(A)Nt((B− x)×K)dx

= E0,i I(Nt 6= 0)I(A)
K
∑

j=1

N j
t (R

d )
∑

m=1

∫

Rd\C(t)
dx

∫

B−x

P0,i

n

W m
j (t) ∈ dy|T r

t

o

.

Since |x + y| ≤ r and |x | ≥ t v+ε, we have |y| > t v+ε − r ≥ t v+ε/2 for all t large enough. Using Fu-
bini’s theorem and that

∫

|x+y|≤r
dx =: c(r) independently of y , the double integral can be bounded

from above by

c(r)P0,i

¨

|W m
j (t)| ≥

t v+ε

2

�

�

�T r
t

«

.

On the event A we can write

P0,i

¨

|W m
j (t)| ≥

t v+ε

2

�

�

�T r
t

«

≤
K
∑

k=1

P

¨

|W (tk,αk)| ≥
t v+ε

2K

�

�

�T r
t

«

≤
K
∑

k=1

P







|W (tk,αk)| ≥
tδ t1/αk

k

2K

�

�

�T r
t







=
K
∑

k=1

P

¨

|W (1,αk)| ≥
tδ

2K

«

,
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where we used that t v+ε ≥ tδ t1/α1
1 for some small enough δ > 0, and that, by the definition of A

and ε′, the inequalities t v+ε ≥ tδ t1/α
j ≥ tδ t

1/α j

j hold, while in the last step the self-similarity of the
stable process was used. The last upper bound above goes to 0 as t →∞, and

sup
t>0

Ei

K
∑

j=1

N j
t (R

d)<∞

due to criticality of the branching. This finishes the proof of the lemma under the assumption that
γ < 1. The proof for the case γ= 1 is a straightforward adaptation of the previous one.

The value α1γ can be considered as the effective mobility of the type-1 particles. At an intuitive level
if α1γ > α, then second particle type is more mobile, even considering the long-living effect of the
first one, so that in this case the “dominant” mobility is associated to the second particle type. The
next two theorems deal with the cases when the first type is the dominant and when the second
one, respectively.

Theorem 3. Assume that (4.16) holds and that γη > d/α+1. If α≥ α1γ, i.e. the mobility of the first
particle type is dominant, then the process suffers local extinction for d < α1γ/β .

Proof. Writing u = t/2 in Lemma 12, and proceeding in the same way as we did to obtain (4.23)
in the proof of Theorem 2, we get

q(i)(t/2; 1− c t−d/α1)≤ c t−d/α1 t−γε/(1+ε)+ c t−γ/(1+ε)β .

Since in this case v = 1/α1, from Lemma 17 we get extinction provided that

d

α1
<

γ

(1+ ε)β
,

which holds for ε small enough if d < α1γ/β .

Theorem 4. Assume that γη > d/α+ 1. If α1γ > α, i.e. the mobility of the second particle type is the
dominant one, then the process suffers local extinction for d < d+, where

d+ =
γ

(β+1)γ
α
− 1
α1

. (4.25)

Proof. From the comparison lemma (Lemma 13) we have

Q(i)(t;1s)≤ c n−
1
β + (1− s)P

�

Sn ≥ t
	

.

We have to choose t = n
1+ε
γ for some ε > 0, and then minimize the estimations in ε. In this case

q(i)(t; 1− s)≤ c t−
γ

(1+ε)β + s t−
εγ

1+ε .

Putting u= t/2 in Lemma 16 renders

q(i)(t/2;1− c2 t−d/α1)≤ c t−
γ

(1+ε)β + c t−d/α1−
εγ

1+ε .
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Therefore we have to maximize

min
�

γ

(1+ ε)β
,

d

α1
+
εγ

1+ ε

�

with respect to ε. Since the term γ/((1+ ε)β) is monotone decreasing, and the term d/α1 +
εγ/(1+ ε) is increasing in ε, easy computations show that the optimal choice is

ε =
γ(1+ β−1)
d/α1+ γ

− 1,

and the estimation is

q(i)(t/2; 1− c2 t−d/α1)≤ c t−
d/α1+γ

1+β .

Combining this with Lemma 17, and taking into account that v = γ/α, we get extinction if

d
γ

α
<

d/α1+ γ
1+ β

.

Solving the inequality, gives that extinction holds for d < d+, with the anticipated dimension d+.

Remark Notice that if γ/α − 1/α1 → 0, that is, if the effective mobilities of types 1 and 2 are
approximately the same, then d+→ α1γ/β , which is the critical dimension in Theorem 3. Moreover,
for fixed α,α1 and γ, the critical dimension d+ considered as a function of β , is decreasing, which
is consistent with the known results.
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