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1 Introduction

In this paper, we develop a version of the saddle point method, which allows one to describe ex-
actly the asymptotic behavior of distribution densities of Lévy processes and, more generally, Lévy
driven stochastic integrals with deterministic kernels. We start the exposition with the outline of the
principal idea of the approach.

Let (Zt)t≥0 be a real-valued Lévy process with characteristic exponent ψ; that is,

EeizZt = etψ(z), t > 0. (1.1)

The function ψ : R → C (the characteristic exponent of the process Z) admits the Lévy-Khinchin
representation

ψ(z) = iaz− bz2+

∫

R

�

eiuz − 1− izu1{|u|≤1}
�

µ(du), (1.2)

where a ∈ R, b ≥ 0, and µ(·) is a Lévy measure, i.e.
∫

R
(1 ∧ u2)µ(du) < ∞. Under some con-

ditions (see Section 2 below), the function etψ is integrable, and hence the transition probability
density pt(x) of the process Zt has the integral representation as the inverse Fourier transform of
the characteristic function (1.1):

pt(x) =
1

2π

∫

R

e−izx+tψ(z) dz. (1.3)

Our intent is to investigate the oscillatory integral (1.3) using the saddle point method. According
to this method (see [27]), one can, under the assumption that the characteristic exponent ψ ad-
mits an analytic extension to the complex plane, apply the Cauchy theorem in order to change the
integration path in (1.3):

pt(x) =
1

2π

∫

C

e−izx+tψ(z) dz. (1.4)

Here C is certain properly chosen contour that allows one to apply the Laplace method ([27], [29],
[30]) for estimating integral (1.4). A perfect choice of the contour C would be the proper branch
of the curve {z : Im(−izx + tψ(z)) = Im(−iz0 x + tψ(z0))}, where z0 is a critical point of the
function −izx + tψ(z) (a saddle point). Under such a choice the integrand in (1.4) is real-valued;
in this case the saddle point method coincides with the fastest descent method, see [27]. However
the complicated “oscillatory” structure of the Lévy-Khinchin representation of ψ does not give an
opportunity to solve the equation Im(−izx + tψ(z)) = Im(−iz0 x + tψ(z0)) explicitly. Instead, we
put in (1.4) C = R+ iξ0 with iξ0 being a critical point of the function −izx + tψ(z). Under such
a choice, we develop an appropriate version of the Laplace method and give exact asymptotics for
the transition probability density pt(x).

The saddle point method is a classic tool for estimating a distribution density in various versions
of the local limit theorem with the normal domain of attraction (see [33], chapters 8, 10, and
the references therein). In the Lévy processes setting, the idea of applying the complex analysis
technique was used, for instance, in [40] for getting upper estimates for (1.3) in the case when the
characteristic exponent is real valued.

Since we require the characteristic exponentψ to have an analytic extension to the complex plane, a
standing assumption on the Lévy measure within our approach is that it is exponentially integrable;
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that is,
∫

|y|≥1

eC yµ(d y)<∞ for all C ∈R. (1.5)

Equivalently, (1.5) means that the variable Z1 has exponential moments, i.e. EecZ1 < ∞ for all
c ∈ R, see [53], §25 − 26. Assumption (1.5) is non-restrictive, and is satisfied, for instance, for
a generalized tempered Lévy measure of the form µ(du) = ψ(u)µ̃(du), where µ̃ is another Lévy
measure, and ψ has a super-exponential decay, i.e., eCuψ(u)→ 0, u→∞, for all C ∈R. For various
results on generalized tempered Lévy processes and models that lead to processes of such a type,
we refer the reader to Rosinski and Singlair [51], Sztonyk [56], [57], Bianchi et. al. [8], [37]. The
notion of a generalized tempered Lévy measure is closely related to the notions of a tempered and a
layered Levy measure, with the function ψ(u) in the above definition respectively being completely
monotonous or having a polynomial decay rate (for both these classes (1.5) fails). For the results
on tempered and layered Lévy processes and related models, see Rosinski [50], Cohen and Rosinski
[25], Cont and Tankov [26], Carr et. al. [13], [14], Baeumer and Meerschaert [1], Kim et. al. [36],
Houdré and Kawai [32]. Of course, this list of references is far from complete.

The method described above can be extended naturally for Lévy driven stochastic integrals with
deterministic kernels. Let

Yt :=

∫

I

f (t, s)dZs, (1.6)

where I ⊂ R is an interval, f is a deterministic function, and Zt is a Lévy process (in some par-
ticularly important cases, one should take I = R, and then Z should be assumed to be two-sided;
see details in Section 2 below). The characteristic exponent of Yt can be written explicitly (see
(2.4) below), which makes it possible to apply the method described above to study the asymptotic
behaviour of the distribution density of Yt .

We mention two particular classes of processes, frequently used in applications, and having repre-
sentation (1.6). The Lévy driven Ornstein-Uhlenbeck process is defined as the solution to the linear
SDE

dX t = γX t d t + dZt , t ≥ 0, (1.7)

and has the integral representation

X t = eγt X0+

∫ t

0

eγ(t−s) dZs, t ≥ 0. (1.8)

If the initial value X0 is non-random, the distributional properties of X t are determined by the
second term in the right hand side of (1.8), which clearly has the form (1.6) with I = R+ and
f (t, s) = eγ(t−s)1Is≤t . In what follows, we call such a process a non-stationary version of the Ornstein-
Uhlenbeck process.

The Ornstein-Uhlenbeck process is Markov one. It is ergodic (i.e. possesses unique invariant distri-
bution), if and only if, γ < 0 and

∫

|u|≥1

ln |u|µ(du)<+∞; (1.9)

1396



see [54]. Clearly, our standing assumption (1.5) provides (1.9). Respective stationary version of the
Ornstein-Uhlenbeck process can be represented as

X t =

∫ t

−∞
eγ(t−s) dZs, t ∈R,

which is clearly of the form (1.6) with I =R, f (t, s) = eγ(t−s)1Is≤t . Conditions on the existence and
smoothness of the distribution densities for Lévy driven Ornstein-Uhlenbeck processes were studied
in [45], [9], [48], [55]. In some exceptional stationary cases, the density can be represented
explicitly, see [5]. However, as far as we know, any references concerning general estimates or a
description of the asymptotic behaviour of such a density are not available.

Another example of a process of the type (1.6) is the fractional Lévy motion, defined, analogously to
the fractional Brownian motion, by the stochastic Weyl integral

ZH(t) =
1

Γ(H + 1/2)

∫

R

h

(t − s)H−1/2
+ − (−s)H−1/2

+

i

dZs, t ∈R, (1.10)

where x+ = max(x , 0), and H ∈ (0, 1) is the Hurst index; see [52], [7], [44], [38] and references
therein. In what follows, we will study the asymptotic behaviour of the distribution density of ZH(t)
under the assumption that H > 1/2, which is the so called long memory case, see Definition 1.1 in
[44]. Note that in this case ZH is not a Markov process, in contrast to the Lévy process Z , or the
Lévy driven Ornstein-Uhlenbeck process (1.8).

Heat kernel estimates for symmetric jump processes were studied systematically by Barlow, Bass,
Chen and Kassman [3], Chen, Kim, Kumagai [24], [18], [15], Barlow, Grigoryan, Kumagai [4],
Chen, Kumagai [16], [23], Chen, Kim, Kumagai [17]; see also Bass and Levin [6] for the transition
density estimates for a Markov chain on Zd . The approach used in the papers listed above relies
on the paper by Carlen, Kusuoka and Stroock [12]. For heat kernel estimates in domains we refer
to the papers by Bogdan and Jakubowski [10], Banuelos and Bogdan [2], Bogdan, Grzywny, and
Ryznar [11], Chen, Kim and Song [19] – [22]. Of course, this list of references is far from complete.

In particular, heat kernel estimates for symmetric jump processes on Rd with jump kernel J(x , y),
either bounded both from above and below by 1

|x−y|d+α1|x−y|≤1, 0 < α < 2, d ≥ 1, or decaying

as e−γ|x−y|β , β ∈ [0,∞), as |x − y| → ∞, are studied in [24] and [18], respectively. Under the
particular choice of the jump kernel J(x , y) = J(x − y), the processes studied in [24] and [18]
become symmetric Lévy processes. We postpone to Section 3 (Example 3.4) the detailed comparison
of the asymptotic results for the distribution densities of such processes obtained in [24] and [18],
with the results obtained by our approach. Here we just mention that our approach, based on the
the complex analysis technique, can be applied both for non-symmetric Markov jump processes, like
the Lévy driven Ornstein-Uhlenbeck process, and for non-Markov processes such as the fractional
Lévy motion.

Let us outline the rest of the paper. Our main result on asymptotic behavior of the distribution
densities of Lévy driven stochastic integrals Y , including the Lévy process Z itself, is formulated and
proved in Section 2. To simplify the exposition, we give one-sided asymptotics; that is, we formulate
the main result for the distribution density pt(x) only for x ≥ 0. Clearly, one can easily deduce from
this result the two-sided asymptotics, assuming additionally that the Lévy measure of the process
(−Z) satisfies conditions of Theorem 2.1.
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Conditions of the main result, Theorem 2.1, are quite abstract, and require an additional analysis
in order to provide a verifiable criteria. For the reader’s convenience and to clarify the exposition,
we separate such an analysis in two parts. In Section 3 we consider an “individual” asymptotic
behavior of the distribution density of Yt with fixed t. We formulate an “individual” version of
Theorem 2.1 with verifiable conditions on the Lévy measure µ and the kernel f . These conditions,
in particular, reveal the “smoothifying” effect provided by the kernel f : typically, both to provide
existence of the distribution density of the Lévy driven stochastic integral Yt and to describe its
asymptotic behavior, fewer restrictions on the Lévy measure are required than in the case of the
Lévy process Zt itself. An illustrative example of such an effect is provided by the fractional Lévy
motion, where the assumptions on the Lévy measure are finally reduced to

µ(R+)> 0. (1.11)

In Section 4 we establish the asymptotic behavior of the distribution density of Yt , involving both
state space variable x and time variable t. To shorten the exposition, we restrict ourselves to the case
of a self-similar kernel f . The class of the Lévy driven stochastic integrals with self-similar kernels,
although not being the most general possible, is wide enough to cover the important particular cases
of the Lévy process Z itself and the fractional Lévy motion ZH . As a corollary of the main result of
Section 4 (Theorem 4.1), we obtain asymptotic relation

pt(x)∼
1

Æ

2πtKZ

�

x
t

�

etDZ

�

x
t

�

, t + x →∞, (t, x) ∈ [t0,+∞)×R+, (1.12)

for the distribution density of the Lévy process Z , and

pt(x)∼
1

q

2πt2HKZH

�

x
tH+1/2

�

etDZH

�

x
tH+1/2

�

, t + x →∞, (t, x) ∈ [t0,+∞)×R+, (1.13)

for the distribution density of the fractional Lévy motion ZH . Here t0 > 0 is arbitrary, DY , KY with
Y = Z , ZH are some functions, defined in terms of the Lévy measure µ and the kernel f ; see Section
4 below. Observe that the asymptotic formulae for distribution densities of Z and ZH possess the
self-similarity property in spite of the fact that, in general, the families of these densities are not
self-similar.

Formally, ZH includes Z as a partial case with H = 1/2, and (1.13) with H = 1/2 transforms to
(1.12). However, there is a substantial difference between the conditions under which these asymp-
totic results are available (see Corollary 4.1). To get (1.12), one should impose some “regularity”
conditions (N1) and (C) together with some “tail” conditions (T1) and (T2). To get (1.13) with
H ∈ (1/2, 1), it is sufficient to claim only “tail” conditions and non-degeneracy condition (1.11):
there is no need for additional “regularity” conditions. Such a difference is caused by the “smooth-
ifying” effect provided by the kernel in the integral (1.10).

Theorem 2.1 and Theorem 4.1 describe the asymptotic behaviour of the distribution density pre-
cisely, but in an implicit form. In Section 5 we use these theorems in order to deduce explicit,
although less precise, asymptotic expressions. In the same section we give another application of
Theorem 2.1, and study the asymptotic behavior (as x →∞ for a fixed a) of the ratio

ra(x) =
p(x + a)

p(x)
(1.14)
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for the invariant distribution density p of the Ornstein-Uhlenbeck process. Such a study is of par-
ticular theoretical interest, since the ratio (1.14) appears in the formula for the generator of the
dual (i.e., time-reversed) process corresponding to the solution to SDE (1.7). Therefore, knowledge
of the asymptotic properties of (1.14) would be useful when one is interested in studying the sta-
tionary version of the solution, respective Dirichlet form etc. For instance, in the forthcoming paper
[42] the estimate given in Theorem 5.2 below is used substantially in the proof of the spectral gap
property for the Lévy driven Ornstein-Uhlenbeck process.

Formula (1.12) and Theorem 5.1 provide a detailed description of the asymptotic behavior of the
distribution densities of the Lévy process and the fractional Lévy motion. This behavior exhibits two
different regimes. In the first regime, where the ratio x

t
(resp., x

tH+1/2 ) stays bounded, the principal
behavior of pt(x) is determined by the values of the functions DY , KY (with Y = Z or ZH) on a
bounded domain. For instance, for any c≥ 0

pt(tc)∼
1

p

2πtKZ (c)
etDZ (c), t →+∞, (1.15)

(for the Lévy process Z) and

pt(t
H+1/2c)∼

1
p

2πt2HKZH (c)
etDZH (c), t →+∞, (1.16)

(for the fractional Lévy motion ZH). In the second regime, where the ratio x
t

(resp., x
tH+1/2 ) tends to

+∞, the principal behavior of pt(x) is determined by the asymptotics of DY ,KY (with Y = Z or ZH)
on +∞. Such asymptotics are described in Theorem 4.1 for two cases: for the Lévy measure µ being
either “truncated” (i.e. supported in a bounded set) or “exponentially damped” (i.e. its tail satisfies
certain exponential estimate, see (3.23)). This description gives some constant c∗, determined in
terms of the Lévy measure µ only (see (5.15) and (5.16)), such that the statements below hold true
(see Corollary 5.1 and Corollary 5.2 below).

I. Case of the Lévy process Z. For any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2) such
that for x/t > y , either

exp
�

−c1 x ln
� x

t

��

≤ pt(x)≤ exp
�

−c2 x ln
� x

t

��

, (1.17)

(if µ is truncated), or

exp
�

−c1 x ln
β−1
β

� x

t

��

≤ pt(x)≤ exp
�

−c2 x ln
β−1
β

� x

t

��

, (1.18)

(if µ is is exponentially damped).

II. Case of the fractional Lévy motion ZH . For any constants c1 > c∗ and c2 < c∗ there exists y =
y(c1, c2) such that for x/tH+1/2 > y , either

exp

�

−
c1 x

Γ(H + 1/2)tH−1/2
ln
�

x

tH+1/2

�

�

≤ pt(x)≤ exp

�

−
c2 x

Γ(H + 1/2)tH−1/2
ln
�

x

tH+1/2

�

�

,

(1.19)
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(if µ is truncated), or

exp

�

−
c1 x

Γ(H + 1/2)tH−1/2
ln

β−1
β

�

x

tH+1/2

�

�

≤ pt(x)≤ exp

�

−
c2 x

Γ(H + 1/2)tH−1/2
ln

β−1
β

�

x

tH+1/2

�

�

(1.20)
(if µ is exponentially damped).

In this paper we restrict ourselves to the case of one-dimensional processes in order to make the ex-
position reasonably short, and to give the main results in their most transparent form. These results
have straightforward generalizations to the multi-dimensional case; we postpone the discussion of
these generalizations to a further publication. We also restrict our considerations of the Lévy process
Z and the fractional Lévy motion ZH to the case where the time variable t is separated from 0. The
small time estimates require additional analysis of the local behavior of the Lévy measure of the
noise; this analysis is performed in the separate article [39].

2 The main result

2.1 Preliminaries

Everywhere below Z is a Lévy process and ψ is its characteristic exponent; that is, (1.1) and (1.2)
hold.

To exclude from consideration the trivial cases, we assume that b = 0 and µ(R) > 0; that is, Z
does not contain a diffusion part, and contains a non-trivial jump part. Moreover, we assume that µ
satisfies (1.11), which is motivated by our intent to analyze the distribution density on the positive
half-line. Finally, we assume Z to be centered, which means that the characteristic exponent is of
the form

ψ(z) =

∫

R

�

eiuz − 1− izu
�

µ(du), z ∈R. (2.1)

This assumption does not restrict the generality: under (1.5), the increments of Z have moments of
all orders, therefore the difference between the processes with characteristic exponents (1.2) and
(2.1) is given by the explicitly calculable constant, which clearly does not effect the distributional
properties.

We consider Lévy driven stochastic integrals of the form

Yt =

∫

I

f (t, s)dZs, t ∈T, (2.2)

where T ⊂ R is some set, and I ⊂ R is an interval. We allow the case where the interval I belongs
not only to the half-line, but to whole R. In this case, the process given by (2.2) is assumed to be
well defined on the whole line R, and to have independent and stationary distributed increments,
with the characteristic exponent of the increments still being of the form (2.1). A standard version
of such a process is the so called two-sided Lévy process

Zt =

(

Z1
t , t ≥ 0

−Z2
−t−, t < 0

,
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where Z1 and Z2 are two independent copies of a Lévy process, defined on R+.

We interpret (2.2) as an integral with respect to an infinitely divisible random measure; for the
general theory of such integrals we refer to [49]. Under (1.5), the integral (2.2) is well defined if,
and only if,

∫

I

f 2(t, s) ds <+∞, t ∈T, (2.3)

and in that case its characteristic function admits the representation

EeizYt = exp

�
∫

I

∫

R

�

eiz f (t,s)u− 1− iz f (t, s)u
�

µ(du)ds

�

, z ∈R, t ∈T, (2.4)

see Theorem 2.7 from [49]. In what follows we assume that f satisfies (2.3), and f (t, ·) is bounded
for every t ∈ T. To exclude the trivial case Yt = 0 a.s., we assume

∫

I
f 2(t, s) ds > 0, t ∈ T. We also

assume
∫

I

( f (t, s)∨ 0)2 ds > 0, t ∈T. (2.5)

This does not restrict generality since otherwise one can consider −Yt instead of Yt .

For a Borel set A⊂R, denote

Θ(t, z, A) =

∫∫

{(s,u)∈I×R: f (t,s)u∈A}
(1− cos( f (t, s)zu))µ(du)ds, t ∈R+, z ∈R.

The functions Θ(·, ·, A), with properly chosen sets A, will be used below as a tool for studying the
properties of distribution densities of Lévy driven stochastic integrals Y . One statement of such a
type is formulated in the proposition below, which is in fact the classic Hartman-Wintner sufficient
condition ([31]), reformulated in the context of Lévy driven stochastic integrals.

As usual, we denote by Ck
b (R) the class of function, continuous and bounded together with their

derivatives up to order k.

Proposition 2.1. For given t ∈T, k ∈Z+, and |z| large enough, let

Θ(t, z,R)≥ (k+ 1+δ) ln |z| (2.6)

with some δ > 0.

Then Yt has a distribution density pt , which belongs to the class Ck
b (R).

In particular, if for a given t ∈T

Θ(t, z,R)� ln |z| as |z| →∞, (2.7)

then Yt has a distribution density pt ∈ C∞b .

Proof. By (2.4), condition (2.6) implies

|EeizYt | ≤ |z|−k−1−δ for |z| large enough. (2.8)

Hence the required statement follows by the inversion formula for the Fourier transform.

As usual, we write f (ξ) ∼ g(ξ), ξ → ∞, or f (ξ) = o(g(ξ)), ξ → ∞, if limξ→∞
f (ξ)
g(ξ) = 1 or

limξ→∞
f (ξ)
g(ξ) = 0, respectively. We also use the notation f (ξ) � g(ξ), ξ → ∞, instead of f (ξ) =

o(g(ξ)), ξ→∞, when it is more convenient. The same conventions are used when functions f and
g depend on t and/or on x .
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2.2 The main result: formulation and discussion

Since f is bounded, the exponential integrability assumption (1.5) implies that for t ∈T the function

Ψ(t, z) =

∫

I

∫

R

�

e−iz f (t,s)u− 1+ iz f (t, s)u
�

µ(du)ds, t ∈T, z ∈ C,

is well defined and analytic with respect to z. Denote

H(t, x , z) = i xz+Ψ(t, z),

and observe that, assuming (2.6), we have

pt(x) =
1

2π

∫

R

eH(t,x ,z) dz, x ∈R, (2.9)

which is just the inversion formula for for the characteristic function of Yt , combined with the change
of variables z 7→ −z.

Denote

Mk(t,ξ) =
∂ k

∂ ξk
Ψ(t, iξ), k ≥ 1, ξ ∈R.

Clearly,

Mk(t,ξ) =

∫

I

∫

R

uk f k(t, s)eξ f (t,s)uµ(du)ds =
∂ k

∂ ξk
H(t, x , iξ), k ≥ 2.

Since µ and f (t, ·) are assumed to be non-degenerate, we haveM2(t,ξ)> 0. Therefore there exists
at most one solution ξ(t, x) to the equation

∂

∂ ξ
H(t, x , iξ) = 0. (2.10)

Clearly, for any t ∈T we have ξ(t, 0) = 0. Note that

M1(t,ξ) =
∂

∂ ξ
Ψ(t, iξ) =

∫

I

∫

R

uf (t, s)
�

eξ f (t,s)u− 1
�

µ(du)ds =

∫

I×R
v(eξv − 1)µt, f (dv),

where µt, f denotes the image of the measure µ(du)ds under the mapping

I ×R 3 (s, u) 7→ f (t, s)u ∈R.

Under the assumptions (1.11) and (2.5), which we assume to hold everywhere below, we have
µt, f (R+)> 0. ThereforeM1(t,ξ)→+∞ as ξ→+∞, which means that ξ(t, x) is well defined and
positive for x > 0, and

ξ(t, x)→+∞, as x →+∞. (2.11)

Note that z = iξ(t, x) is the unique critical point for H(t, x , ·) on the line iR.

We put

D(t, x) = H(t, x , iξ(t, x)), K(t, x) =M2(t,ξ(t, x)) =
∂ 2

∂ ξ2 H(t, x , iξ)
�

�

�

ξ=ξ(t,x)
.
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In the sequel, we fixA ⊂T×R+ and denote

T = {t : ∃x ∈R+, (t, x) ∈A}, B = {(t,ξ) : ∃(t, x) ∈A , (t,ξ) = (t,ξ(t, x))}.

For instance, ifA =T′×R+ with some T′ ⊂T, then T =T′ andB =A .

In the following theorem, which represents the main result of the paper, the function θ : T →
(0,+∞) is assumed to be bounded away from zero on T, and the function χ : T → (0,+∞) is
assumed to be bounded away from zero on every set {t : θ(t) ≤ c}, c > 0. For a particular process
Y , the choice of the “scaling” functions θ and χ is determined by the structure of the kernel f , see
Section 4 below.

Theorem 2.1. Assume that the following conditions hold true:

(H1)M4(t,ξ)�M 2
2 (t,ξ), θ(t) + ξ→∞, (t,ξ) ∈B .

(H2)

ln
�

�

χ−2(t)
M4(t,ξ)
M2(t,ξ)

�

∨ 1
�

+ ln
��

ln
�

(1∨χ−1(t))M2(t,ξ)
�

�

∨ 1
�

� lnθ(t) +χ(t)ξ, θ(t) + ξ→∞, (t,ξ) ∈B .

(H3) There exist R> 0 and δ > 0 such that

Θ(t, z,R+)≥ (1+δ) ln(χ(t)|z|), t ∈ T , |z|> R. (2.12)

(H4) There exists r > 0 such that for every ε > 0,

inf
|z|>ε
Θ(t, z, [rχ(t),+∞))≥ θ(t)

�

(εχ(t))2 ∧ 1
�

.

Then for every t ∈ T the law of Yt has a continuous bounded distribution density pt(x), and

pt(x)∼
1

p

2πK(t, x)
eD(t,x), θ(t) + x →∞, (t, x) ∈A . (2.13)

Remark 2.1. (On conditions). The conditions of Theorem 2.1 are rather technical and abstract. In
Sections 3 and 4 below we give their more explicit versions, formulated in terms of the Lévy measure
µ and the kernel f . Note that (H1) and (H2) are, in fact, the assumptions on the growth of the tails
of the Lévy measure µ. In addition, (H2) is balanced with (H4), which in turn is closely related to
the so called Cramer condition (see, for example, [43], [33], Chapter 3 §3, and the discussion prior
to Lemma 3.5 below). Finally, (H3) is a proper uniform version of the Hartman-Wintner condition,
see Proposition 2.1. Clearly, one can consider the stronger version of condition (2.12) with k+1+δ
instead of 1+δ (cf. (2.6) and (2.7)), and provide the asymptotic relations similar to (2.13) for the
derivatives of the distribution density pt(x) up to order k.

Remark 2.2. (On relation (2.13)). 1. Note that the asymptotic relation (2.13) corresponds com-
pletely to the standard form of an asymptotic relation obtained by the Laplace method. Typically,
within this method one can prove that the integral

∫

(a,b)
e−F(λ,x) d x

1403



is asymptotically equivalent to
È

2π

F ′′x x(λ, xλ)
e−F(λ,xλ), xλ := argmin

x
F(λ, x). (2.14)

Clearly, (2.13) is exactly of the form (2.14) with appropriate F and additional normalizer 1/(2π),
which comes from the inverse Fourier transform formula.

2. Our approach is in some sense related to the Large Deviations Principle (LDP). Namely, if P l
t (d x)

is the probability measure associated with Y l
t := 1

l

∑l
i=1 Z i

t , where {Z i
t}

l
i=1 are independent copies

of (Zt)t≥0, then P l
t (d x) satisfies the LDP with a good rate function Λt(x) := −D(t, x), in the sense

that for all measurable subsets A⊂R

− inf
x∈interior(A)

Λt(x)≤ lim inf
l→∞

1

l
ln P l

t (A)≤ lim sup
l→∞

1

l
ln P l

t (A)≤− inf
x∈closure(A)

Λt(x);

see [28]. Moreover, assuming the exponential integrability condition (1.5) and existence of the
transition probability density pt(x) for t > t0, it is shown in [40] that

lim
l→∞

ln pt l(l x)
l

= D(t, x), (2.15)

cf. (1.15) and (1.16).

2.3 Proof

Note thatΘ(t, z, A) depends on the set A monotonously. Hence (H3) yields (2.6), and therefore (2.9)
holds. In what follows, we analyze the right hand side of (2.9). We divide this analysis into several
steps.

Step 1: changing the integration contour. We prove that

pt(x) =
1

2π

∫

iξ(t,x)+R
eH(t,x ,z) dz =

1

2π

∫

R

eH(t,x ,η+iξ(t,x)) dη. (2.16)

Recall that we assumed x ≥ 0, which in turn implies ξ(t, x)≥ 0. Consider the domain

GM :=
n

z ∈ C : Im z ∈ [0,ξ(t, x)], Re z ∈ [−M , M], M > 0
o

. (2.17)

The function H(t, x , z) is analytic in GM , hence by the Cauchy theorem
∫

∂ GM

eH(t,x ,z) dz = 0. (2.18)

Consider the integrals
∫ 1

0

eH(t,x ,±M+ivξ(t,x))dv. (2.19)

We have

Re H(t, x ,η+ iξ) =−xξ−
∫

I

∫

R

�

1− e f (t,s)ξu cos( f (t, s)ηu) + f (t, s)ξu
�

µ(du)ds
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= H(t, x , iξ)−
∫

I

∫

R

e f (t,s)ξu(1− cos( f (t, s)ηu))µ(du)ds, ξ,η ∈R. (2.20)

The function ξ 7→ H(t, x , iξ) is real-valued, convex, and attains its minimal value at the point
ξ(t, x). Then H(t, x , iξ)≤ H(t, x , 0) = 0 for ξ ∈ [0,ξ(t, x)]. On the other hand, for every ξ≥ 0
∫

I

∫

R

e f (t,s)ξu(1− cos( f (t, s)ηu))µ(du)ds ≥
∫∫

{(s,u)∈I×R: f (t,s)u>0}
(1− cos( f (t, s)ηu))µ(du)ds

=Θ(t,η,R+).

Therefore
Re H(t, x ,±M + ivξ(t, x))≤−Θ(t,±M ,R+), v ∈ [0,1].

Thus, condition (H3) implies that the integrals in (2.19) tend to 0 as M →+∞, which together with
(2.17) gives (2.16).

In what follows we denote
R(t, x ,η) = Re H(t, x ,η+ iξ(t, x)),

I(t, x ,η) = Im H(t, x ,η+ iξ(t, x)) = xη−
∫

I

∫

R

�

e f (t,s)ξ(t,x)u sin(η f (t, s)u)−η f (t, s)u
�

µ(du).

Since a distribution density is real valued, we derive from (2.16)

pt(x) =
1

2π

∫

R

eR(t,x ,η) cos(I(t, x ,η)) dη. (2.21)

Before proceeding further on, let us give a short description of the rest of the proof. We will estimate
the integral (2.21) using the appropriate version of the Laplace method (see [27] for its description).
In our case the application of the Laplace method meets some difficulties, since the expression under
the integral contains two functions R and I . Therefore we introduce two intervals [−α,α] and
[−β ,β], on which R and I are controllable in terms of their Taylor’s expansions. Then we split
the integral into the sum of integrals over {|η| ≤ α}, {|η| ∈ (α,β]}, and {|η| > β}, and estimate
these integrals separately. As in the standard Laplace method, the first two integrals are controlled
by using Taylor expansion arguments. For the third integral, any standard considerations, like
convexity arguments from [30], cannot be applied. Therefore, we use the specific arguments based
on the structure of the functional under consideration.

Step 2: choosing α,β . Following the explanations given above, we split the integral (2.21) into the
sum

1

2π

h

∫

|η|≤α
+

∫

|η|∈(α,β]
+

∫

|η|>β

i�

eR(t,x ,η+iξ(t,x)) cos(I(t, x ,η+ iξ(t, x))) dη
�

= J1(t, x) + J2(t, x) + J3(t, x),

(2.22)

where α≡ α(t, x) and β ≡ β(t, x) are auxiliary functions. The function β is defined by

β(t, x) =

È

M2(t,ξ(t, x))
M4(t,ξ(t, x))

. (2.23)
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Our aim in this step is to construct the function α in such a way that

0< α(t, x)≤ β(t, x), (t, x) ∈A , (2.24)

1

M2(t,ξ(t, x))
� α2(t, x)�

M2(t,ξ(t, x))
M4(t,ξ(t, x))

,

α3(t, x)�
1

M3(t,ξ(t, x))
, θ(t) + x →∞, (t, x) ∈A .

(2.25)

By the Cauchy inequality and condition (H1), we have

M 2
3 (t,ξ)≤M2(t,ξ)M4(t,ξ)�M 3

2 (t,ξ), θ(t) + ξ→∞, (t,ξ) ∈B .

Hence, there exists a function κ= κ(t,ξ), such that

1� κ(t,ξ), κ(t,ξ)�M2(t,ξ)M
−1/2
4 (t,ξ),

κ(t,ξ)�M 1/2
2 (t,ξ)M−1/3

3 (t,ξ), θ(t) + ξ→∞, (t,ξ) ∈B .
(2.26)

Without loss of generality, we can assume the function κ to be locally bounded. Then we put

α(t, x) = cκ(t,ξ(t, x))M−1/2
2 (t,ξ(t, x)) (2.27)

with some constant c > 0. By (2.26) and (2.11), we have (2.25). Since κ is locally bounded, the
constant c can be chosen small enough to provide (2.24).

Step 3: estimating J1(t, x) in (2.22). A straightforward computation shows that

∂

∂ η
R(t, x ,η)

�

�

η=0 =
∂ 3

∂ η3 R(t, x ,η)
�

�

η=0 = 0,
∂ 2

∂ η2 R(t, x ,η)
�

�

η=0 =−M2(t,ξ(t, x)),

�

�

�

∂ 4

∂ η4 R(t, x ,η)
�

�

�=

�

�

�

�

�

∫

I

∫

R

u4 f 4(t, s)eξ f (t,s)u cos
�

η f (t, s)u
�

µ(du)ds

�

�

�

�

�

≤M4(t,ξ(t, x)), η ∈R,

(2.28)
which gives

−M2(t,ξ(t, x))−
η2

2
M4(t,ξ(t, x))≤

∂ 2

∂ η2 R(t, x ,η)≤−M2(t,ξ(t, x))+
η2

2
M4(t,ξ(t, x)) (2.29)

for all η ∈R. Therefore by the estimate for α2 in (2.25) we get

sup
|η|≤α

∂ 2

∂ η2 R(t, x ,η)∼−M2(t,ξ(t, x)),

inf
|η|≤α

∂ 2

∂ η2 R(t, x ,η)∼−M2(t,ξ(t, x)), θ(t) + x →∞, (t, x) ∈A .

(2.30)

Next, similarly to (2.3) we get

I(t, x ,η)
�

�

η=0 =
∂

∂ η
I(t, x ,η)

�

�

η=0 =
∂ 2

∂ η2 I(t, x ,η)
�

�

η=0 = 0,
�

�

∂ 3

∂ η3 I(t, x ,η)
�

�≤M3(t,ξ(t, x)).
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Note that the equality for ∂
∂ η

I holds true because z = iξ(t, x) is a critical point for H(t, x , ·). Hence

the estimate for α3 in (2.25) implies

sup
|η|≤α

|I(t, x ,η)| → 0, θ(t) + x →∞, (t, x) ∈A . (2.31)

Recall that K(t, x) ≡ M2(t,ξ(t, x)) and D(t, x) ≡ H(t, x , iξ(t, x)) = R(t, x , 0). From (2.30) and
(2.31) we get

∫

|η|≤α
eR(t,x ,η) cos I(t, x ,η)dη∼ eR(t,x ,0)

∫

|η|≤α
e−

K(t,x)η2

2 dη

=

r

2π

K(t, x)
eR(t,x ,0)

∫

|η|≤
p

K(t,x)α

e−
|η|2

2

p
2π

dη

∼

r

2π

K(t, x)
eD(t,x), θ(t) + x →∞, (t, x) ∈A ,

(2.32)

where in the last relation we used the lower estimate for α in (2.25). Thus,

J1(t, x)∼
1

p

2πK(t, x)
eD(t,x), θ(t) + x →∞, (t, x) ∈A . (2.33)

Step 4: proving that J2(t, x) in (2.22) is negligible. On the set {|η| ≤ β}, the function R is controlled
by its Taylor expansion. Hence for the integral J2(t, x) we can apply standard arguments of the
Laplace method.

By (2.29) we have for |η| ≤ β

R(t, x ,η)≤ R(t, x , 0)−
1

4
M2(t,ξ(t, x))η2,

which, together with the lower estimate for α in (2.25), gives

|J2(t, x)| ≤
∫

|η|∈(α,β]
eR(t,x ,η)dη≤ eR(t,x ,0)

∫

|η|>α
e−

M2(t,ξ(t,x))η
2

4 dη

=
eD(t,x)

p

K(t, x)

∫

|y|>α
p

K(t,x)
e−

η2

4 dη� J1(t, x), θ(t) + x →∞, (t, x) ∈A .

(2.34)

Step 5: proving that J3(t, x) in (2.22) is negligible. By (2.3),

|J3(t, x)| ≤
1

2π

∫

|η|>β
eR(t,x ,η)dη

≤
1

2π
eD(t,x)

∫

|η|>β
exp

¨

−
∫

I

∫

R

e f (t,s)ξu(1− cos( f (t, s)ηu))µ(du)ds

«

dη.

Therefore, by (2.33), to prove J3(t, x)� J1(t, x) we need to check that
∫

|η|>β
e−∆(t,x ,η)dη� K−1/2(t, x) =M−1/2

2 (t,ξ(t, x)), θ(t) + x →∞, (t, x) ∈A , (2.35)
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where

∆(t, x ,η) =

∫

I

∫

R

e f (t,s)ξ(t,x)u(1− cos( f (t, s)ηu))µ(du)ds.

Recall that ξ(t, x)≥ 0. Then for any σ ∈ (0,1) we have for some r > 0

∆(t, x ,η)≥
∫∫

{(s,u)∈I×R: f (t,s)u≥0}
e f (t,s)ξ(t,x)u(1− cos( f (t, s)ηu))µ(du)ds

≥ (1−σ)Θ(t,η,R+) +σerχ(t)ξ(t,x)Θ(t,η, [rχ(t),+∞)).
(2.36)

Condition (H3), combined with the trivial observation that Θ(t,η,R+) is non-negative, yields
∫

R

e−(1−σ)Θ(t,η,R+) dη < c(1∨χ−1(t)), (2.37)

provided that σ is chosen such that (1−σ)(1+ δ) > 1. Applying condition (H4) with ε = β(t, x)
gives for |η| ≥ β(t, x)

erχ(t)ξ(t,x)Θ(t,η, [rχ(t),+∞))≥ erχ(t)ξ(t,x)θ(t)
�

(β(t, x)χ(t))2 ∧ 1
�

.

Thus, in view of (2.37), to show (2.35) it is enough to prove as θ(t) + x →∞, (t, x) ∈A ,

(1∨χ−1(t))exp
h

−σerχ(t)ξ(t,x)θ(t)
�

(β(t, x)χ(t))2 ∧ 1
�i

�M−1/2
2 (t,ξ(t, x)), (2.38)

for every σ > 0. By the definition (2.23) of β(t, x), we have

�

(β(t, x)χ(t))2 ∧ 1
�

=
�

�

χ−2(t)
M4(t,ξ)
M2(t,ξ)

�

∨ 1
�−1

. (2.39)

Condition (H2) and the assumptions on θ and χ, imposed prior to Theorem 2.1, yield for any σ > 0,
as θ(t) + ξ→∞, (t,ξ) ∈B ,

�

�

χ−2(t)
M4(t,ξ)
M2(t,ξ)

�

∨ 1
�

ln
�

(1∨χ−1(t))M2(t,ξ)
�

� σθ(t)erχ(t)ξ.

This relation, combined with (2.39), (2.11), and the relation ξ(t, x)≥ 0, yields

ln
�

(1∨χ−1(t))M2(t,ξ)
�

� σθ(t)erχ(t)ξ(t,x)
�

(β(t, x)χ(t))2 ∧ 1
�

, θ(t) + x →∞, (t, x) ∈A ,

which in turn implies (2.38) and completes the proof of (2.35).

We have proved
J2(t, x)� J1(t, x), J3(t, x)� J1(t, x).

By (2.33) we get the statement of the theorem. �
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3 Explicit conditions: fixed time setting

Our further aim is to give explicit and tractable sufficient conditions which provide assumptions
(H1) – (H4) of Theorem 2.1. In this section we consider the case where the time variable is fixed.
Therefore everywhere below in this section we assume

T= {t}, A =B = {t} ×R, T = {t}.

We skip the variable t in the notation and write, for instance, Y , f (s),Mk(ξ) instead of Yt , f (t, s),
Mk(t,ξ), respectively.

In the fixed time setting the assumptions (H1) – (H4) look more simple: in particular, functions θ(t)
and χ(t) degenerate to some constants θ and χ. Therefore it is appropriate to introduce the set of
conditions which will be useful later on.

(Ĥ1)M4(ξ)�M 2
2 (ξ), ξ→+∞.

(Ĥ2) ln
��

M4(ξ)
M2(ξ)

�

∨ 1
�

+ ln lnM2(ξ)� ξ, ξ→+∞.

(Ĥ3) There exist R> 0, δ > 0 such that

Θ(z,R+)≥ (1+δ) ln |z|, |z|> R. (3.1)

(Ĥ4) There exist q > 0 and ϑ > 0 such that for every ε > 0

inf
|z|>ε
Θ(z, [q,+∞))≥ ϑ

�

ε2 ∧ 1
�

.

One can easily see that in the fixed time setting conditions (H1) – (H4) are equivalent to (Ĥ1) – (Ĥ4).
Indeed, the constants θ > 0 and χ > 0, which come, respectively, from the functions θ(t),χ(t), are
suppressed in (H2) by the term ξ. In (H4), the constant χ can be eliminated by a proper change of
the constants r and θ ; we denote these new constants by q and ϑ.

Clearly, Y is infinitely divisible with the Lévy measure

µ f (A) =

∫∫

I×R
1Iuf (s)∈Aµ(du)ds.

In what follows we demonstrate that conditions (Ĥ1) – (Ĥ4), which are in fact the assumptions on
µ f , can be verified efficiently in the terms of the kernel f and the initial Lévy measure µ.

3.1 Assumptions (Ĥ1) and (Ĥ2)

Observe that (Ĥ1) and (Ĥ2) control the growth rate of the “tails” of µ f . The following two lemmas
show that these assumptions can be verified in the terms of similar “tail” conditions imposed on µ.
Denote

M1(ξ) =

∫

R

u(eξu− 1)µ(du), Mk(ξ) =

∫

R

ukeξuµ(du), k ≥ 2. (3.2)

Clearly,

Mk(ξ) =

∫

I

f k(s)Mk( f (s)ξ) ds, k ≥ 1. (3.3)
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Lemma 3.1. Assume

(T1) there exists γ ∈ (0,1) such that M4(ξ)� M2
2 (γξ), ξ→+∞.

Then (Ĥ1) holds true.

Proof. Under the assumption (1.11) we have Mk(ξ)→+∞, ξ→+∞, k ≥ 1. In addition, by Hölder
inequality, for every a ∈ (0, 1) and k ≥ 2,

Mk(aξ)≤ [Mk(ξ)]
a

�
∫

R

ukµ(du)

�1−a

implying
Mk(aξ)� Mk(ξ), ξ→+∞. (3.4)

Denote F = esssups∈I f (s) and I f ,γ = {s : f (s)≥ γF}. Recall that f is assumed to be bounded, which
together with (2.5) yields F ∈ (0,+∞). Since f 2 is integrable on I and f is bounded, f k, k ≥ 3 is
integrable as well. Then (3.4) yields

Mk(ξ) =





∫

I f ,γ

f k(s)Mk( f (s)ξ) ds





h

1+ o(1)
i

, ξ→+∞. (3.5)

Since M2 is convex and M2(ξ) → +∞, as ξ → +∞, there exists ξ0 such that M2 is increasing on
[ξ0,+∞). Then for ξ > ξ0γ

−1F−1 we have





∫

I f ,γ

f 2(s)M2( f (s)ξ) ds





2

=

∫

I f ,γ

∫

I f ,γ

f 2(s1) f
2(s2)M2( f (s1)ξ)M2( f (s2)ξ) ds1ds2

≥ M2
2 (γFξ)





∫

I f ,γ

f 2(s) ds





2

.

Similarly, for sufficiently large ξ we have
∫

I f ,γ

f 4(s)M4( f (s)ξ) ds ≤ M4(Fξ)

∫

I f ,γ

f 4(s) ds.

These relations, together with (3.5) and (T1), imply (Ĥ1).

Lemma 3.2. Assume

(T2) ln
�

M4(ξ)
M2(ξ)

∨ 1
�

+ ln ln M2(ξ)� ξ, ξ→+∞.

Then (Ĥ2) holds true.

Proof. Fix an arbitrary γ ∈ (0,1). For ξ large enough, we have by (3.5)

M2(ξ)∼
∫

I f ,γ

f 2(s)M2( f (s)ξ) ds ≤ M2(Fξ)





∫

I f ,γ

f 2(s) ds



 , ξ→+∞,

1410



which together with (T2) gives

ln lnM2(ξ)� ξ, ξ→+∞. (3.6)

On the other hand, (T2) implies that for every ε > 0 and ξ large enough,

M4(ξ)≤ eεξM2(ξ).

Then for ξ large enough we have by (3.5)

M4(ξ)∼
∫

I f ,γ

f 4(s)M4( f (s)ξ) ds ≤ eεFξ

∫

I f ,γ

f 4(s)M2( f (s)ξ) ds

≤ F2eεFξ

∫

I f ,γ

f 2(s)M2( f (s)ξ) ds ∼ F2eεFξM2(ξ).

Consequently,

limsup
ξ→+∞

ξ−1 ln
�M4(ξ)
M2(ξ)

�

≤ εF.

Since ε > 0 is arbitrary, this relation combined with (3.6) implies (Ĥ2).

3.2 Assumptions (Ĥ3) and (Ĥ4)

It will be convenient to consider, together with the assumption (Ĥ3), its stronger version

(Ĥs
3) Θ(z,R+)� ln |z|, z→∞.

To proceed with the assumption (Ĥs
3), we introduce several conditions on the kernel f .

(F1)
∫

I
( f (s)∨ 0)2 ds > 0.

(F2) On some interval [a, b]⊂ I , the function f is positive and has a continuous non-zero derivative.

(F3) On some interval (−∞, b] ⊂ I , the function f is positive, convex, and has at most exponential
decay at −∞; that is, there exists γ > 0 such that

lim
s→−∞

e−γs f (s) = +∞. (3.7)

(F4) On some interval (−∞, b) ⊂ I , the function f is positive, convex, and has a subexponential
decay at −∞; that is, (3.7) holds true for every γ > 0.

Note that when i increases from 1 to 4, the respective conditions (Fi) become stronger. Condition
(F1) is just our standing non-degeneracy assumption (2.5), listed here for further reference conve-
nience. Conditions (F1) – (F4) are well designed to handle the particularly interesting classes of
processes, mentioned in the Introduction. Namely,

1. for the Lévy process Z , one has f (t, s) = 1I[0,t](s), which satisfies (F1) for every t > 0;

2. for the non-stationary version of a Lévy driven Ornstein-Uhlenbeck process, one has f (t, s) =
eγ(t−s)1I[0,t](s), which satisfies (F2) for every t > 0;

1411



3. for the stationary version of a Lévy driven Ornstein-Uhlenbeck process, one has f (s) =
eγs1I(−∞,0](s), which satisfies (F3) with b = 0;

4. for the fractional Lévy motion, one has f (t, s) = 1
Γ(H+1/2)

h

(t − s)H−1/2
+ − (−s)H−1/2

+

i

, which
for every t > 0 satisfies (F4) with b = 0.

Recall several conditions which appeared in the literature in the context of the problem of studying
local properties of infinitely divisible distributions.

A Lévy measure ν on R is said to satisfy the Hartman-Wintner condition ([31]), if
∫

R

(1− cos zu)ν(du)� ln |z|, z→∞. (3.8)

Clearly, (Ĥs
3) is exactly the assumption on µ f , restricted to R+, to satisfy the Hartman-Wintner

condition.

An elementary inequality

cx21I|x |≤1 ≤ 1− cos x ≤ x2 ∧ 1, x ∈R, (3.9)

(where c > 0 is some constant) provides the following pair of conditions, sufficient and necessary
for (3.8), respectively:

∫

|u|≤|z|−1

(uz)2ν(du)� ln |z|, |z| →∞; (3.10)

∫

R

[(uz)2 ∧ 1]ν(du)� ln |z|, |z| →∞. (3.11)

Condition (3.10) was introduced in [35], and is called the Kallenberg condition. Condition (3.11)
was introduced in [41], where it was proved to be necessary for the existence of a bounded transition
probability density of the solution to a (not necessarily linear) Lévy driven SDE. At the same time,
for an Ornstein-Uhlenbeck process (1.7) with non-trivial drift (γ 6= 0), this condition is sufficient for
the existence of C∞ distribution density ([9]). Thus, for the non-stationary version of the Ornstein-
Uhlenbeck process (1.7), condition (3.11) is a criterion.

We denote by µ+ the restriction of µ to R+, and formulate the following set of “non-degeneracy”
conditions on the measure µ.

(N1) µ+ satisfies (3.10).

(N2) µ+ satisfies (3.11).

(N3) µ(R+) = +∞.

(N4) µ(R+)> 0.

Note that when i increases from i = 1 to i = 4, the respective conditions (Ni) become more mild;
(N4) is just our fixed non-degeneracy assumption (1.11), listed here for further reference conve-
nience.

Lemma 3.3. Assume for some i = 1, . . . , 4 conditions (Ni) and (Fi) hold.

Then (Ĥs
3) holds true.
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Proof. Case i = 1. From the positivity of 1− cos x and the first inequality in (3.9), it follows that

Θ(z,R+) =

∫∫

(s,u):uf (s)>0

(1− cos(uf (s)z))µ(du)ds

≥
∫∫

(s,u):u>0,0<uf (s)<1/|z|
(1− cos(uf (s)z))µ(du)ds

≥ c

∫∫

(s,u):u>0,0<uf (s)<1/|z|
u2 f 2(s)z2µ(du)ds ≥ cz2

�
∫

I

f+(s)
2 ds

�
∫

(0,(F |z|)−1)
u2µ(du),

here we keep the notation F = esssups∈I f (s). Combined with (3.10) for µ+, the estimates above
provide (Ĥs

3).

Case i = 2. Since f is positive on [a, b], we have

Θ(z,R+)≥
∫∫

(a,b)×R+
(1− cos(uf (s)z))µ(du)ds.

Let us show that
∫ b

a

(1− cos(x f (s))) ds ≥ c(x2 ∧ 1) (3.12)

holds true with some constant c > 0, which would imply (Ĥs
3) provided that the assumption (3.11)

is satisfied. Consider the function

Υ(x) =

∫ b

a

(1− cos(x f (s))) ds.

Clearly, Υ(x)∼ c1 x2 as x → 0, with c1 = (1/2)
∫ b

a
f 2(s) ds > 0. Further, one can write

Υ(x) =

∫ f (b)

f (a)
(1− cos(x v))g ′(v) dv, (3.13)

where g := f −1. By our assumptions on f we have g ∈ C1, which implies Υ(x)> 0 for every x 6= 0.
Finally, by the Riemann-Lebesgue lemma,

∫ f (b)

f (a)
cos(x v)g ′(v) dv→ 0, x →∞,

which implies limx→∞Υ(x)> 0 and completes the proof of (3.12).

Cases i = 3 and i = 4. We show that the inequality
∫ b

−∞
(1− cos(x f (s))) ds ≥ c ln |x | (3.14)

holds true (i) for some c > 0 and |x | large enough provided that f satisfies (F3); (ii) for every c > 0
and |x | large enough provided that f satisfies (F4). Keeping the notation g for the inverse function
for f , we have

Υ(x) :=

∫ b

−∞
(1− cos(x f (s))) ds =

∫ f (b)

0

(1− cos(x v))g ′(v) dv.
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Since f is convex, f ′ is non-decreasing. In addition, f itself is increasing: this follows from the
convexity, condition (3.7), and the fact that f (s)→ 0 as s→−∞ (which comes from the integrability
of f 2(s)). Therefore, g ′(v) = [ f ′(g(v))]−1 is positive and non-increasing.

By positivity of g ′,

Υ(x)≥
∫ f (b)

π/(2|x |)
(1− cos(x v))g ′(v) dv (3.15)

when π/(2|x |)≤ f (b). Denote Ik :=
h

(2k−1)π
2|x | , (2k+1)π

2|x |

i

, k ≥ 1. Then, since g ′ is positive,

(−1)k
∫

Ik

cos(x v)g ′(v) dv > 0

for every k ≥ 1, and since g ′ is non-increasing, we have
∫

Ik−1

cos(x v)g ′(v) dv+

∫

Ik

cos(x v)g ′(v) dv ≤ 0 (3.16)

for every even k ≥ 2. Note that, on the axis [0,+∞), the “negative” interval Ik−1 is located to the
left from the “positive” interval Ik. Then, for any A> 0, inequality (3.16) still holds true with Ik−1
and Ik replaced, respectively, by Ik−1 ∩ [0, A] and Ik ∩ [0, A]. Consequently, for any A≥ π/(2|x |)
∫ A

π/(2|x |)
cos(x v)g ′(v) dv =

∞
∑

k=1

∫

Ik∩[0,A]
cos(x v)g ′(v) dv

=
∞
∑

m=1

 

∫

I2m−1∩[0,A]
cos(x v)g ′(v) dv+

∫

I2m∩[0,A]
cos(x v)g ′(v) dv

!

≤ 0.

Therefore we obtain by (3.15)

Υ(x)≥
∫ f (b)

π/(2|x |)
g ′(v) dv = g( f (b))− g(π/(2|x |)) = b− g(π/(2|x |)) (3.17)

for |x | large enough. It follows from (3.7) that

ρ := lim inf
v→0

�

−
g(v)

ln(1/v)

�

is positive when f satisfies (F3), and equals to +∞ when f satisfies (F4). Combined with (3.17),
this yields (3.14).

Now we can complete the proof. In the case i = 3, take c > 0 and Q > 0 such that (3.14) holds true
for |x | ≥Q. Since µ(R+) = +∞, there exists q > 0 such that µ([q,+∞))≥ (1+δ)c−1. Then (3.14)
with x = uz implies

Θ(z,R+)≥
∫

[q,+∞)

 

∫ b

−∞
(1− cos(uf (s)z)) ds

!

µ(du)≥ cµ([q,+∞)) ln(|qz|), |z| ≥ q−1Q,

(3.18)
which provides (Ĥs

3) because ln(|qz|)∼ ln |z|, |z| →∞.

In the case i = 4, the assumption µ(R+) > 0 implies the existence of q > 0 for which µ([q,+∞)) >
0. Take c satisfying cµ([q,+∞)) > (1+ δ), and let Q > 0 be such that (3.14) holds true with this c
and |x | ≥Q. Then (3.18) holds true as well, which provides (Ĥs

3).

1414



Lemma 3.3 shows that the kernel f is “smoothifying” in the following sense: when f satisfies
some additional assumption like (F2) – (F4), the Hartman-Wintner type condition (Ĥs

3) holds true
under milder assumptions on the Lévy measure of the noise. The following lemma shows that such
“smoothifying” effect concerns the condition (Ĥ4), as well.

Lemma 3.4. Under the assumption (1.11) assume additionally that the function f satisfies (F2).

Then (Ĥ4) holds true for q > 0 small enough.

Proof. Similarly to the proof of Lemma 3.3, case i = 2, we assume that f is positive on [a, b]. Take
ρ > 0 such that µ([ρ,+∞))> 0. Then, for 0< q < ρmins∈(a,b) f (s), we have by (3.12)

Θ(z, [q,+∞))≥
∫

u≥ρ

∫ b

a

(1− cos(uf (s)z))dsµ(du)

≥ c

∫

u≥ρ

�

(uz)2 ∧ 1
�

µ(du)≥ cµ([ρ,+∞))
�

(ρz)2 ∧ 1
�

,

which implies the required estimate.

To proceed with the assumption (Ĥ4) when f is not “smoothifying”, recall that a finite measure c is
said to satisfy the Cramer’s condition if

sup
|z|≥ε

�

�

�

∫

R

ei yzc(d y)
�

�

�< c(R) for all ε > 0 (3.19)

(see, for example, [43] or [33], chapter 3 §3). Cramer’s condition means that c is in some sense
regular. For instance, if c has a non-trivial absolutely continuous part, then (3.19) follows from the
Riemann-Lebesgue lemma, although, in general, a measure satisfying Cramer’s condition should not
be necessarily absolutely continuous (see Example 3.3 below).

Note that (3.19) leads to

Ξ(ε) := inf
|z|≥ε

∫

R

(1− cos yz)c(d y)> 0 for all ε > 0.

In addition, assuming c to have finite second moment, we get Ξ(ε) ∼ cε2 as ε → 0 with some
positive c, and thus

Ξ(ε) = inf
|z|≥ε

∫

R

(1− cos yz)c(d y)≥ c(ε2 ∧ 1) for all ε > 0 (3.20)

and some positive c. Note that the function Θ(z, A) involved in (Ĥ4) is just the term under the
supremum in (3.20), with c equal to µ f restricted to A. By the standing assumptions on µ and
f , the measure µ f restricted to R \ (−q, q) has finite second moment for any q > 0. Therefore,
(Ĥ4) holds true, provided that for some q > 0 the restriction of µ f to [r,+∞) satisfies the Cramer’s
condition.

Lemma 3.5. Assume in addition to standing assumptions on µ and f that

(C) for some ρ > 0 the restriction of µ to [ρ,+∞) satisfies the Cramer’s condition.

Then (Ĥ4) holds true for q > 0 small enough.
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Proof. Take r < γFρ with F = esssups∈I f (s) and some γ ∈ (0, 1) . Then

Θ(z, [r,+∞)) =
∫∫

(s,u):uf (s)≥r

(1− cos(uf (s)z))µ(du)ds

≥
∫

f (s)>γF

∫

u≥ρ
(1− cos(uf (s)z))µ(du)ds ≥

 

∫

f (s)>γF

ds

!

Ξρ(γFε), |z| ≥ ε,

with Ξρ(ε) = inf|z|≥ε
∫∞
ρ
(1− cos uz)µ(du). Since Ξρ(ε) satisfies (3.20) and the set {s : f (s) > γF}

has positive Lebesgue measure, we obtain the required estimate for Θ(z, [q,+∞)).

To summarise, let us formulate in the fixed time setting the asymptotic results for the distribution
densities of particular processes, listed in the Introduction.

Corollary 3.1. Let Y be a Lévy driven stochastic integral, specified below. Assume that the Lévy measure
of the noise satisfies (1.11), (1.5), and “tail” conditions (T1), (T2).

Then for every t > 0 the distribution density pt exists, belongs to C∞b , and satisfies

pt(x)∼
1

p

2πK(t, x)
eD(t,x), x →∞, (3.21)

with respective functions K(t, x) and D(t, x), in the following cases:

(1) Y is the Lévy process Z, µ satisfies (N1) and (C);

(2) Y is the non-stationary version of a Lévy driven Ornstein-Uhlenbeck process, µ satisfies (N2);

(3) Y is the stationary version of a Lévy driven Ornstein-Uhlenbeck process, µ satisfies (N3) (in that
case, pt(x), K(t, x) and D(t, x) actually don’t depend on t);

(4) Y is the fractional Lévy motion.

3.3 Examples

In this section we give several examples that illustrate the conditions on the measure µ, introduced
above.

The first two examples illustrate two typical situations where “tail” conditions (T1) and (T2) hold.

Example 3.1. Let µ be supported in a bounded subset. Denote by σ+ the minimal positive constant
σ such that µ((σ,+∞)) = 0. One can easily show that for all ε > 0 and k ≥ 1 one has

Mk(ξ)� e(σ+−ε)ξ, Mk(ξ)−σk
+µ({σ+})e

σ+ξ� eσ+ξ, ξ→+∞. (3.22)

This relation yields both (T1) and (T2). Indeed, for ε > 0 small enough one has γ := σ++ε
2(σ+−ε)

∈ (0,1)
and

M4(ξ)� e(σ++ε)ξ = e2(σ+−ε)γξ� M2
2 (γξ),
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which is (T1). Similarly, for ξ large enough

ln
�

M4(ξ)
M2(ξ)

∨ 1
�

+ ln ln M2(ξ)≤ 2εξ+ lnξ,

which provides (T2) because ε > 0 is arbitrary.

Example 3.2. Assume that for u large enough

1

Q(u)
e−buβ ≤ µ([u,+∞))≤Q(u)e−buβ , (3.23)

where b > 0, β > 1 are some constants, and Q is some polynomial.

For σ > 0 denote

Mσ
k (ξ) :=

∫

[σ,+∞)
ukeξuµ(du).

Clearly,
Mσ

k (ξ)� eAξ, ξ→+∞

for any A> 0, and
Mk(ξ)−Mσ

k (ξ)� eσξ, ξ→+∞.

This means that, for any σ > 0

Mk(ξ)∼
∫

[σ,+∞)
ukeξuµ(du)

= σkeξσµ([σ,+∞)) +
∫

[σ,+∞)

h

kuk−1+ ξuk
i

eξuµ([u,+∞)) du.

(3.24)

For any σ > 0, m ∈Z, we have
∫ ∞

σ

umeξue−buβ du∼ c1(β , b, m)ξ
2m+2−β
2(β−1) ec2(β)b

1
β−1 ξ

β
β−1

, ξ→+∞, (3.25)

where c2(β) = β
− 1
β−1 −β−

β

β−1 (we have no need to specify the constant c1(β , b, m)). One can prove
(3.25) applying the Laplace method in a standard way; we omit the detailed calculations.

Take σ large enough; then (3.23) holds true for u ≥ σ. Then (3.24) and (3.25) yield for every
k ≥ 1,

1

Qk(ξ)
ec2(β)b

1
β−1 ξ

β
β−1 ≤ Mk(ξ)≤Qk(ξ)e

c2(β)b
1
β−1 ξ

β
β−1

(3.26)

for ξ large enough, where Qk is some polynomial.

By (3.26),

M4(ξ)≤Q4(ξ)e
c2(β)b

1
β−1 ξ

β
β−1 �

�

1

Q2(γξ)
ec2(β)b

1
β−1 (γξ)

β
β−1

�2

≤ M2
2 (γξ), ξ→+∞,
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as soon as 2γ
β

β−1 > 1, which implies (T1). Further, for ξ large enough (3.26) gives

ln
�

M4(ξ)
M2(ξ)

∨ 1
�

+ ln ln M2(ξ)

≤ ln
�

Q2(ξ)Q4(ξ)∨ 1
�

+ ln
�

c2(β)b
1
β−1 lnQ2(ξ)

�

+
β

β − 1
lnξ� ξ, ξ→∞,

which provides (T2).

The following example illustrates condition (C) and the relations between the conditions (N1) –
(N4). All the measures in this example have bounded supports, therefore “tail” conditions (T1) and
(T2) are satisfied.

Example 3.3. (a) Let µ =
∑∞

n=1 nρδn−1 , ρ < 1; the assumption on ρ provides that µ is a Lévy
measure. In the case ρ ∈ (−1,1), the asymptotic behavior of the integrals

∫

|u|≤ε u2µ(du) is the same
as for the α-stable case with α= 1+ρ, i.e. is of a power type:

∫

|u|≤ε
u2µ(du)� ε2−α, ε→ 0 (3.27)

(cf. [46], [47], [34]). Therefore, conditions (N1) – (N4) holds true. The analogy with the α-stable
case is not complete: condition (C) does not hold, because for every r > 0 the restriction of µ to
[r,+∞) has finite number of atoms. Therefore, statements (2) – (4) in Corollary 3.1 hold true,
but one can not claim (3.21) for the Lévy process Z itself. Statement (1) of Corollary 3.1 becomes
applicable when µ is replaced by µ+ c, where c is a measure with a bounded support, satisfying
Cramer’s condition. For instance, either c may be absolutely continuous (and then Cramer’s con-
dition is provided by the Riemann-Lebesgue lemma), or c may be equal to the Cantor measure on
[0, 1] (and then Cramer’s condition is verified by straightforward calculations).

When ρ = −1, (N1) and (N2) fail, but (N3) and (N4) hold true. When ρ < −1, only (N4) hold
true, while (N1) – (N3) fail. It is clear that, in the latter case, the laws of the Lévy process Z and of
the non-stationary version of a Lévy driven Ornstein-Uhlenbeck process contain non-trivial discrete
components. Therefore one definitely can not expect any asymptotic relation like (3.21) to hold
for these processes. On the other hand, (3.21) holds true for the fractional Lévy motion ZH with
H ∈ (1/2,1). This well illustrates the “smoothifying” role of the kernel f .

(b) ν =
∑∞

n=1 nδ(n!)−1 . Then condition (N1) fails, while (N2) – (N4) hold true, see [9], Example
1. In these example it is shown that the law of Zt is singular for all t > 0. Thus, the asymptotic
relation (3.21) clearly can not be valid for the Lévy process Z itself. In this case, the Lévy measure
provides some “hidden smoothness” in the sense that the law of the Lévy process Z is singular,
but the distributions of the respective (both non-stationary and stationary) Lévy driven Ornstein-
Uhlenbeck processes and fractional Lévy motion possess C∞b distribution densities which, moreover,
admit asymptotical description (3.21).

In the last example, in the case of a Lévy process, we compare our conditions with those introduced
in [24] and [18].
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Example 3.4. In the paper [24] the authors give the transition density estimates for a symmetric
α-stable–like process whose jump intensity kernel J(x , y) is of the form

J(x , y) =
c(x , y)
|x − y|n+α

1|x−y|≤1,

where c(x , y) is a symmetric Borel measurable function onRn×Rn, bounded from above and below
by two positive constants. When c(x , y) ≡ c(x − y), that is, J(x , y) = J(x − y), this process is a
Lévy one with the Lévy measure µ(d x) = J(x)d x . We check in the one-dimensional case that such
a Lévy measure satisfies the conditions imposed above.

Since the Lévy measure µ has bounded support, the exponential integrability condition is satisfied
and, moreover, conditions (T1) and (T2) hold true (see Example 3.1). By the Riemann-Lebesgue
lemma, the absolute continuity of µ implies condition (C). Finally, (3.27) holds true, which provides
the Kallenberg condition (3.10) for the measure µ. Since µ is assumed to be symmetric, this yields
(N1).

The paper [18] is devoted to the estimates of the transition density of a Markov process whose jump
intensity J(x , y) satisfies

c1

|x − y|nφ(c2|x − y|)
≤ J(x , y)≤

c3

|x − y|nφ(c4|x − y|)
, x , y ∈Rn×Rn, x 6= y, (3.28)

for some ci , i = 1,2, 3,4, where φ : [0,∞)→ [0,∞) is of the form φ(r) = φ1(r)ψ(r), r > 0, and

i) ψ is increasing on [0,∞), ψ(r) = 1 for 0< r ≤ 1, and for some 0< γ1 ≤ γ2, β > 0,

c1eγ1rβ ≤ψ(r)≤ c2eγ2rβ , 1< r <∞; (3.29)

ii) φ1 is strictly increasing on [0,∞) with φ1(0) = 0, φ1(1) = 1, and, in particular, satisfies for
c2 > c1 > 0, c3 > 0, 0< β1 ≤ β2 < 2, the inequality

c1

�

R

r

�β1

≤
φ1(R)
φ1(r)

≤ c2

�

R

r

�β2

for every 0< r < R<∞. (3.30)

Again, let n = 1 and J(x , y) = J(x − y), where J is the density of the Lévy measure µ. To achieve
the exponential integrability (1.5) we need to assume β > 1 in (3.29). Assuming additionally that
γ1 = γ2, one has (T1) and (T2) (see Example 3.2). By (3.30), the Lévy measure µ satisfies the lower
bound in (3.27) with α= β1; that is,

∫

|u|≤ε
u2µ(du)≥ cε2−β1

with some positive c and ε > 0 small enough, which implies (N1). Finally, condition (C) holds true
by the absolute continuity of µ.

Since (N1), (C), (T1), and (T2) hold true, by statement (1) in Corollary 4.1 and Corollary 5.1 below,
the transition probability density of the Levy process Z satisfies (1.12) and either (1.17) (in the
“truncated" case [24]) or (1.18) (in the case treated in [18]). Let us compare these relations with
the estimates for the transition probability density of a symmetric jump process from [24] and [18].
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For t ≥ t0, these estimates are given in the form

C1 gt(C2|x − y|)≤ p(t, x , y)≤ C3 gt(C4|x − y|), (3.31)

where C1, . . . , C4 are some positive constants, and

gt(x) = exp
�

−|x | lnδ
|x |
t

�

∨
�

1

td/2
exp

�

−
|x |2

t

��

(3.32)

with δ = 1 in the “truncated" case [24], and δ = β

β−1
in the case treated in [18] (d is the dimension

of the space; in the current paper d = 1).

For a Levy process, (3.31) with p(t, x , y) = pt(y − x) is closely comparable with (1.12) and (1.17),
(1.18). When |x−y|

t
is large, (1.17), (1.18) directly provide (3.31) with gt replaced by

exp
�

−|x | lnδ
|x |
t

�

.

On the other hand, one can show easily that on every bounded set the function KZ is bounded and
bounded away from 0, and the function DZ satisfies

−d1 x2 ≤ DZ(x)≤−d2 x2

with positive constants d1, d2. Thus, when |x−y|
t

is bounded, (1.12) provides (3.31) with gt replaced
by

1

t1/2
exp

�

−
|x |2

t

�

.

Note that (1.17) and (1.18) are somewhat more precise than (3.31): by choosing x
t

large enough,
one can make the constants c1, c2 therein to be arbitrarily close to a given constant c∗, while in
(3.31) respective constants C2 and C4 are different and fixed.

Although having a non-trivial intersection, the classes of processes, treated in our case and in [24]
and [18], are substantially different. Our approach, based on the Fourier transform technique, is
not applicable to the class of symmetric jump processes from [24] and [18] in the whole generality.
On the other hand, this approach is applicable to particularly interesting processes which can not
be studied by the technique of [24], [18], including non-symmetric Markov processes (like the Lévy
driven Ornstein-Uhlenbeck process) and non-Markov processes (like the fractional Lévy motion).

4 Explicit conditions: time-dependent setting

Our further aim is to consider conditions of Theorem 2.1 in the general, i.e. time-dependent, setting.
To make the exposition reasonably short, we address this problem in a particular case of the self-
similar kernel f ; that is, we assume that

f (t, s) = χ(t) f
�

s

θ(t)

�

, t ∈T, s ∈ I (4.1)
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with some functions f : R→ R and χ,θ : T→ (0,+∞). Assumption (4.1) is satisfied for particu-
larly interesting processes like the Lévy process Z and the fractional Lévy motion ZH . In these cases
we have, respectively,

f (s) = 1I[0,1](s), χ(t) = 1, θ(t) = t; (4.2)

f (s) =
1

Γ(H + 1/2)

h

(1− s)H−1/2
+ − (−s)H−1/2

+

i

, χ(t) = tH−1/2, θ(t) = t. (4.3)

For the function f (s) we keep our standard standing assumptions: it is bounded and satisfies (2.3),
(2.5). For the Lévy measure µ we assume (1.11) and (1.5) to hold true, as before.

Similarly to Section 2, denote

Θ(z, A) =

∫∫

{(s,u)∈R×R: f (s)u∈A}
(1− cos( f (s)zu))µ(du)ds, z ∈R,

Ψ(z) =

∫

R

∫

R

�

e−iz f (s)u− 1+ iz f (s)u
�

µ(du)ds, z ∈ C,

H(y, z) = i yz+Ψ(z), Mk(ζ) =
∂ k

∂ ζk
Ψ(iζ), k ≥ 1, y ∈R, ζ ∈R.

Denote by ζ(y) ∈R the unique solution to the equation

∂

∂ ζ
H(y, iζ) = 0, (4.4)

and put

D(y) = H(y, iζ(y)), K (y) =M2(ζ(y)) =
∂ 2

∂ ζ2 H(y, iζ)
�

�

�

ζ=ζ(y)
. (4.5)

Denote τ(t) = χ(t)θ(t). Further in this section we assume θ and χ to be bounded on every segment
[a, b] ⊂ (0,+∞), and to be bounded away from 0 on the whole T. Clearly, the functions θ ,χ in
(4.2) and in (4.3) with H > 1/2 satisfy these assumptions. In addition, we assume that

θ(t)→+∞, ln
�

(lnχ(t))∨ 1
�

� lnθ(t), t →+∞;

lim inf
t→+∞

χ(t)> 0.
(4.6)

in the cases (4.2) and (4.3) this assumption holds true.

Theorem 4.1. Assume that the measure µ satisfies (T1) and (T2). Assume also that µ satisfies one of
the conditions (Ni) and, respectively, f satisfies one of the assumptions (Fi), i = 1, . . . , 4. In the case
i = 1, assume additionally that µ satisfies condition (C).

Then for every t > 0 the law of Yt has a distribution density pt ∈ C∞b , and for every t0 > 0

pt(x)∼
1

τ(t)

r

θ(t)
2πK (x/τ(t))

eθ(t)D(x/τ(t)), t + x →∞, (t, x) ∈ [t0,+∞)×R+. (4.7)
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Remark 4.1. The expression on the the right hand side of (4.7) is self-similar in the sense that the
variable x , rescaled by τ(t), is involved in this expression only as an argument of given functionsK
and D. Note that the Lévy measure µ is not assumed to have a self-similarity property, and therefore,
in general, the family of distributions Yt , t > 0 is not self-similar. Thus, although the assumption
(4.1) on the kernel f itself does not provide self-similarity for the distribution densities of Yt , t > 0,
it is powerful enough to provide self-similarity for the asymptotic relation for these densities.

Proof. The relations below follow easily from the self-similarity assumption (4.1):

H(t, x , z) = θ(t)H
�

x

τ(t)
,χ(t)z

�

, Mk(t,ξ) = χ
k(t)θ(t)Mk(χ(t)ξ), k ≥ 1. (4.8)

By the first relation in (4.8), we can rewrite the relation (2.10), which determines ξ= ξ(t, x), as

χ(t)θ(t)
∂

∂ ζ
H
�

x

τ(t)
, iζ
�

�

�

�

ζ=χ(t)ξ
= 0.

This means that χ(t)ξ solves (4.4) with y = x/τ(t), and therefore

ξ(t, x) = χ−1(t)ζ
�

x

τ(t)

�

.

Combined with (4.8), this relation gives

D(t, x) = θ(t)D
�

x

τ(t)

�

, K(t, x) = χ2(t)θ(t)K
�

x

τ(t)

�

=
τ2(t)
θ(t)

K
�

x

τ(t)

�

.

Thus (4.7) would follow from (2.13) with A = [t0,+∞)×R+, provided that conditions (H1) –
(H4) are verified.

In Section 3 we proved that under assumptions imposed on the Lévy measure µ and the function
f (s), conditions (Ĥ1), (Ĥ2), (Ĥs

3), and (Ĥ4) hold true. Now we show that these conditions yield
(H1) – (H4) with T = [t0,+∞),B = [t0,+∞)×R+, and with the function θ(t) replaced by ϑθ(t)
(the constant ϑ comes from (Ĥ4)).

The second relation in (4.8) gives

M4(t,ξ)

M 2
2 (t,ξ)

=
1

θ(t)
M4(χ(t)ξ)

M 2
2 (χ(t)ξ)

. (4.9)

Observe that, under our assumptions on θ and χ,

t + ξ→∞ implies θ(t)→+∞ or χ(t)ξ→+∞. (4.10)

Therefore, (H1) follows from (Ĥ1) and (4.9).

By the second relation in (4.8),

M4(t,ξ)
M2(t,ξ)

= χ2(t)
M4(χ(t)ξ)
M2(χ(t)ξ)

, (4.11)

which together with (Ĥ2) and (4.10) gives

ln
�

�

χ−2(t)
M4(t,ξ)
M2(t,ξ)

�

∨ 1
�

� lnθ(t) +χ(t)ξ, t + ξ→+∞.
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Similarly,

ln
��

lnM2(t,ξ)
�

∨ 1
�

= ln
�

ln
�

χ2(t)θ(t)M2(χ(t)ξ)
�

∨ 1
�

= ln
��

lnχ2(t) + lnθ(t) + lnM2(χ(t)ξ)
�

∨ 1
�

.

By (Ĥ2), (4.10) and (4.6) one has

ln
��

lnM2(t,ξ)
�

∨ 1
�

� lnθ(t) +χ(t)ξ, t + ξ→+∞.

This completes the proof of (H2).

By (Ĥs
3), for every c> 0 there exists Q > 0 such that

Θ(z,R+)≥ c ln |z|, |z| ≥Q.

By the self-similarity assumption (4.1), we have

Θ(t, z, A) = θ(t)Θ
�

χ(t)z,
1

χ(t)
A
�

.

Denote θ∗ = inft θ(t),χ∗ = inft χ(t). Then taking c= θ−1
∗ (1+δ) and R= χ−1

∗ Q, we obtain (H3).

Finally, by (Ĥ4) we have

inf
|z|>ε
Θ(t, z, [qχ(t),+∞)) = θ(t) inf

|z|>ε
Θ(χ(t)z, [q,+∞))

= θ(t) inf
|z′|>χ(t)ε

Θ(z′, [q,+∞))≥ ϑθ(t)
�

(χ(t)ε)2 ∧ 1
�

.

Thus, (H4) holds true with r = q and θ(t) replaced by ϑθ(t). Clearly, such a change of the function
θ(t) does not spoil conditions (H1) – (H3) proved above.

Corollary 4.1. Assume the Lévy measure of the noise satisfy (1.11), (1.5), and “tail” conditions (T1),
(T2). Then

(1) For the Lévy process Z, assuming additionally µ to satisfy (N1) and (C), one has (1.12).

(2) For the fractional Lévy motion ZH , one has (1.13).

5 Explicit asymptotic expressions as x →+∞

Theorem 2.1, Corollary 3.1, and Theorem 4.1 describe the asymptotic behaviour of a distribution
density precisely, but in an implicit form: functions K(t, x), D(t, x),K (x), D(x), involved in (2.13),
(3.21) and (4.7), are defined in terms of the solutions to equations (2.10) or (4.4). In this section
we study the asymptotic behavior of these functions as x → +∞, and deduce explicit asymptotic
expressions for the distribution densities.

In what follows, we mainly discuss the behavior of the functions K (x) and D(x) under additional
assumptions on the Lévy measure µ; without any essential change of the argument, similar results
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can be obtained for the functions K(t, x), D(t, x) with a fixed variable t. To simplify the argument,
we assume in the sequel f to be non-negative. This assumption is satisfied, for instance, for the
Lévy process and the fractional Lévy motion (respective functions f are given in (4.2) and (4.3)).
To shorten the exposition, we restrict ourselves to the cases where the Lévy measure µ is either
“truncated” (i.e. supported in a bounded set, see Example 3.1) or “exponentially damped” (i.e.
having its “tails” satisfying (3.23), see Example 3.2).

We keep the notation introduced in Example 3.1, Example 3.2, and Section 4; in particular, F =
essup f (s), and σ+ is the extreme right point of the support of µ.

Theorem 5.1. Assume the kernel f (t, s) to be of the form (4.1) with θ and χ satisfying (4.6). Assume
that the measure µ satisfies one of the conditions (Ni), and the respective function f (s) in (4.1) satisfies
one of the assumptions (Fi), i = 1, . . . , 4. In the case i = 1, assume additionally µ to satisfy condition
(C).

1. If µ is truncated, then for any constants c1 > 1/(σ+F) and c2 < 1/(σ+F) there exists y = y(c1, c2)
such that, for x/τ(t)> y,

exp
�

−c1

�

x

χ(t)

�

ln
�

x

τ(t)

��

≤ pt(x)≤ exp
�

−c2

�

x

χ(t)

�

ln
�

x

τ(t)

��

. (5.1)

2. If µ is exponentially damped, then for any constants

c2 <

�

β
− 1
β−1 − β−

β

β−1

�− β−1
β

b
1
β F−1 < c1

there exists y = y(c1, c2) such that, for x/τ(t)> y,

exp
�

−c1

�

x

χ(t)

�

ln
β−1
β

�

x

τ(t)

��

≤ pt(x)≤ exp
�

−c2

�

x

χ(t)

�

ln
β−1
β

�

x

τ(t)

��

. (5.2)

Proof. We consider in detail the case of a truncated Lévy measure, and then outline the changes in
the proof that should be made in the case of an exponentially damped Lévy measure.

Denote

M0(ζ) = Ψ(iζ) =

∫

R

∫

R

�

eζ f (s)u− 1− ζ f (s)u
�

µ(du)ds.

Similarly to (3.3), one has

M0(ζ) =

∫

R

M0( f (s)ζ) ds, M0(ξ) :=

∫

R

�

eξu− 1− ξu
�

µ(du).

To describe the asymptotic behavior of K , D, we need to analyze the behavior of Mk, k = 0, 1,2.
For this, we analyze first the behavior of Mk, k = 0,1, 2.

One can easily see that (3.22) holds true for k = 0 as well. From (3.22) we have for any k ≥ 0

Mk(ξ)∼ σk
+M0(ξ), ξ→+∞. (5.3)

Moreover, the first relation in (3.22) provides that for every ε > 0

Mk(ζ)∼
∫

f (s)≥F−ε
f k(s)Mk( f (s)ζ) ds, ζ→+∞, (5.4)
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(recall that we assume f to be non-negative), which together with (5.3) yields

Mk(ζ)∼ F kσk
+M0(ζ), ζ→+∞. (5.5)

Recall that K (y) =M2(ζ(y)), and

D(y) =−yζ(y) +M0(ζ(y)).

The function ζ(y) is defined by the equationM1(ζ(y)) = y and, under our fixed assumption (1.11),
we have ζ(y)→+∞ as y →+∞. Hence, by (5.5),

K (y)∼ Fσ+ y, M0(ζ(y))∼ (1/Fσ+)y, y →+∞. (5.6)

The second relation in the above formula yields

D(y)∼−yζ(y), y →+∞. (5.7)

Similarly to (5.5), one can deduce from (3.22) that for any ε > 0

e(σ+F−ε)ζ�M1(ζ)� e(σ+F+ε)ζ, ζ→+∞,

and consequently

ζ(y)∼
1

σ+F
ln y, y →+∞. (5.8)

Let us prove the lower bound in (5.1), the proof of the upper bound is similar and omitted. It follows
from (5.7) and (5.8) that for any c > 1/(σ+F) we have for x/τ(t) large enough

eθ(t)D(x/τ(t)) ≥ exp
�

−c
�

θ(t)x
τ(t)

�

ln
�

x

τ(t)

��

= exp
�

−c
�

x

χ(t)

�

ln
�

x

τ(t)

��

, (5.9)

(recall that τ(t) = θ(t)χ(t)).

Since µ is supported in a bounded set, it satisfies “tail” conditions (T1), (T2) (see Example 3.1), and
thus we can apply Theorem 4.1. By Theorem 4.1 and (5.9), to prove the first inequality in (5.1) it

is enough to take c ∈
�

1/(σ+F), c1

�

and prove that for x/τ(t) large enough,

1

τ(t)

r

θ(t)
2πK (x/τ(t))

≥ exp
�

(c− c1)
�

x

χ(t)

�

ln
�

x

τ(t)

��

. (5.10)

By (5.6) and (4.6), we have for any q > 0,

1

τ(t)

r

θ(t)
2πK (x/τ(t))

≥
1

θ(t)
e−qx/τ(t) (5.11)

for x/τ(t) large enough. On the other hand, for a fixed y > 1 and x/τ(t)≥ y ,

exp
�

(c− c1)
�

x

χ(t)

�

ln
�

x

τ(t)

��

≤ e−qθ(t)(x/τ(t)) with q = (c1− c2) ln y > 0.
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Hence (5.10) follows from the inequality

1

a
e−qb = e− ln a−qb ≥ e−q(a+b) ≥ e−qab,

valid for a, b large enough.

Let us discuss briefly the changes that should be made when the measure µ satisfies (3.23). Clearly,
for any σ > 0 and k > j,

Mσ
k (ξ)≥ σ

k− j Mσ
j (ξ), ξ≥ 0

(see the notation in Example 3.2). This means that instead of (5.3) and (5.5) we have now

Mk(ξ)� M j(ξ), ξ→+∞, (5.12)

Mk(ζ)�M j(ζ), ζ→+∞ (5.13)

for any k > j. The latter relation with k = 1, j = 0 yields (5.7). From (3.26) and (5.4) it follows
that for every ε > 0 for ζ large enough

e(C∗−ε)ζ
β
β−1 ≤M1(ζ)≤ e(C∗+ε)ζ

β
β−1

,

where C∗ =
�

β
− 1
β−1 − β−

β

β−1

�

b−
1
β−1 F

β

β−1 . Consequently,

ζ(y)∼
�

1

C∗
ln y
�

β−1
β

, D(y)∼−y
�

1

C∗
ln y
�

β−1
β

, y →+∞, (5.14)

which means that the analogue of (5.2), with eθ(t)D(x/τ(t)) instead of pt(x), holds true, and the only
thing we need to verify is that the term

1

τ(t)

r

θ(t)
2πK (x/τ(t))

is negligible. Note that this term is bounded:

sup
t

1

τ(t)

r

θ(t)
2π
= sup

t

1
p

2πχ2(t)θ(t)
<+∞

because θ and χ are assumed to be separated from 0, and by (5.13)

K (x/τ(t)) =M2(ζ(x/τ(t)))�M1(ζ(x/τ(t))) = x/τ(t), x/τ(t)→+∞.

This observation provides the upper bound in (5.2).

On the other hand, it follows from (3.26) that

ln
M2(ξ)
M1(ξ)

� ξ, ξ→+∞

(cf. (5.12)). Similarly to the proof of Lemma 3.2, one can deduce from this relation that

ln
M2(ζ)
M1(ζ)

� ζ, ζ→+∞,
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and consequently
lnK (y)� ζ(y) + ln y, y →+∞.

Together with (4.6) and the first relation in (5.14), this implies (5.11). Repeating the argument
after (5.11), we obtain the lower bound in (5.2).

For the Lévy process Z and the fractional Lévy motion ZH , Theorem 5.1 gives the following. Denote

c∗ = 1/σ+ (5.15)

in the case of the truncated Lévy measure µ, and

c∗ =
�

β
− 1
β−1 − β−

β

β−1

�− β−1
β

b
1
β (5.16)

in the case of the exponentially damped Lévy measure µ.

Corollary 5.1. Assume that the Lévy measure satisfies (N1) and (C), then for the distribution density
of the Lévy process Z the following estimates hold.

1. If µ is truncated, then for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2), such that for
x/t > y (1.17) holds true.

2. If µ is exponentially damped, then for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2),
such that for x/t > y, (1.18) holds true.

Corollary 5.2. Assume that the Lévy measure satisfies (1.11), then for the distribution density of the
fractional Lévy motion ZH the following estimates hold.

1. If µ is truncated, then for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2), such that for
x/tH+1/2 > y (1.19) holds true.

2. If µ is exponentially damped, then for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2),
such that for x/tH+1/2 > y (1.20) holds true.

We have mentioned in the beginning of the section that for fixed t the functions K(t, x), D(t, x)
can be analyzed in the same way as K (x) and D(x). Respectively, the analogue of Theorem 5.1
can be proved for the density pt(x) with fixed t without the self-similarity assumption (4.1). Let us
formulate one statement of such a kind.

Consider the stationary version X of a Lévy driven Ornstein-Uhlenbeck process, and assume that µ
satisfies (N3). Then the distribution of X t , in fact, does not depend on t, and by Proposition 2.1
has a C∞ distribution density p, which we call the invariant distribution density of the respective
Ornstein-Uhlenbeck process. Moreover, assuming the “tail” conditions (T1) and (T2) to hold, we
have by Corollary 3.1 the asymptotic relation for this density, which after trivial transformations can
be written in the form

p(x)∼
1

p

2πK (x)
eD(x), x →+∞, (5.17)

where K , D are defined by (4.5) with f (s) = eγs1Is≤0. Similarly to Theorem 5.1, one can deduce
from (5.17) the following statement (the proof is omitted).
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Proposition 5.1. Assume that the Lévy measure µ satisfies (1.5) and (N3). Then for the invariant
distribution density of the Ornstein-Uhlenbeck process (1.7) the following estimates hold.

1. If µ is truncated, then for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2), such that for
x > y,

exp
�

−c1 x ln x
�

≤ p(x)≤ exp
�

−c2 x ln x
�

.

2. If µ is exponentially damped, then for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2)
such that for x > y,

exp
�

−c1 x ln
β−1
β x
�

≤ p(x)≤ exp
�

−c2 x ln
β−1
β x
�

.

Here c∗ depends on µ only, and is defined, respectively, in (5.15) or (5.16).

As we mentioned in the Introduction, there is a particular theoretical interest in studying the ratio
(1.14) of the values of the invariant distribution density. One can see that the statement of Proposi-
tion 5.1 is not strong enough to provide an exact estimate for the ratio (1.14) because of different
constants c1 and c2, involved in respective estimates. In the theorem below we provide the exact
estimate for the ratio (1.14).

Theorem 5.2. Assume that the Lévy measure µ satisfies (T1), (T2), and (N3).

Then for every bounded set A⊂R

ra(x)∼ e−aζ(x), x →+∞, (5.18)

uniformly in a ∈ A.

In particular, for any constants c1 > c∗ and c2 < c∗ there exists y = y(c1, c2, A), such that for x > y,
a ∈ A,

x−c1a ≤ ra(x)≤ x−c2a (5.19)

when µ is truncated, and

x−c1a ln
− 1
β x ≤ ra(x)≤ x−c2a ln

− 1
β x (5.20)

when µ is exponentially damped. Here c∗ is defined respectively in (5.15) or (5.16).

Proof. By the inverse function theorem,

d

d x
ζ(x) =

�

d

dζ
M1(ζ)

�−1 �
�

�

ζ=ζ(x)
= [M2(ζ(x)]

−1. (5.21)

Then
d

d x
lnK (x) =

M3(ζ(x))
M2(ζ(x))

d

d x
ζ(x) =

M3(ζ(x))

M 2
2 (ζ(x))

.

If µ is supported in a bounded set, then M3(ζ) ∼ (1/σ+)M4(ζ), ζ→ +∞ (see (5.5)). If µ is not
supported in a bounded set, thenM3(ζ)�M4(ζ), ζ→+∞ (see (5.13)). In both cases, we have

d

d x
lnK (x)→ 0, x →∞
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because (T1) provides (Ĥ1) (Lemma 3.1). Thus, for any bounded set A,

K (x + a)
K (x)

= exp

 

∫ x+a

x

d

d y
lnK (y) d y

!

→ 0, x →+∞

uniformly in a ∈ A. Therefore, by (5.17),

ra(x)∼ eD(x+a)−D(x), x →+∞

uniformly in a ∈ A.

We have

D(x + a)−D(x) =−aζ(x)− (x + a)[ζ(x + a)− ζ(x)] +M0(ζ(x + a))−M0(ζ(x)).

Since d
dζ
M0(ζ) =M1(ζ) andM1(ζ(y)) = y , we get

(x + a)[ζ(x + a)− ζ(x)]−M0(ζ(x + a))−M0(ζ(x)) = (x + a)

∫ x+a

x

ζ′(y) d y −
∫ x+a

x

yζ′(y) d y

=

∫ x+a

x

(x + a− y)ζ′(y) d y =

∫ x+a

x

∫ x+a

y

ζ′(y) dvd y =

∫ a

0

∫ a

r

ζ′(x + r) dsdr.

Since µ satisfies (N3) we have (1.11), and thereforeM2(ζ)→+∞, ζ→+∞. By (5.21), this yields

ζ′(x)→ 0, x →+∞.

From the above relations we deduce that

D(x + a)−D(x)→−aζ(x), , x →+∞

uniformly in a ∈ A, which completes the proof of (5.18).

From (5.18) and (5.8) we deduce (5.19). From (5.18) and the first relation in (5.14) we obtain
(5.20).
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