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Abstract

In this article we provide new applications for exponential approximation using the framework of
Peköz and Röllin (2011), which is based on Stein’s method. We give error bounds for the nearly
critical Galton-Watson process conditioned on non-extinction, and for the occupation times of
Markov chains; for the latter, in particular, we give a new exponential approximation rate for
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Erdős-Taylor theorem.
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1 INTRODUCTION

A new framework for estimating the error of the exponential approximation was recently devel-
oped in Peköz and Röllin (2011), where it was applied to geometric sums, Markov chain hitting
times, and the critical Galton-Watson conditioned on non-extinction. In this article we provide some
generalizations to the approach of Peköz and Röllin (2011) and apply them to study Markov chain
occupation times and a result of Erdős and Taylor (1960) for the number of visits to the origin by the
two dimensional random walk, as well as to get a rate for the result of Fahady, Quine, and Vere-Jones
(1971) for the nearly critical Galton-Watson branching process conditioned on non-extinction.

The main result in Peköz and Röllin (2011) that we use is based on Stein’s method (see e.g. Ross
and Peköz (2007) for an introduction) and can be thought of as formalizing the intuitive notion
that a random variable X has approximately an exponential distribution if X and X e are close in
distribution, where X e has the equilibrium distribution with respect to X characterized by

P[X e ¶ x] =
1

EX

∫ x

0

P[X > y]d y. (1.1)

The equilibrium distribution appears in renewal theory as the time until the next renewal starting
from steady-state. A renewal process with exponential inter-renewal times has the exponential
distribution for its equilibrium distribution, and so the above intuition is not surprising. Peköz and
Röllin (2011) give bounds on the accuracy of the exponential approximation in terms of how closely
X and X e can be coupled together on the same probability space; one version of the result we will
use below can be written as

sup
x¾0

�

�P[X > x]− e−x/EX
�

�¶ 2.46
p

E|X − X e|.

Some heuristics for Stein’s method can be understood using size-biased random variables. For a
nonnegative continuous random variable X with probability density function f (x), the size-biased
random variable X s has density x f (x)/EX . The size of the renewal interval containing a randomly
chosen point as well as the number of children in the family of a randomly chosen child are examples
of size-biased random variables; see Brown (2006) and Arratia and Goldstein (2010) for surveys and
applications of size biasing.

Stein’s method for the exponential distribution, as well as for some other nonnegative distributions,
can be viewed in terms of size-biasing. For the Poisson approximation to some random variable
X , the Stein-Chen method (see Barbour, Holst, and Janson (1992)) gives a bound on the error in
terms of how closely X and X s − 1 can be coupled together on the same probability space; these
both have exactly the same distribution when X has a Poisson distribution. For approximation by
a binomial distribution (see Peköz, Röllin, Čekanavičius, and Shwartz (2009)), we can obtain a
bound in terms of how closely X s − 1 and n− (n− X )s can be coupled; both of these have exactly
the same distribution if X is binomial with parameters n and p. For the exponential distribution, we
can obtain a bound on the error in terms of how closely X and UX s can be coupled, where U is an
independent uniform (0,1) random variable independent of all else; X e has the same distribution
as UX s. This last approach is the one we use below for the nearly critical Galton Watson process
conditioned on non-extinction.

The organization of this article is as follows. In Section 2 we give the notation, background and
preliminaries. In Section 3 we consider the setting of a nearly critical Galton Watson branching
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process conditioned on non-extinction. In Section 4 we study general dependent sums, occupation
times for Markov chains and the the number of times the origin is revisited for the two-dimensional
general random walk.

2 PRELIMINARIES

We first define the probability metrics we use below. For two probability distributions F and G define
the Kolmogorov metric as

dK(F, G) = sup
x∈R

�

�F(x)− G(x)
�

�.

If both distributions have finite expectation, define the Wasserstein metric

dW(F, G) =

∫

R

�

�F(x)− G(x)
�

�d x .

We can relate the two metrics using

dK(P, Exp(1))¶ 1.74
p

dW(P, Exp(1));

see e.g. Gibbs and Su (2002).

Central to the approach in Peköz and Röllin (2011) is the equilibrium distribution from renewal
theory, and we next give the definition we use.

Definition 2.1. Let X be a non-negative random variable with finite mean. We say that a random
variable X e has the equilibrium distribution w.r.t. X if for all Lipschitz-continuous f

E f (X )− f (0) = EX E f ′(X e). (2.1)

It is straightforward that this implies (1.1). Indeed for nonnegative X having finite first moment,
define the distribution function

F e(x) =
1

EX

∫ x

0

P[X > y]d y

on x ¾ 0 and F e(x) = 0 for x < 0. Then

E f (X )− f (0) = E

∫ X

0

f ′(s)ds

= E

∫ ∞

0

f ′(s)I[X > s]ds =

∫ ∞

0

f ′(s)P[X > s]ds

so that F e is the distribution function of X e and our definition via (2.1) is consistent with that from
renewal theory.

The size biased distribution will also be used below. We define it as follows.

Definition 2.2. Let X be a non-negative random variable with finite mean. We say that a random
variable X s has the size-biased distribution w.r.t. X if for all bounded f

E
�

X f (X )
	

= EX E f (X s). (2.2)
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It may be helpful in what follows to note that this definition using f (x) = xn immediately gives
E(X s)n = EX n+1/EX . We next present the key result from Peköz and Röllin (2011) that we will use
in the applications that follow.

Theorem 2.1 (Peköz and Röllin (2011), Theorem 2.1). Let W be a non-negative random variable
with EW = 1 and let W e have the equilibrium distribution w.r.t. W. Then, for any β > 0,

dK
�

L (W ), Exp(1)
�

¶ 12β + 2P[|W e −W |> β],

and, if in addition W has finite second moment,

dW
�

L (W ), Exp(1)
�

¶ 2E|W e −W | (2.3)

3 THE NEARLY CRITICAL GALTON-WATSON BRANCHING PROCESS

Consider the Galton-Watson branching process starting from a single particle in generation zero,
where each particle has an independent and identically distributed number of children according
to some distribution having mean m; let Zn be the size of the nth generation. For the critical case
where m = 1 and when EZ2

1 < ∞ and P(Z1 = 0) > 0, it was shown by Yaglom (1947) that the
conditional distribution of Zn/n given Zn > 0 converges as n → ∞ to an exponential distribution.
A corresponding rate of convergence was first proved with the additional condition EZ3

1 < ∞ by
Peköz and Röllin (2011). In the super- and sub-critical cases, respectively when m > 1 and m < 1,
the limiting distributions are very difficult to calculate and are only known explicitly in very special
cases; see e.g. Bingham (1988). Fahady, Quine, and Vere-Jones (1971), however, were able to show
that the limiting distribution of a nearly critical branching process conditioned on non-extinction
converges to the exponential distribution as m → 1 over general classes of offspring distributions.
The following theorem gives explicit error bounds for the exponential approximation for any finite
n and any m 6= 1. To avoid trivial cases, we make the general assumption that

0< P[Z1 = 0]< 1.

Theorem 3.1. Consider a Galton-Watson branching process starting from a single particle at time zero,
and let Zn be the size of the nth generation. Assume P[Z1 ¾ 2] > 0, m = EZ1 6= 1 and EZ3

1 <∞. Let
α= P[Z1 = 1]/P[Z1 ¾ 2],

C = (2+α)2
�

1+ Var Z1+ EZ3
1

�2 (3.1)

and λ= 1/E(Zn|Zn > 0) = P[Zn > 0]/mn. Then

dW
�

L (λZn|Zn > 0), Exp(1)
�

¶ Cη(m, n), (3.2)

where

η(m, n) =
1−m

1−mn +
(1−m)2

m(1−mn)

n−1
∑

j=1

m2 j

1−m j . (3.3)

It seems difficult to directly deduce rates of convergence from (3.3). The following estimates are
more useful (a proof is given in the Appendix).
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Lemma 3.2. For any n¾ 1 and m> 1,

η(m, n)¶ 2(m− 1) +
3+ log(n)

n
, (3.4)

and, for any n¾ 2 and 1
2
¶ m< 1,

η(m, n)¶
�

4− 2 log(1−m)
�

(1−m) +
4+ 2 log(n)

n
. (3.5)

Fahady, Quine, and Vere-Jones (1971) considered classes K(a, b), 0 < a < ∞, 0 < b < ∞, of
offspring distributions such that for all L (Z1) ∈ K(a, b),

(A) EZ3
1 ¶ a, (B) EZ1(Z1− 1)¾ b,

and showed that within each such class the limiting distribution of the conditioned Galton-Watson
branching process converges to the exponential as m→ 1. While retaining (A), it is not too difficult
to see that Condition (B) is equivalent to

(B′) P[Z1 ¾ 2]¾ b′

for some b′ > 0 (it is easy to see that (B′) implies (B)—a proof of the reverse is given in the
Appendix). Hence, it is clear that under these assumptions, the constant C in (3.1) will remain
bounded as m → 1 and hence Theorem 3.1 and Lemma 3.2 give explicit bounds under the condi-
tions of Fahady, Quine, and Vere-Jones (1971). Thanks to our explicit bounds, we can furthermore
weaken the assumptions on the offspring distributions in the sense that the third moment of Z1 may
grow and P[Z1 ¾ 2] → 0 as long as C = o

� 1
m−1

�

if m ↘ 1, respectively, C = o
� −1
(1−m) log(1−m)

�

if
m↗ 1.

Proof of Theorem 3.1. With some modifications, we follow the line of argument from Peköz and
Röllin (2011), which is based on the size-biased branching tree of Lyons, Pemantle, and Peres
(1995).

We assume that the particles in the tree are labeled and ordered. That is, if w and v are two particles
in the same generation, then all offspring of w are to the left of the offspring of v, whenever w is
to the left of v. We start in generation 0 with one particle v0 and let it have a size-biased number
of offspring. Then we pick one of the offspring of v0 uniformly at random and label it v1. For each
of the siblings (the other offspring from the same parent) of v1 we continue with an independent
Galton-Watson branching process with the original offspring distribution. For v1 we proceed as we
did for v0, i.e., we give it a size-biased number of offspring, pick one uniformly at random, label it
v2, and so on.

Denote by Sn the total number of particles in generation n. Denote by Ln and Rn, respectively,
the number of particles to the left (exclusive vn) and to the right (inclusive vn), respectively, of vn.
Denote by Sn, j the number of particles in generation n that stem from any of the siblings of v j (but
not v j itself). Likewise, let Ln, j and Rn, j , respectively, be the number of particles in generation n that
stem from the siblings to the left and right, respectively, of v j . We have the relations Ln =

∑n
j=1 Ln, j

and Rn = 1+
∑n

j=1 Rn, j .
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Next let R′n, j be independent random variables such that

L (R′n, j) =L (Rn, j|Ln, j = 0),

and, with An, j = {Ln, j = 0}, define

R∗n, j = Rn, j IAn, j
+ R′n, j IAc

n, j
= Rn, j + (R

′
n, j − Rn, j)IAc

n, j
.

Define also R∗n = 1+
∑n

j=1 R∗n, j . Below are a few facts that we will subsequently use to give the proof

of the theorem. In what follows, let σ2 = Var Z1 and γ= EZ3
1 .

(i) The size-biased distribution of L (X ) is the same as that of L (X |X > 0);

(ii) Sn has the size-biased distribution of L (Zn);

(iii) vn is uniformly distributed among the particles of generation n;

(iv) L (R∗n) =L (Zn|Zn > 0); (v) E{R′n, j IAc
n, j
}¶ mn− jσ2P[Ac

n, j];

(vi) E{Rn, j IAc
n, j
}¶ mn− jγP[Ac

n, j]; (vii) P[Ac
n, j]¶ m−1σ2P[Zn− j > 0].

(viii) P[Zn > 0]¶ (2+α)
mn(1−m)

1−mn

For (i)-(iv) see Peköz and Röllin (2011). Using independence,

E{R′n, j IAc
n, j
}= ER′n, j P[A

c
n, j]¶ ESn, j P[A

c
n, j]¶ mn− jσ2P[Ac

n, j],

which proves (v). If X j denotes the number of siblings of v j , having the size-biased distribution of
L (Z1) minus 1, we have

E{Rn, j IAc
n, j
}¶ mn− j E{X j IAc

n, j
}¶ mn− j

∑

k

kP[X j = k, Ac
n, j]

¶ mn− j
∑

k

kP[X j = k]P[Ac
n, j|X j = k]

¶ mn− j
∑

k

k2P[X j = k]P[Ac
n, j]

¶ mn− j EX 2
i P[Ac

n, j]¶ mn− jγP[Ac
n, j],

hence (vi). Now,

P[Ac
n, j] = E{P[Ac

n, j|X j]}¶ E{X j P[Zn− j > 0]}= m−1σ2P[Zn− j > 0],

which proves (vii). Finally, using the Corollary on page 356 of Fujimagari (1980), we have

P[Zn > 0]¶ (2+α)
1−m

m−n− 1
,

which is (viii) (note that the result cited is for bounded offspring distribution, but easily extends to
the unbounded case).

Set W = λR∗n, and note that, due to (iv),L (W ) =L (Zn|Zn > 0). Due to (i) and (ii), Sn has the size-
biased distribution with respect to R∗n. Let U be a uniform random variable on [0,1], independent
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of all else. Note that, if Y is a random variable, uniformly distributed on the integers {1, . . . , n},
then Y − U is continuous and uniformly distributed on [0, n]. Observing that, given Sn, Rn has
uniform distribution on {1, . . . , Sn} because of (iii), we therefore deduce that Rn − U has uniform
distribution on [0, Sn]. Hence,L (Rn−U) =L (USn), which implies that we can set W e = λ(Rn−U).
Applying (2.3) and using (v)–(vii), we obtain

E|R∗n− Rn|¶
n
∑

j=1

E{R′n, j IAc
n, j
+ Rn, j IAc

n, j
}

¶
n
∑

j=1

mn− j�σ2+ γ
�

P[Ac
n, j]

¶ σ2+ γ+
n−1
∑

j=1

mn− j�σ2+ γ
�

σ2P[Zn− j > 0]

m

¶ σ2+ γ+
n−1
∑

j=1

mn− j�σ2+ γ
�

σ2(2+α)mn− j(1−m)

m(1−mn− j)

¶ σ2+ γ+
1−m

m
(2+α)

�

σ2+ γ
�

σ2
n−1
∑

j=1

m2 j

1−m j ,

and, using

λ=
P[Zn > 0]

mn ¶
(2+α)(1−m)

1−mn ,

we obtain
E|W −W e|¶ λ/2+λE|R∗n− Rn|¶ Cη(m, n),

which proves (3.2).

4 VISITS TO THE ORIGIN FOR A TWO DIMENSIONAL SIMPLE RANDOM WALK

Exponential approximation results for sums of nonnegative random variables X1, X2, . . . , Xn satisfy-
ing the condition Var(E(X i|X1, . . . X i−1)) = 0 for all i were given in Peköz and Röllin (2011, Theorem
3.1), but not for more general dependent sums. Here we give a construction of the equilibrium dis-
tribution for sums of arbitrarily dependent nonnegative random variables having finite means, apply
it to occupation times for Markov chains and then illustrate it by getting a new exponential approxi-
mation rate for the number of times a general irreducible aperiodic two-dimensional integer-valued
random walk revisits the origin.

Theorem 4.1. Let W = λ
∑n

i=1 X i where X1, X2, . . . , Xn are (possibly dependent) nonnegative random
variables and let λ = 1/E

∑n
i=1 X i . Suppose, for each i and each x, Wi(x) is a random variable such

that

L (Wi(x)) =L
�

λ

i−1
∑

m=1

Xm

�

�

�

�

X i = x
�

.

For each i, let X s
i be a random variable having the size-biased distribution of X i . Let I be independent of

all else with P[I = i] = λEX i and let U be a uniform random variable on (0, 1), independent of all else.
Then WI(X s

I ) + λUX s
I has the equilibrium distribution with respect to W. In particular, if X i ∈ {0, 1}

for all i, we have X s
i = 1 and hence WI(1) +λU has the equilibrium distribution with respect to W.
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Proof. Let Sm = λ
∑m

i=1 X i . By first conditioning on I and U , and using (2.2) andL (Si) =L (Wi(X i))
for the third equality, we obtain

E f ′
�

WI(X
s
I ) +λUX s

I

�

=
n
∑

i=1

λEX i

∫ 1

0

E
�

f ′(Wi(X
s
i ) +λuX s

i )
	

du

=
n
∑

i=1

λ

∫ 1

0

E
�

X i( f
′(Wi(X i) +λuX i))

	

du

=
n
∑

i=1

E
�

f (Wi(X i) +λX i)− f (Wi(X i))
	

=
n
∑

i=1

E
�

f (Si)− f (Si−1)
	

= E f (W )− f (0).

Remark 4.1. The argument goes through in the same way when instead we define

L (Wi(x)) =L
�

λ

n
∑

m=i+1

Xm

�

�

�

�

X i = x
�

.

We next apply the above result to Markov chain occupation times. Our next result gives a bound
on the error of the exponential approximation for the number of times a Markov chain revisits its
starting state. More general asymptotic results of this type, but without explicit bounds on the error,
go back to Darling and Kac (1957).

Corollary 4.2. Consider a Markov chain started at time zero in a state 0 and let X i be the indicator
for the event that the Markov chain is in state 0 at time i. Let Wm = λ

∑m
i=1 X i and λ= 1/E[

∑n
i=1 X i].

Then writing W ≡Wn we have

dW
�

L (W ), Exp(1)
�

¶ 2λ+ 2λ2
n
∑

i=1

n
∑

j=n−i+1

EX i EX j

Proof. Using the notation of the previous Theorem 4.1 and Remark 4.1, in this setting the strong
Markov property gives

L (Wi) =L
�

λ

n
∑

m=i+1

Xm

�

�

�

�

X i = 1
�

=L
�

λ

n−i
∑

m=1

Xm

�

and so we can let

W e = λ
n−I
∑

i=1

X i +λU ,

where P[I = i] = λEX i , and conditioning on I gives

E|W −W e|¶ λ+λ2
n
∑

i=1

n
∑

j=n−i+1

EX i EX j

and then (2.3) gives the result.
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We next consider a general aperiodic irreducible random walk on the two-dimensional integer lattice
started at the origin. As a consequence of Lawler and Limic (2010, p. 24) we have the following
lemma.

Lemma 4.3. Let Zn be an irreducible and aperiodic random walk on Z2 with mean zero and finite
third moment. Then there are positive constants c1 and c2 such that

c1

n
¶ P[Zn = 0]¶

c2

n

for sufficiently large n.

We are now able to give a bound on the error of the exponential approximation for the number of
times the random walk revisits the origin. This type of result, for simple random walk, goes back to
Erdős and Taylor (1960).

Corollary 4.4. Let Zn be an irreducible and aperiodic random walk on Z2 with mean zero and finite
third moment. Let R be the number of return visits to the origin by time n, and let W = λR, where
λ= 1/ER. Then, there is constant C independent of n such that

dW(L (W ),L (Exp(1))¶
C

log n
.

for all n.

Proof. Let Xn = I{Zn=0} be the indicator for the event that the random walk revisits the origin at time
n. Lemma 4.3 gives λ ¶ C/ log n and thus the result follows from Corollary 4.2 and, where C may
be different (but independent of n) in each instance used,

λ2
n
∑

i=1

n
∑

j=n−i+1

EX i EX j ¶
C

(log n)2

n
∑

i=1

i

i(n− i)
¶

C

log n
.

Remark 4.2. The result for the two-dimensional simple random walk

sup
a<x<b

|P[W > x]− e−x |¶
C log log n

log n

for fixed a and b follows from Erdős and Taylor (1960, Eq. (3.10)), so the above corollary can be
viewed as a complement and extension. Using the method of moments, Gärtner and Sun (2009,
Theorem 1.1) give an argument for the analogous exponential limit theorem for general random
walks, but without a rate of convergence.
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A PROOF OF LEMMA 3.2

We first need some simple estimates.

Lemma A.1. Let a, b and c be real numbers, strictly greater than 1, such that

1

a
¶

1

b
+

1

c
¶ 1. (A.1)

Then
log(a)

a
¶

1+ log(b)
b

+
1+ log(c)

c
.

Proof. It is clear from the monotonicity of the logarithm function that for x , y > 0 we have

x log(x) + y log(y)¶ (x + y) log(x + y).

Hence,
(x + y)(1− log(x + y))¶ x(1− log(x)) + y(1− log(y)).

Rewriting this inequality for x = 1/b and y = 1/c, we have

1+ log
� bc

b+c

�

bc
b+c

¶
1+ log(b)

b
+

1+ log(c)
c

.

Noting that 1+log(a)
a

is a decreasing function for a ¾ 1 and noting that a ¾ bc
b+c
¾ 1 from (A.1),

log(a)
a
¶

1+ log(a)
a

¶
1+ log

� bc
b+c

�

bc
b+c

,

which proves the claim.

Let f be a non-negative function on [a, b] for two integers a and b. If f is either increasing,
decreasing or has exactly one minimum, a simple geometric argument yields that

b−1
∑

j=a

f ( j)¶ f (a) +

∫ b

a

f (x)d x (A.2)

(this estimate is not optimal if the function is increasing, but we want to avoid further case distinc-
tions).

Proof of Lemma 3.2 for m> 1. It is straightforward to see that f (x) = m2x/(mx − 1), x > 0, has
exactly one minimum at x0 = log(2)/ log(m), hence f (x) is decreasing on 0< x ¶ x0 and increasing
on x ¾ x0. Using (A.2), we therefore have

n−1
∑

j=1

m2 j

m j − 1
¶

m2

m− 1
+

mn−m+ log
�mn−1

m−1

�

log(m)
,
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which implies that

η(m, n)¶
m− 1

mn− 1
+

m(m− 1)
mn− 1

+
(m− 1)2

�

mn−m
�

m(mn− 1) log(m)

+
(m− 1)2 log

�mn−1
m−1

�

m(mn− 1) log(m)
=: r1+ r2+ r3+ r4.

Recall that
mn− 1

m− 1
=

n−1
∑

k=0

mk ¾ n. (A.3)

This implies that

r1 ¶
1

n
, r2 ¶

m

n
=

m− 1

n
+

1

n
¶ m− 1+

1

n
.

Furthermore, recalling that m− 1¶ m log(m),

r3 ¶
(m− 1)

�

mn−m
�

mn− 1
¶ m− 1.

Finally,

r4 =
(m− 1)2 log

�mn−1
m−1

�

m(mn− 1) log(m)
¶

m− 1

mn− 1
log
�mn− 1

m− 1

�

¶
1+ log(n)

n
.

The last estimate is due to the fact that log(x)/x is clearly bounded by (1+ log(x))/x for x > 1, and
the latter is a decreasing function, and then by applying (A.3). Putting the estimates for r1 through
r4 together proves (3.4).

Proof of Lemma 3.2 for m< 1. Note first that y2

1−y
is increasing on 0 < x < 1, hence f (x) =

m2x/(1−mx) is a decreasing function in x . Applying (A.2),

n−1
∑

j=1

m2 j

1−m j ¶
m2

1−m
+

m−mn+ log
� 1−m

1−mn

�

log(m)
,

which implies that

η(m, n)¶
1−m

1−mn +
m(1−m)

1−mn +
(1−m)2

�

m−mn�

m(1−mn) log(m)

+
(1−m)2log

� 1−m
1−mn

�

m(1−mn) log(m)
=: r1+ r2+ r3+ r4.

As 1−mn

1−m
=
∑n−1

k=0 mk ¾ mnn, we have

1−m

mn +
1−m

1−mn ¶
1−m

mn +
1

mnn
⇒

1−m

1−mn ¶ 1−m+
1

n
. (A.4)

Hence

r1+ r2 ¶ 2(1−m) +
2

n
.
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It is easy to see that r3 ¶ 0. Using now that 1−m¶−2m log(m) for 1
2
¶ m< 1,

r4 =
(1−m)2 log

� 1−m
1−mn

�

m(1−mn) log(m)
¶

2 log
�1−mn

1−m

�

1−mn

1−m

.

Under the restriction 1
2
¶ m < 1 and n ¾ 2, we can now apply Lemma A.1 below for a = 1−mn

1−m
,

b = 1
1−m

and c = n due to (A.4) and we obtain

r4 ¶ 2
�1+ log

� 1
1−m

�

1
1−m

+
1+ log(n)

n

�

.

Putting all the estimates together proves (3.5).

B PROOF THAT CONDITION (B) IMPLIES (B′)

We will show that ¬(B′) implies ¬(B). More specific, under the Condition (A), we show that P[X ¾
2]→ 0 implies EX (X − 1)→ 0.

To do this we need to find a vector of probabilities p0, p1, . . . pn that maximizes

n
∑

k=0

k(k− 1)pk,

subject to the constraints

n
∑

k=0

k3pk ¶ a,
n
∑

k=2

pk ¶ ε, pk ¾ 0, k = 0,1, . . . n,
n
∑

k=0

pk = 1.

This is a linear programming problem with n+ 1 variables and n+ 4 constraints. The constraints
define a simplex and the fundamental theorem of linear programming tells us the maximum is
achieved at a corner point of the simplex where there are n+ 1 binding constraints; this means at
most three of the variables pk can be non-zero at the maximum. As we assume p0 > 0, we have
therefore reduced the problem to just looking at three-point distributions, where one of the three
points is at 0.

We consider first the case where neither points are at 1, where we are now trying to find x , y and
p, q that maximizes

x(x − 1)p+ y(y − 1)q

subject to the constraints

x3p+ y3q ¶ a, p+ q ¶ ε, p, q ¾ 0, x , y ¾ 2.

Since the first constraint gives x ¶ (a/p)1/3 and y ¶ (a/q)1/3 we have

x(x − 1)p+ y(y − 1)q ¶ a2/3p1/3+ a2/3q1/3 ¶ 2a2/3ε1/3→ 0

as ε→ 0 and we get our intended result. The case of a point at y = 1 works out the same way.
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