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Abstract

We derive exact asymptotics of time correlation functions for the parabolic Anderson model with
homogeneous initial condition and time-independent tails that decay more slowly than those of
a double exponential distribution and have a finite cumulant generating function. We use these
results to give precise asymptotics for statistical moments of positive order. Furthermore, we
show what the potential peaks that contribute to the intermittency picture look like and how
they are distributed in space. We also investigate for how long intermittency peaks remain rele-
vant in terms of ageing properties of the model.

Key words: Parabolic Anderson model, Anderson Hamiltonian, random potential, time correla-
tions, annealed asymptotics, intermittency, ageing.

AMS 2010 Subject Classification: Primary 60K37, 82C44; Secondary: 60H25.

Submitted to EJP on October 7, 2010, final version accepted July 12, 2011.

1Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623
Berlin, Germany, jg@math.tu-berlin.de, schnitzler@math.tu-berlin.de

2The work was supported by the DFG International Research Training Group Stochastic Mod-
els of Complex Processes

1519

http://www.math.washington.edu/~ejpecp/


1 Introduction

1.1 The parabolic Anderson model

The parabolic Anderson model (PAM) is the heat equation on the lattice with a random potential,
given by

(

∂
∂ t

u(t, x) = κ∆u(t, x) + ξ(x)u(t, x), (t, x) ∈ (0,∞)×Zd ,

u(0, x) = u0(x), x ∈Zd ,
(1)

where κ > 0 denotes a diffusion constant, u0 a nonnegative function, and ∆ the discrete Laplacian,
defined by

∆ f (x) :=
∑

y∈Zd :
|x−y|1=1

�

f (y)− f (x)
�

, x ∈Zd , f : Zd →R.

Furthermore, ξ :=
¦

ξ(x), x ∈Zd
©

is a random potential. The solution to (1) admits the following
Feynman-Kac representation (see [GM90, Theorem 2.1]),

u(t, x) = Ex exp

¨

t
∫

0

ξ
�

Xs
�

ds

«

u0
�

X t
�

, (t, x) ∈ [0,∞)×Zd ,

where X is a simple, symmetric, continuous time random walk with generator κ∆ and Px (Ex)
denotes the corresponding probability measure (expectation) if X0 = x a.s.

The solution u depends on two effects. On the one hand, the Laplacian tends to make it flat, whereas
the potential causes the occurrence of small regions where almost all mass of the system is located.
The latter effect is called intermittency. It turns out that, the more heavy tailed the potential tails
are, the more dominant it becomes. These regions are often referred to as intermittency islands, and
the solution u(t, ·) develops high peaks on these islands. Commonly the almost sure behaviour of
u is referred to as “quenched”, whereas the behaviour after averaging over the potential ξ is called
“annealed”.

In this paper we will restrict to the case that we have the homogeneous initial condition u0 ≡ 1,
and that the potential is i.i.d. In this form the PAM was introduced in [GM90] where existence and
uniqueness of the solution have been investigated as well as first order asymptotics for the statistical
moments and for the almost sure behaviour of the solution. An overview of the rich literature and
recent results on the PAM can be found in [GK05]. Applications of the PAM are summarised for
instance in [M94].
In Section 1.2 we formulate our main results.

1.2 Main results

In this paper we deal with potential tails that decay more slowly than those of a double exponen-
tially (Gumbel) distributed variable X , e.g. P(X > r) = exp{−er} but still have a finite cumulant
generating function. Examples that satisfy all conditions that we impose later include the Weibull
distribution, i.e., P(X > h) = hγ for γ ∈ (1,∞). Hence, we are in the first universality class in
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the classification of [HKM06]. This class was studied in [GM98], where some little evidence was
gained that the main contribution to the moments of the solution comes from delta-like peaks in
the ξ-landscape, which are far away from each other. Among other results, they derived the first
two terms of the logarithmic asymptotics for the moments of the total mass of the solution. One
main result of the present paper, see Section 1.2.2, are the exact asymptotics of these moments. Fur-
thermore, we give a generalisation to more complex functions of the solution evaluated at different
times, see Section 1.2.1.

Another main result, see Section 1.2.3, describes the height of the intermittency peaks that deter-
mine the annealed behaviour. Furthermore, we prove that the complement of the intermittency
islands is indeed negligible with respect to the peaks. Since we consider the homogeneous initial
condition u0 ≡ 1, we will investigate the solution in extremely large boxes in which many of these
peaks contribute.

Another aspect that we study in this paper are ageing properties of the model. To this end, we
compare two notions of ageing, one in terms of time correlations and one in terms of stability of
intermittency peaks. In particular, we analyse mixed moments of the solution on two time scales.

Let us formulate more precisely our main assumptions and introduce some notation. By 〈.〉 we
denote expectation with respect to ξ. The corresponding probability measure is denoted by P. Let
F̄(h) := P (ξ(0)> h) denote the tail of ξ(0) and ϕ := − log F̄ . Furthermore, let H(t) := log

¬

etξ(0)
¶

be the cumulant generating function of ξ(0). We will make the following assumption on the tails of
ξ:

Assumption (F):

i) If x 6= y , then for all c > 0,

P
�

ξ(x) + ξ(y)
2

> h− c
�

= o
�

F̄(h)
�

, h→∞.

ii) H(t)<∞ for all t ≥ 0.

Item ii) is equivalent to the existence of moments of the solution of all orders, see [GM90]. Item
i) means that it is much more likely to have one very high peak than to have two quite high peaks.
Under Assumption (F) we know that limt→∞H(t)/t =∞, i.e., the potential is unbounded to infinity.

To keep the proofs as simple as possible we assume that ξ is bounded from below although analo-
gous results hold true if the potential is unbounded from below. This allows us to assume without
loss of generality that essinf ξ = 0. If essinf ξ = c, we can use the transformation u 7→ ec tu, which
shifts essinf ξ to the origin.

1.2.1 Time correlations

Theorem 1 provides us with a formula how to compute asymptotically the time correlations for
regularly varying functions of the solution u. It is also the main proof tool for all further applications.
Spatial correlations for potentials with double exponential or heavier tails can be found in [GdH99],
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whereas time correlations have not been investigated so far. Let QR := [−dRe, dRe]d ∩Zd be the d-
dimensional centered lattice cube of radius dRe ≥ 1 and let

bξR := max
x∈QR\{0}

ξ(x).

We impose free and zero boundary conditions on the boundary of QR, denoted by ∗ = f and ∗ = 0,
respectively. The corresponding Laplacians are denoted by ∆∗R, that is, for f : QR→R,

∆f
R f (x) =

∑

y∈QR : y∼x

( f (y)− f (x)), ∆0
R f (x) =

∑

y∈Zd : y∼x

( f (y)− f (x)),

where for∆0
R f we extend f trivially toZd with the value zero. Zero boundary conditions correspond

to ξ(x) = −∞ for x /∈ QR. Its law and expectation will be denoted by PR,0
x and ER,0

x , respectively.
The random walk generated by ∆f

R just remains at its current site at the boundary when the random
walk generated by ∆ would jump out of QR. Its law and expectation will be denoted by PR,f

x and
ER,f

x , respectively. The corresponding Dirichlet form is given by

�

−∆f
Ru, u

�

QR
=

∑

{x ,y}∈QR :
|x−y|1=1

�

u(x)− u(y)
�2.

Let λR,∗
1 = λR,∗

1 (ξ) be the principal (i.e., largest) eigenvalue of the Anderson Hamiltonian H ∗
R :=

κ∆∗R+ ξ on `2 �QR
�

with free and zero boundary condition, respectively.

Recall that regularly varying functions are those positive functions f that can be written as xγL(x),
where γ ∈R is called the index of variation and L is a slowly varying function called slowly varying
part of f .

Let R ,Rγ and R+ be the set of regularly varying functions, regularly varying functions with index
of variation γ, and regularly varying functions with positive index of variation, respectively, with
non-decreasing or bounded away from zero and infinity, regularly varying part. Let

F :=
§

f ∈ C1 : f ∈ R+, f ′(x)> 0∀x > 0, f (0) = 0, lim
t→∞

f (t) =∞
ª

and
T :=

§

f ∈ C1 : f ′ > 0∀x > 0, f (0) = 0, lim
t→∞

f (t) =∞
ª

.

Remark. The fact f ∈ R+ already implies that lim
t→∞

f (t) =∞, see [BGT87, Proposition 1.5.1].

Theorem 1 (Time correlations). Let Assumption (F) be satisfied. Furthermore, let f1, . . . , fp ∈ F and
t1, . . . , tp ∈ T be given such that for all a ≥ 0,

max
1≤ j≤p

et j(t)a = o
�

min
1≤i≤p

¬

fi

�

et i(t)ξ(0)
�¶

�

, as t →∞. (2)
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Then for every R≥ 1 and 0< C < 1< C <∞ we find that for all c, t large enough,

C

∞
∫

c

�

d

dh

p
∏

i=1

fi

�

et i(t)h
�

�

P
�

λR,0
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

dh

≤
� p
∏

i=1

fi
�

u
�

t i(t), 0
��

�

≤ C

∞
∫

c

�

d

dh

p
∏

i=1

fi

�

et i(t)h
�

�

P
�

λR,f
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

dh.

Condition (2) determines of what order the functions t i can be chosen. It is always possible to
choose max t i = a ·min t i , a > 0.

Note that Assumption (F) is given in terms of the distribution of the potential, while the asymptotics
themselves are expressed in terms of the conditional distribution of the eigenvalues. The asymptotics
may be understood as follows. A Fourier expansion in terms of the eigenvalues of H ∗

R yields that

u(t, ·)≈ etλR,∗
1 (ξ)

�

eR,∗
1 ,1

�

eR,∗
1 (·), (3)

where eR,∗
1 is the positive `2-normalised principal eigenfunction. Under Assumption (F), it turns out

that the eigenfunction eR,∗
1 is extremely delta-like peaked. Due to the the requirement bξR ≤ h− c,

the peak centre lies in the origin since ξ(0) and λR,∗
1 (ξ) differ by at most 2dκ.

1.2.2 Exact moment asymptotics

Our first application of Theorem 1 are exact asymptotics for all moments of positive order. The
second order asymptotics for integer moments for a large class of potentials, including the ones that
satisfy Assumption (F), can be found in [GM98]: For any p ∈N,

〈u(t, 0)p〉= eH(pt)−2dκpt eo(t), t →∞.

We now present much finer asymptotics which are even up to asymptotic equivalence. To the best
of our knowledge, this precision has not yet been achieved for the PAM.
We need the tails of the principal eigenvalue, conditional on having an extremely high peak at the
origin:

ϕ∗R(h) :=− logP
�

λR,∗
1 (ξ)> h

�

�

�

bξR ≤ hα
�

.

Here α is picked according to the following condition which is slightly stronger than Assumption
(F).

Assumption (F*):

i) ∃α < 1: F̄(h) · F̄(hα) = o
�

F̄(h+ 2dκ)
�

, h→∞.

ii) H(t)<∞ for all t ≥ 0.
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Let ht be a solution to
sup

h∈(0,∞)

�

th−ϕ(h)
�

= tht −ϕ
�

ht
�

=:ψ(t).

If ϕ is ultimately convex, then ht is unique for any large t.
Now we introduce a condition on the function ϕ(h) = − logP(ξ(0) > h). A function f (t) = o(t) is
called self-neglecting if

f
�

t + a f (t)
�

∼ f (t), t →∞, (4)

locally uniformly in a ∈ (0,∞). The convergence in (4) is already locally uniform in a if f is
continuous (see for instance [BGT87, Theorem 2.11.1]).
Let hR,∗

t be a solution to

sup
h∈(0,∞)

�

th−ϕ∗R(h)
�

= thR,∗
t −ϕ

∗
R

�

hR,∗
t

�

=:ψ∗R(t).

If ϕ is ultimately convex, then hR,∗
t is unique for any large t.

Condition (B): The map t 7→
p

ϕ′′
�

ht
�

is self-neglecting.

Again Condition (B) and Assumption (F*) concern ξ and not λR
1.

Theorem 2 (Moment asymptotics). Let ϕ ∈ C2 be ultimately convex, Assumption (F*) and Condition
(B) be satisfied and p ∈ (0,∞). Then, for any sufficiently large R,

〈u(t, 0)p〉 ∼ exp

(

pthR,∗
pt −ϕ

∗
R(h

R,∗
pt ) + log pt +

1

2
log

π

(ϕ∗R)
′′(hR,∗

pt )

)

, t →∞.

We see from (3) and Theorem 1 that Theorem 2 basically follows from an application of the Laplace
method.

Note that Weibull tails with parameter γ > 1 satisfy both Condition (F*) and Condition (B). For
γ ∈ (1, 3), we give an explicit identification of all terms of the asymptotics, see Corollary 22.

1.2.3 Relevant potential peaks and intermittency

While originally intermittency was studied by comparing the asymptotics of successive moments of
u, there have recently been efforts to describe intermittency in a more geometric way by determining
time dependent random sets in Zd in which the solution is asymptotically concentrated. These sets
are closely related to the support of the leading eigenfunctions of the Anderson Hamiltonian. Clearly,
the quenched intermittency picture differs from the annealed one. The height of the quenched
intermittency peaks is basically determined by the almost sure growth of the maximal potential
peak in a time-dependent box. Its radius depends on the distance that the random walk in the
Feynman-Kac representation can make by time t. In [GKM07] the authors describe the geometry of
the quenched intermittency peaks for the localised initial condition u0 = δ0. They find that size and
shape of the islands are deterministic, whereas number and location are random. They also give
rough bounds on the number and location. They show that under Assumption (F) the quenched
intermittency peaks consist of single lattice points.
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In contrast, the annealed peaks are significantly higher and occur less frequently. Their geometry
has not been investigated so far. Theorem 3 below determines the height of those potential peaks
that contribute to the annealed intermittency peaks, and it proves that the complement contributes
a negligible amount. It turns out that the peaks consist of single lattice points as well.

We will assume from now on that the box QLt
is chosen so large that the following weak law of large

numbers holds true, see [BAMR07, Theorem 1]:

1

|QLt
|

∑

x∈QLt

u(t, x)∼ 〈u(t, 0)〉 , as t →∞, in probability. (5)

To this end, it is sufficient to pick L(t) much larger than exp {H(t)}. Let

Υa
t =



ht −
a

p

ϕ′′(ht)
, ht +

a
p

ϕ′′(ht)



 , a > 0.

In our result it turns out that the set of intermittency peaks may be taken as the set of those sites in
which the potential height lies in Υa

t :

Theorem 3 (Intermittency). Let Assumption (F*) and Condition (B) be satisfied. Then for every ε > 0
there exists aε such that

lim
t→∞

P

�

1−

∑

x∈QLt

u(t, x)1ξ(x)∈Υa
t

∑

x∈QLt

u(t, x)
> ε

�

=

(

1 if a < aε,

0 if a > aε.

The locations of the peaks form a Bernoulli process, see Corollary 24 for details.

1.2.4 Ageing

In this section, we present our results on the dynamic picture of intermittency in the PAM. We
will investigate two types of ageing behaviours, correlation ageing and intermittency ageing. While
the first type gives only rather indirect information about the intermittency peaks, intermittency
ageing explicitly describes for how long the intermittency peaks remain relevant. Nevertheless, both
approaches give very similar results.

Roughly speaking, a system is ageing if the time it spends in a certain state increases as a function
of its current age. An overview of the topic of ageing can be found, for instance, in [BA02]. For the
PAM, there have been two approaches. In the case of a (time-dependent) white noise potential ξ
as defined in [CM94], a variant of correlation ageing was investigated in [DD07] and [AD11]. The
authors found that there is no ageing.

In [MOS10] the authors consider a localised initial condition and a time-independent i.i.d. potential
with Pareto-distributed tails. They find that intermittency ageing holds. Their proofs rely on the two
cities theorem proved in [KLMS09, Theorem 1.1] which states that, at any sufficiently late time, all
the mass is concentrated in no more than two lattice points, almost surely.

Let us describe our result on intermittency ageing. As we know from Theorem 3, there are infinitely
many intermittency peaks in our setting, possibly due to the homogeneous initial condition and to
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the lighter tails, so we have to use a modified definition and different techniques. To define the
notion, introduce, for a scale function s : (0,∞)→ (0,∞),

As(t) := P

�

�

�

�

�

�

∑

x∈QLt+s(t)

u(t, x)1ξ(x)∈Υa
t

∑

x∈QLt+s(t)

u(t, x)
−

∑

x∈QLt+s(t)

u(t + s(t), x)1ξ(x)∈Υa
t

∑

x∈QLt+s(t)

u(t + s(t), x)

�

�

�

�

�

< ε

�

, t > 0.

Recall that QLt+s(t)
is chosen such that the weak law of large numbers from (5) holds. We will

consider only a > aε as in Theorem 3. Roughly speaking, As measures whether those potential
points that are intermittency peaks at time t are still relevant after time t + s.

We define intermittency ageing by requiring that for any small ε > 0 there is a > 0 and two scale
functions s1, s2 satisfying limt→∞ s1(t) = limt→∞ s2(t) =∞ such that

lim
t→∞
|As1
(t)−As2

(t)|> 0, (6)

i.e., the two limits of As1
and As2

both exist and are different.

By the length of intermittency ageing we understand the class of functions

A :=
§

s : R→R: lim
t→∞

s(t) =∞,∃θ ∈ (0,∞): lim
t→∞
|As(t)−Aθ s(t)|> 0

ª

.

Theorem 4 (Intermittency ageing). . Let Assumption (F*) and Condition (B) be satisfied. Then
the PAM ages in the sense of intermittency ageing if and only if limt→∞H ′′(t) = 0. In this case
A 3 1/

p

H ′′(t) = o(t).

For the study of correlation ageing we investigate the following time correlation coefficient

A f (s, t) = corr
�

f
�

u(t, 0)
�

, f
�

u(t + s(t), 0)
�

�

=
cov
�

f
�

u(t, 0)
�

, f
�

u(t + s(t), 0)
�

�

q

var
�

f
�

u(t, 0)
�

�

var
�

f
�

u(t + s(t), 0)
�

�

.

Here f ∈ C is a strictly increasing function with limt→∞ f (t) = ∞.We define correlation ageing by
requiring that there exist two scale functions s1, s2 satisfying limt→∞ s1(t) = limt→∞ s2(t) =∞ such
that

lim
t→∞
|A f (s1, t)− A f (s2, t)|> 0. (7)

By the length of correlation ageing we understand the class of functions

A :=
§

s : R→R: lim
t→∞

s(t) =∞,∃θ ∈ (0,∞): lim
t→∞
|A f (s, t)− A f (θ s, t)|> 0

ª

.

Theorem 5 (Correlation ageing). Let Assumption (F*) and Condition (B) be satisfied and ϕ ∈ C2 be
ultimately convex. Then the PAM ages for f (x) = x p, p ∈ R+ in the sense of correlation ageing if and
only if lim

t→∞
H ′′(t) = 0. In this caseA 3 1/

p

H ′′(t) = o(t).

Notice that for both definitions ageing happens for lighter tails. In Theorem 27 we show that
Theorem 5 can be extended to more general potentials if we weaken the requirement (7).
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1.3 Overview

In Section 2 we prove Theorem 1 which forms the basis of this paper. In Section 3 we show how the
conditional probability in Theorem 1 can be evaluated. After that we will give several applications.
In Section 4 we apply Theorem 1 to prove Theorem 2 and to derive exact asymptotics for statistical
moments and more general functionals of the PAM. In Section 5 we prove Theorem 3. We conclude
how the intermittency peaks are distributed in space and give precise estimates on their frequency.
In Section 6 we investigate the ageing behaviour of the PAM and prove Theorems 4, 5 and 27.

2 Time correlations

In this section we prove Theorem 1. The strategy of the proof is to show that asymptotically only
those realisations of the potential ξ contribute to the expectation

¬
∏p

i=1 fi
�

u
�

t i(t), 0
��

¶

, where

the highest potential peak ξ(1)R in the large centered box QR is significantly higher than the second

one, and where ξ(1)R is located in the origin. It turns out that for those realisations we can neglect all
eigenpairs but the principal one in the spectral representation, and the first eigenfunction becomes
delta like. We will see that it is sufficient to consider a large box with time independent size. The
following universal bounds are always true (see for instance [GM90, Theorem 3.1] and [GM98,
Proof of Theorem 2.16]).

Lemma 6. Let t ≥ 0 then for every R> 1 and p ∈N,

i) λR,∗
1 (ξ)≤ ξ

(1)
R ≤ λ

R,∗
1 (ξ) + 2dκ,

ii) eH(pt)−2dκpt ≤ 〈u(t, 0)p〉 ≤ eH(pt).

Remark. The lower bound in Lemma 6 ii) can be proven by forcing the random walk X from the
Feynman-Kac representation to stay in the origin up to time t. Hence, it remains true if we re-
place the power function by an arbitrary nonnegative function f . Then it reads

¬

f (etξ(0)−2dκt)
¶

≤



f
�

u(t, 0)
��

.

Now we show that we can restrict our calculations to an increasing box QR
bt

with zero boundary
conditions where Rt := t log2 t and bt := maxi=1,...,p t i . By τU := inf

�

t > 0: X t ∈ U
	

we denote the
first hitting time of a set U by the random walk X . For x ∈Zd we write τx instead of τ{x}. Let uR be
the solution to the PAM in QR with Dirichlet boundary conditions. Its Feynman-Kac representation
is given by

uR (t, x) = Ex exp

¨

t
∫

0

ξ(Xs)ds

«

1τQc
R
≥t , (t, x) ∈ [0,∞)×Zd .

Proposition 7. Let ξ be i.i.d., non-negative and unbounded from above. If f1, . . . , fp ∈ F and
t1, . . . , tp ∈ T , then

*

p
∏

i=1

fi
�

u
�

t i(t), 0
��

+

∼

*

p
∏

i=1

fi

�

uR
bt(t)

�

t i(t), 0
�

�

+

, t →∞.
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Proof. Let

euR (t, x) := u (t, x)− uR (t, x) = Ex exp

¨

t
∫

0

ξ(Xs)ds

«

1τQc
R
<t , (t, x) ∈ [0,∞)×Zd .

Then for every δ > 0 we find that
*

p
∏

i=1

fi
�

u
�

t i , 0
��

+

=

*

p
∏

i=1

fi

�

uR
bt

�

t i , 0
�

+ euR
bt

�

t i , 0
�

�

�

1∀i : euR
bt
(t i ,0)≤δuR

bt
(t i ,0) +1∃i : euR

bt
(t i ,0)>δuR

bt
(t i ,0)

�

+

≤
∑

T∈P (p)

*

∏

i∈T

fi

�

uR
bt

�

t i , 0
�

(1+δ)
�
∏

j∈T c

f j

�

euR
bt

�

t j , 0
�

�

1+
1

δ

��

+

. (8)

Here P (p) denotes the power set of {1, . . . , p} and T c denotes the complement of T within
{1, . . . , p}. Since all fi are regularly varying, it follows that for every θ > 1 there exists δ = δ(θ)
with lim

θ→1
δ(θ) = 0, and Cθ such that

max
i=1,...,p

fi
�

(1+δ)u
�

fi (u)
≤ θ , u> Cθ . (9)

Now choose θ > 1 arbitrary and fix δ > 0 such that (9) is satisfied.
Because all fi are also increasing to infinity we get for large t,

*

p
∏

i=1

fi

�

uR
bt

�

t i , 0
�

(1+δ)
�

+

≤ θ

*

p
∏

i=1

fi

�

uR
bt

�

t i , 0
�

�

+

+
p
∏

i=1

fi
�

(1+δ)Cθ
�

. (10)

Since almost surely uR
bt

�

t i(t), 0
� t→∞−→ ∞ for all i, we can apply Fatou’s lemma and see that the

asymptotic behaviour of the right hand side of (10) is determined by

θ

*

p
∏

i=1

fi

�

uR
bt

�

t i , 0
�

�

+

.

By similar arguments we find that there exists Cu such that for sufficiently large t,
*

∏

i∈T

fi

�

uR
bt

�

t i , 0
�

(1+δ)
�
∏

j∈T c

f j

�

euR
bt

�

t i , 0
�

�

1+
1

δ

�

�

+

≤ Cu

*

∏

i∈T

fi

�

uR
bt

�

t i , 0
�

�
∏

j∈T c

f j

�

euR
bt

�

t i , 0
�

�

+

.

In a next step we show that

lim
t→∞

*

∏

i∈T
fi

�

buR
bt

�

t i , 0
�

�
∏

j∈T c
f j

�

euR
bt

�

t i , 0
�

�

+

*

∏

i∈T
fi
�

u(t i , 0)
�
∏

j∈T c
f j

�

u(t j , 0)
�

+ = 0. (11)
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For simplicity we only look at limt→∞



f1
�

eu(t, 0)
��

/



f1
�

u(t, 0)
��

which may easily be generalised.
Recall that f1 is regularly varying, so it can be written as f1(x) = xβ L(x), for some β > 0 and some
slowly varying function L. By forcing the random walk in the Feynman-Kac formula to stay in the
origin up to time t we find that




f1
�

u(t, 0)
��

=
¬

u(t, 0)β L
�

u(t, 0)
�

¶

≥



exp{β tξ(0)− 2dκβ t}L
�

u(t, 0)
��

.

Furthermore, together with [GM98, Lemma 2.5] we find that



f1
�

eu(t, 0)
��

≤
®

�

exp{tξ(1)QRt
}P0

�

τQc
Rt
≤ t
�

�β

L
�

eu(t, 0)
�

¸

=

*

�

∑

x∈QRt

exp{tξ(x)}1
ξ(x)=ξ(1)QRt

P0

�

τQc
Rt
≤ t
�

�β

L
�

eu(t, 0)
�

+

≤max(1, |QRt
|β−1)

∑

x∈QRt

®

�

exp{tξ(x)}2d+1 exp
�

−Rt log
Rt

κd t
+ nRt

��β

L
�

eu(t, 0)
�

¸

= 2(d+1)β exp
�

−βRt log
Rt

κd t
+ o
�

Rt log
Rt

κd t

��




exp{β tξ(0)}L
�

eu(t, 0)
��

.

In the third line we use that (due to Jensen’s inequality for β > 1) for any real numbers a1, . . . , an,
and β > 0,

� n
∑

k=1

ak

�β

≤











nβ−1
n
∑

k=1
|ak|β , if β ≥ 1,

n
∑

k=1
|ak|β , if β ≤ 1.

Altogether, this proves (11) since eu≤ u for all t by definition and L is bounded away from zero and
infinity or non-decreasing. Therefore, we can conclude that

rhs of (8)−

*

p
∏

i=1

fi

�

uR
bt

�

t i , 0
�

�

+

= o

 *

p
∏

i=1

fi
�

u
�

t i , 0
��

+!

, t →∞.

Now the claim follows because θ can be chosen arbitrarily close to 1 and because
*

p
∏

i=1

fi

�

uR
bt

�

t i , 0
�

�

+

≤

*

p
∏

i=1

fi
�

u
�

t i , 0
��

+

, t ≥ 0,

is true by the monotonicity and the nonnegativity of f1, . . . , fp, and because uRt
≤ u for all t.

The next lemma allows us to consider only those realisations of the potential where the highest
potential peak is significantly higher than the second one. Let ξ(1)R

bt
≥ ξ(2)R

bt
≥ . . . be an order statistics

of the potential.
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Lemma 8. For all c > 0 and f1, . . . , fp ∈ F , t1, . . . , tp ∈ T satisfying (2),

� p
∏

i=1

fi

�

uf
R
bt

�

t i , 0
�

�

1
ξ
(1)
R
bt
−ξ(2)R

bt
≤c

�

= o
�� p

∏

i=1

fi

�

uf
R
bt

�

t i , 0
�

�

��

, t →∞.

Proof. Let x0, x1 ∈QR
bt

be two arbitrarily chosen points. Then

� p
∏

i=1

fi

�

uf
R
bt

�

t i , 0
�

�

1
ξ
(1)
R
bt
−ξ(2)R

bt
≤c

�

≤
� p
∏

i=1

fi

�

e
t iξ
(1)
R
bt

�

1
ξ
(1)
R
bt
−ξ(2)R

bt
≤c

�

≤
∑

x∈QR
bt

∑

y∈QR
bt
\{x}

� p
∏

i=1

fi

�

et iξ(x)
�

1ξ(x)>ξ(y)≥ξ(x)−c

�

≤ |QR
bt
|2
� p
∏

i=1

fi

�

e
ti
2 (ξ(x0)+ξ(x1)+c)

�

�

Since all fi are regularly varying, they can be written as fi(x) = xβi Li(x), where L1, . . . , Lp are
slowly varying functions and β1, . . . ,βi > 0. Therefore, we find that

|QR
bt
|2
� p
∏

i=1

fi

�

e
ti
2 (ξ(x0)+ξ(x1)+c)

�

�

=
� p
∏

i=1

eβi
ti
2 (ξ(x0)+ξ(x1)+2c)+2d log(bt log2

bt)e−βi
ti
2

c L
�

e−
ti
2

ce
ti
2 (ξ(x0)+ξ(x1)+2c)

�

�

=
� p
∏

i=1

e−βi
ti
2

c+2d log(bt log2
bt)

Li

�

e−
ti
2

ce
ti
2 (ξ(x0)+ξ(x1)+2c)

�

Li

�

e
ti
2 (ξ(x0)+ξ(x1)+2c)

�

︸ ︷︷ ︸

t→∞−→0

fi

�

e
ti
2 (ξ(x0)+ξ(x1)+2c)

�

�

.

Assumption (F) states for c > 2dκ:

For all δ > 0 it exists h0 = h0(δ)> 0 such that for all h> h0 :

P
�

ξ(x0) + ξ(x1)
2

> h− c
�

≤ δP (ξ(0)> h+ 2dκ) .

Furthermore, it follows with Lemma 6 ii) that

� p
∏

i=1

fi

�

uf
R
bt

�

t i , 0
�

�

�

≥

∞
∫

0

p
∏

i=1

fi

�

et ih
�

P (ξ(0)> h+ 2dκ) dh,
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and therefore, since all fi are nonnegative and increasing, and because of (2),

D p
∏

i=1
fi

�

e
ti
2 (ξ(x0)+ξ(x1)+2c)

�E

D p
∏

i=1
fi

�

uf
R
bt

�

t i , 0
�

�E

≤

h0
∫

0

p
∏

i=1
fi

�

et ih
�

P
�

ξ(x0)+ξ(x1)
2

> h− c
�

dh

D p
∏

i=1
fi

�

uf
R
bt

�

t i , 0
�

�E

+δ

≤
h0

p
∏

i=1
fi

�

et ih0
�

D p
∏

i=1
fi

�

uf
R
bt

�

t i , 0
�

�E

+δ
t→∞,δ→0
−→ 0.

Now we prove that the first eigenfunction eR,∗
1 decays at least exponentially fast. To this end we give

probabilistic representations for eR,∗
1 .

Lemma 9. Let ξ(1)R − ξ
(2)
R = c > 2dκ and ξ(1)R = ξ(0). Then

eR,∗
1 (x) = e∗0E

R,∗
x exp

�

τ0
∫

0

�

ξ
�

Xs
�

−λR,∗
1 (ξ)

�

ds
�

, x ∈Zd ,

where e∗0 = e∗0(R) is a normalising constant.

Proof. i) ∗= f. The eigenvalue equation for λR,f
1 (ξ) may be rewritten as

(

κ∆eR,f
1 (x) + (ξ(x)−λ

R,f
1 )e

R,f
1 (x) = 0, x ∈QR\{0} ,

eR,f
1 (0) = ef

0.

Since we are working on a finite state space, we know that ER,f
x τ0 <∞ and because c > 2dκ it also

follows that ξ(x)− λR,f
1 (ξ) < 0 for all x ∈ QR \ {0}, and hence the Feynman-Kac representation of

this boundary problem is given by

eR,f
1 (x) = ef

0E
R,f
x exp

¨

τ0
∫

0

�

ξ
�

Xs
�

−λR,f
1 (ξ)

�

ds

«

.

ii) ∗= 0. Analogously, the eigenvalue equation for λR,0
1 (ξ) may be rewritten as

(

κ∆eR,0
1 (x) + (ξ(x)−λ

R,0
1 )e

R,0
1 (x) = 0, x ∈QR\{0} ,

eR,0
1 (0) = e0

0, e0
1(x) = 0, x /∈QR.

Notice that

ER,0
x exp

�

τ0
∫

0

�

ξ
�

Xs
�

−λR,0
1 (ξ)

�

ds
�

= Ex exp
�

τ0
∫

0

�

ξ
�

Xs
�

−λR,0
1 (ξ)

�

ds
�

1τ0<τ(QR)c
.

Thus, it admits the desired probabilistic representation.
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Let
σ1 := inf

�

t > 0: X t 6= X0
	

be the time of the first jump of X . The stopping time σ1 is exponentially distributed with parameter
2dκ. Now we define recursively

σn := inf
¦

t > 0: X t+σn−1
6= Xσn−1

©

.

The sequence
�

σn, n ∈N
	

is i.i.d. by the definition of X .

Lemma 10. It exists K = K(c) > 0 such that if ξ(0)− bξR > c > 2dκ then eR,∗
1 (x) ≤ Ke−|x | log c

2dκ for
all x ∈QR.

Proof. Using the probabilistic representation of eR,∗
1 from Lemma 9 and because of Lemma 6 we find

that

eR,∗
1 (x)

e∗0
= E

R,∗
x exp

¨

τ0
∫

0

�

ξ(Xs)−λ
R,∗
1 (ξ)

�

ds

«

≤ E
R,∗
x exp

�

τ0(2dκ− c)
	

=
∞
∑

n=1

E
R,∗
x exp

(

(2dκ− c)
n
∑

k=1

σk

)

1
τ0=

n
∑

k=1
σk

≤
∞
∑

n=|x |

�

2dκ

c

�n

=
1

1− 2dκ
c

e−|x | log c
2dκ .

Now we give two facts about regularly varying functions.

Lemma 11. Let f ∈ Rβ be an increasing function and g ∈ C such that lim
t→∞

g(t) =∞.

i) If β > 0, then for any c > 0 there exists C(c) with lim
c→∞

C(c) = 1 such that

∑

x∈Zd

f
�

eg(t)−c|x |
�

∼ C(c) f (eg(t)), t →∞.

ii) For every h: R→R with lim
t→∞

h(t) = 1: lim
t→∞

f (eg(t))
f (eg(t)h(t)) = 1.

Proof. i) It follows from the uniform convergence theorem for regularly varying functions
(see [BGT87, Theorem 1.5.2]) that

∑

x∈Zd

f
�

eg(t)−c|x |
�

= f
�

eg(t)
�
∑

x∈Zd

f
�

eg(t)e−c|x |
�

f
�

eg(t)
�

∼ f
�

eg(t)
�
∑

x∈Zd

e−β c|x | = C(c) f (eg(t)), t →∞.

ii) follows similarly.
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Next we show that we can neglect all eigenvalues but the principal one. To this end we cut off a
time-independent centred inner box QR from the time-dependent box QRt

and put free boundary
conditions on the inner as well as on the outer side of the boundary of QR. The principal eigenvalue
of the outer box will be denoted by λRt\R,f

1 . Under these circumstances it holds almost surely:

max
�

λR,f
1 ,λRt\R,f

1

�

≥ λRt ,∗
1 ≥ λR,0

1 . (12)

The lower bound for λRt ,∗
1 follows immediately from the Rayleigh-Ritz formula. For the upper bound

see for instance [K07, Chapter 5.2]. Recall that λR,∗
1 > λR,∗

2 ≥ · · · ≥ λ
R,∗
|QR|

are the eigenvalues of H ∗
R ,

and that the solution u∗R admits the following spectral representation

u∗R(t, x) =
|QR|
∑

k=1

eλ
R,∗
k t
�

eR,∗
k ,1

�

eR,∗
k (x), (13)

where eR,∗
1 , eR,∗

2 , · · · , eR,∗
|QR|

is a corresponding orthonormal basis of `2 eigenfunctions.

Proposition 12. Let f1, · · · , fp ∈ F , t1, · · · , tp ∈ T , (2) be satisfied, and fix R> 0. Then as t →∞,

1+ o(1)
|QR|

� p
∏

i=1

fi

�

eλ
R,0
1 t i(t)

�
�

�

�ξ
(1)
R = ξ(0)

�

≤
� p
∏

i=1

fi

�

uR
bt(t)
(t i(t), 0)

�

�

≤
1+ o(1)
|QR

bt(t)|

� p
∏

i=1

fi

�

eλ
R,f
1 t i(t)

�
�

�

�ξ
(1)
Rt
= ξ(0)

�

.

Proof. We will restrict to the case p = 1 and write λRt
k instead of λRt ,0

k to keep the notation simple.
Upper bound.
It follows by Lemma 8 that for every c > 0,

¬

f1
�

uRt
(t, 0)

�

¶

=
D

f1
�

uRt
(t, 0)

�

1
ξ
(1)
Rt
−ξ(2)Rt

>c

E

+ o
�

¬

f1
�

uRt
(t, 0)

�

¶

�

, t →∞.

Using the spectral representation (13) of uRt
, we find that there exists C(c) ∈ [1,∞) such that as t

tends to infinity
�

f1
�

uRt
(t, 0)

�

1
ξ
(1)
Rt
−ξ(2)Rt

>c

�

=
∑

x∈QRt

�

f1

� |QRt |
∑

k=1

eλ
Rt
k t(ek,1)e1(0)

�

1
ξ
(1)
Rt
−ξ(2)Rt

>c1ξ(1)Rt
=ξ(x)

�

=
1

|QRt
|

∑

x∈QRt

�

f1

�

eλ
Rt
1 t
�

(e1,1)e1(0) +
|QRt |
∑

k=2

e(λ
Rt
k −λ

Rt
1 )t(ek,1)ek(0)

�

�

1
ξ
(1)
Rt
−ξ(2)Rt

>c

�

�

�ξ
(1)
Rt
= ξ(x)

�

=
1+ o(1)
|QRt
|

C(c)
�

f1
�

eλ
Rt
1 t
�

1
ξ
(1)
Rt
−ξ(2)Rt

>c

�

�

�ξ
(1)
Rt
= ξ(0)

�

≤
1+ o(1)
|QRt
|

C(c)


f1
�

eλ
R,f
1 t
�
�

�

�ξ
(1)
Rt
= ξ(0)

·

.
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Here we use that f1 is increasing, regularly varying (see Lemma 11), and f1(0) = 0. The last
inequality follows from the upper bound in (12). The expression (ek,1)e1(0) becomes delta-like as
c tends to infinity due to Lemma 10. Notice that by the Cauchy-Schwarz inequality and Parseval’s
identity,

|QRt |
∑

k=2

e(λ
Rt
k −λ

Rt
1 )t(ek,1)ek(0)≤ e−c t |QRt

|2 = e−c t+4d log(t log2 t).

It follows by Lemma 11 i) that C(c)
c→∞−→ 1.

Lower bound.
Similarly as for the upper bound we find asymptotically

¬

f1
�

uRt
(t, 0)

�¶

≥


f1
�

uRt
(t)1

ξ
(1)
R =ξ(0)

�·

=
1

|QR|

*

f1

� |QRt |
∑

k=1

eλ
Rt
k t(ek,1)ek(0)

�

�

�

�

�

�

ξ
(1)
R = ξ(0)

+

≥
1+ o(1)
|QR|



f1
�

eλ
R,0
1 t
�
�

�

�ξ
(1)
R = ξ(0)

·

.

The last inequality follows by the lower bound in (12) and arguments similar to those of the upper
bound. Notice that (e1,1)e1(0)≥ (e1, e1) = 1 if ξ(1)Rt

= ξ(0).

Recall that bξR = max
x∈QR\{0}

ξ(x).

Lemma 13. Let f1, . . . , fp ∈ F , t1, . . . , tp ∈ T and (2) be satisfied. Then for R > 0 and c ∈ (2dκ,∞),
as t →∞,

� p
∏

i=1

fi

�

eλ
R,f
1 t i

�
�

�

�ξ
(1)
R
bt
= ξ(0)

�

∼ |QR
bt
|

∞
∫

c

�

d

dh

p
∏

i=1

fi

�

et i(t)h
�

�

P
�

λR,f
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

dh.

Proof. Let F
λ

R,f
1
(h) = P(λR,f

1 > h
�

�ξ
(1)
Rt
= ξ(0)). Integration by parts yields

*

p
∏

i=1

fi

�

eλ
R,f
1 t i

�
�

�

�ξ
(1)
R
bt
= ξ(0)

+

=

∞
∫

0

p
∏

i=1

fi

�

eht i
�

FλR,∗
1
(dh)

=
p
∏

i=1

fi (1) +

∞
∫

0

�

d

dh

p
∏

i=1

fi

�

et ih
�

�

P
�

λR,f
1 > h

�

�

�ξ
(1)
R
bt
= ξ(0)

�

dh.

For c > 2dκ, it follows by Lemma 6 and the law of total probability

P
�

λR,f
1 > h

�

�

�ξ
(1)
R
bt
= ξ(0)

�

=|QR
bt
|
�

P
�

λR,f
1 > h

�

�

�

bξR ≤ h− c
�

P
�

bξR ≤ h− c
�

+P
�

λR,f
1 > h,ξ(1)R

bt
= ξ(0)

�

�

�

bξR > h− c
�

P
�

bξR > h− c
�

�

.
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Furthermore, elementary calculus yields

d

dh

p
∏

i=1

fi

�

et i(t)h
�

=
p
∑

i=1

t i(t)t
′
i(t)e

t i(t)h f ′i
�

et i(t)h
�

p
∏

j=1
j 6=i

f j

�

et j(t)h
�

.

It remains to show

∞
∫

c

et1h f ′1
�

et1h
�

p
∏

j=2

f j

�

et jh
�

P
�

λR,f
1 > h

�

�

�

bξR ≤ h− c
�

P
�

bξR ≤ h− c
�

dh

∼

∞
∫

c

et1h f ′1
�

et1h
�

p
∏

j=2

f j

�

et jh
�

P
�

λR,f
1 > h

�

�

�

bξR ≤ h− c
�

dh, t →∞, (14)

and

∞
∫

0

et1h f ′1
�

et1h
�

p
∏

j=2

f j

�

et jh
�

P
�

λR,f
1 > h,ξ(1)R

bt
= ξ(0)

�

�

�

bξR > h− c
�

P
�

bξR > h− c
�

dh

= o

�

∞
∫

0

et1h f ′1
�

et1h
�

p
∏

j=2

f j

�

et jh
�

P
�

λR,f
1 > h

�

dh

�

, t →∞. (15)

First we show (15).
Assumption (F) implies that for c > 2dκ:

For all δ > 0 it exists h0 = h0(δ)> 0 such that for all h> h0 :

P (ξ(0)> h− c)2 ≤ δP (ξ(0)> h+ 2dκ) .

It follows with (2) and Lemma 6,

lhs of (15)
∞
∫

0
et1h f ′1

�

et1h
�

p
∏

j=2
f j

�

et jh
�

P
�

λR,f
1 > h

�

dh

≤ |QR|
�

h0
∫

0
et1h f ′1

�

et1h
�

p
∏

j=2
f j

�

et jh
�

P (ξ(0)> h− c)2 dh

∞
∫

0
et1h f ′1

�

et1h
�

p
∏

j=2
f j

�

et jh
�

P (ξ(0)> h+ 2dκ) dh

+δ

�

≤ |QR|
�

p
∏

j=1
f j

�

et jh0
�

et1h0

p
∏

j=2
f j (1)

¬

f1
�

et1ξ
�¶

+δ

�

t→∞,δ→0
−→ 0.
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Now we show (14).

Since P(bξR ≤ h− c)dh = (F(h− c))|QR|−1 h→∞−→ 1 for fixed R we find for every ϑ ∈ (0,1) an a =
a(R, c,ϑ) such that

∞
∫

c

et1h f ′1
�

et1h
�

p
∏

j=2

f j

�

et jh
�

P
�

λR,f
1 > h

�

�

�

bξR ≤ h− c
�

P
�

bξR ≤ h− c
�

dh

≥ ϑ

∞
∫

a

et1h f ′1
�

et1h
�

p
∏

j=2

f j

�

et jh
�

P
�

λR,f
1 > h

�

�

�

bξR ≤ h− c
�

dh.

Therefore, it is sufficient to show for every a ≥ 0,

a
∫

c
et1h f ′1

�

et1h
�

p
∏

j=2
f j

�

et jh
�

P
�

λR,f
1 > h

�

�

�

bξR ≤ h− c
�

dh

∞
∫

c
et1h f ′1

�

et1h
�

p
∏

j=2
f j

�

et jh
�

P
�

λR,f
1 > h

�

dh

t→∞−→ 0. (16)

Using the bounds from Lemma 6 for λ∗,R1 and (2), we find

lhs of (16) ≤ exp
�

t(a+ 4dκ) + log t −H(t)
	 t→∞−→ 0. (17)

In the last line we use that limt→∞H(t)/t =∞.

Lemma 14. Let f1, . . . , fp ∈ F , t1, . . . , tp ∈ T and (2) be satisfied. Then for R > 0 and c ∈ (0,∞), as
t →∞,

� p
∏

i=1

fi

�

eλ
0,R
1 t i

�
�

�

�ξ
(1)
R = ξ(0)

�

≥
|QR|

�

1+ o(1)
�

∞
∫

c

�

d

dh

p
∏

i=1

fi

�

et ih
�

�

P
�

λ0,R
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

dh.

Proof. Analog to the proof of Lemma 13 we find

� p
∏

i=1

fi

�

eλ
0,R
1 t i

�
�

�

�ξ
(1)
R = ξ(0)

�

=
p
∏

i=1

fi (1) +

∞
∫

c

�

d

dh

p
∏

i=1

fi

�

et ih
�

�

P
�

λ0,R
1 > h

�

�

�ξ
(1)
R = ξ(0)

�

dh.

Now the claim follows because

P
�

λ0,R
1 > h

�

�

�ξ
(1)
R = ξ(0)

�

≥ P
�

λ0,R
1 > h

�

�

�

bξR ≤ h− c
� P

�

bξR ≤ h− c
�

P
�

ξ
(1)
R = ξ(0)

�

∼ |QR|P
�

λ0,R
1 > h

�

�

�

bξR ≤ h− c
�

, t →∞.

The last asymptotics are proved in the same way as in (14).
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Proof of Theorem 1. The upper bound is an immediate consequence of Propositions 7 and 12 and
Lemma 13, and the lower bound follows from Propositions 7 and 12 and Lemma 14.

Remark. If we only consider integer moments (i.e. fi(x) = x p, p ∈ N), then the proofs can be
simplified and Assumption (F+) below suffices in Theorem 1 because we can use periodic boundary
conditions for the upper bound due to [GM98, Lemma 1.4].

Assumption (F+):

i)
�

F̄(h− c)
�2 = o

�

F̄(h)
�

, h→∞, for all c > 0.

ii) H(t)<∞ for all t ≥ 0.

Remark. Theorem 1 also holds true if we consider the initial condition u0 = δ0 which implies that
in this case for all f ∈ R+,

∑

x∈Zd\{0}




f (u(t, x))
�

= o
�


f
�

u(t, 0)
���

, t →∞.

3 The conditional probability

In this section we investigate how we can calculate P
�

λ∗,R1 (ξ)> h
�

�bξR ≤ h− c
�

. Let

E∗R(h) := κ
∑

|y|1=1

ER,∗
y exp

¨

τ0
∫

0

�

ξ
�

Xs
�

− h
�

ds

«

.

Lemma 15. Let h≥ c > 2dκ. Then

P
�

λR,f
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

=


F̄
�

h+ 2dκ− E∗R(h)
�
�

�

�

bξR ≤ h− c
·

.

Proof. Using the probabilistic representation of eR,∗
1 from Lemma 9, we find that

ξ(0) = λR,∗
1 (ξ) + 2dκ− E∗R

�

λR,∗
1 (ξ)

�

,

whose right hand side is strictly increasing in λR,f
1 . Hence,

λR,∗
1 (ξ)> h ⇐⇒ ξ(0)> h+ 2dκ− E∗R(h).

Now the statement follows immediately.

Lemma 16. If R> 0, |y|1 = 1, n ∈N0 and h> bξR− 2dκ, then
R
∑

k=0

n!
�

n+ 2k

n

�

Py

 

τ0 =
2k+1
∑

l=1

σl

!

(2dκ)2k+1

(h+ 2dκ)n+2k+1

≤
dn

dhnE
R,∗
y exp

¨

τ0
∫

0

�

ξ(Xs)− h
�

ds

«

≤
∞
∑

k=0

n!
�

n+ 2k

n

�

Py

 

τ0 =
k
∑

l=1

σl

!

(2dκ)2k+1

(h+ 2dκ− bξR)n+2k+1
.
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Proof. Let Ym := X m
∑

i=1
σi

be the embedded discrete time random walk. We get

dn

dhnEy exp

¨

τ0
∫

0

�

ξ(Xs)− h
�

ds

«

= Ey exp

¨

(−τ0)
n

τ0
∫

0

�

ξ(Xs)− h
�

ds

«

=
∞
∑

k=0

Ey

�

−
2k+1
∑

l=1

σl

�n

exp

¨ 2k+1
∑

l=1

σl
�

ξ(Yl−1)− h
�

«

1
τ0=

2k+1
∑

l=1
σl

. (18)

Since
2k+1
∑

l=1
σl ∼ Erlang (2k+ 1, 2dκ), we find for z ∈ {0, bξR},

Eye
(z−h)

k
∑

l=1
σl

 

−
k
∑

l=1

σl

!n

=
(2dκ)k

(k− 1)!

∞
∫

0

e(z−h−2dκ)x xn+k−1 dx

=
(n+ k− 1)!
(k− 1)!

(2dκ)k

(h+ 2dκ− z)n+k
.

Now the claim follows because 0≤ ξ(Yl−1)≤ bξR for all Yl−1 6= 0 and because jumptimes and jumps
are independent.

Lemma 17. Let α < 1 and fix R> 0. Then there exists 0< c1, c2 <∞ such that for any large h,

i) F̄
�

h+ 2dκ−
c2

h

�

≤P
�

λR,∗
1 (ξ)> h, bξR < hα

�

�

�

bξR ≤ h− c
�

≤F̄
�

h+ 2dκ−
c1

h

�

,

ii) F̄ ′
�

h+ 2dκ−
c1

h

�

�

1−
c1

(h+ 2dκ)2

�

≤
d

dh
P
�

λR,∗
1 (ξ)> h, bξR < hα

�

�

�

bξR ≤ h− c
�

≤F̄ ′
�

h+ 2dκ−
c2

h

�

�

1−
c2

(h+ 2dκ)2

�

,

iii) F̄ ′′
�

h+ 2dκ−
c2

h

�

�

1−
c1

(h+ 2dκ)2

�2

+ F̄ ′
�

h+ 2dκ−
c1

h

� c1

(h+ 2dκ)3

≤
d2

dh2 P
�

λR,∗
1 (ξ)> h, bξR < hα

�

�

�

bξR ≤ h− c
�

≤F̄ ′′
�

h+ 2dκ−
c1

h

�

�

1−
c2

(h+ 2dκ)2

�2

+ F̄ ′
�

h+ 2dκ−
c2

h

� c2

(h+ 2dκ)3
.
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Proof. By Lemma 16 we find 0< c1 ≤ c2 <∞ such that for |y|1 = 1, any large h, and n ∈N,

c1

(h+ 2dκ)n+1

≤
dn

dhnE
R,∗
y exp

¨

τ0
∫

0

�

ξ(Xs)− h
�

ds

«

(19)

≤
c1

(h+ 2dκ− bξR)n+1
≤

c2

(h+ 2dκ− hα)n+1 ≤
c2

(h+ 2dκ)n+1 .

For large h, Lemma 15 yields

P
�

λR,∗
1 (ξ)> h, bξR < hα

�

�

�

bξR ≤ h− c
�

=
¬

F̄
�

h+ 2d − E∗R(h)
��

�bξR ≤ hα
¶

.

The differentiation lemma guarantees that we can differentiate under the integral.

i) follows by substituting the deterministic estimates (19) in
¬

F̄
�

h+ 2dκ− E∗R(h)
��

�bξR ≤ hα
¶

.

ii) holds because

d

dh

¬

F̄
�

h+ 2dκ− E∗R(h)
�

�

�bξR ≤ hα
¶

=
¬

F̄ ′
�

h+ 2dκ− E∗R(h)
��

1− (E∗R)
′(h)
��

�bξR ≤ hα
¶

.

Now the claim follows by substituting the deterministic estimates (19).

iii) holds because

d2

dh2

¬

F̄
�

h+ 2dκ− E∗R(h)
�

�

�bξR ≤ hα
¶

=
D

F̄ ′
�

h+ 2dκ− E∗R(h)
�

�

1− (E∗R)
′(h)2

�2

+ (E∗R)
′′(h)F̄ ′

�

h+ 2dκ− E∗R(h)
�

�

�bξR ≤ hα
¶

.

Now the claim follows by substituting the deterministic estimates (19).

4 Exact moment asymptotics

In this section we apply Theorem 1 to compute exact moment asymptotics via Theorem 2. To do so
we need to impose Assumption (F*) which is a slightly stronger condition than Assumption (F).
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Lemma 18. Let Assumption (F*) be satisfied. Then there exists α ∈ (0, 1) such that for any R > 0 and
c > 2dκ,



F̄
�

h+ 2dκ− E∗R(h)
�

1
bξR>hα

�

�

�

bξR ≤ h− c
·



F̄
�

h+ 2dκ− E∗R(h)
�

1
bξR≤hα

�

�

�

bξR ≤ h− c
·

h→∞−→ 0. (20)

Proof. Asymptotically, we find

lhs of (20) ≤
F̄(h)P

�

bξR > hα
�

F̄(h+ 2dκ)P
�

bξR ≤ hα
� =

F̄(h)F̄(hα)

F̄(h+ 2dκ)

�

|QR| − 1
�

�

1− e−hαγ
�|QR|−1

︸ ︷︷ ︸

h→∞−→1

h→∞−→ 0.

In the remainder of this section we will give explicit results for the case that the tails of ξ(0) have a
Weibull distribution (i.e. F̄(h) = exp {−hγ}) with parameter γ > 1. One easily checks that Weibull
tails satisfy Assumption (F*) for α > (γ− 1)/γ.

Lemma 19. Let ξ∼ Weibull (γ). Then for any R> 0 and c > 2dκ,

P
�

λR,f
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

= exp
¦

−(h+ 2dκ)γ+ 2dκ2γ(h+ 2dκ)γ−2+O
�

(h+ 2dκ)γ−3
�©

, h→∞.

Proof. It follows from Lemmas 15, 16 and 18 and because the lower and the upper bound in
Lemma 16 are asymptotically equivalent on a exponential scale that for α > (γ− 1)/γ,

P
�

λR,f
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

∼


F̄
�

h+ 2dκ− E∗R(h)
�

1
bξR≤hα

�

�

�

bξR ≤ h− c
·

= exp
¦

−(h+ 2dκ)γ+ 2dκ2γ(h+ 2dκ)γ−2+O
�

(h+ 2dκ)γ−3
�©

, h→∞.

In the last line we use that

�

h+ 2dκ−κ
∑

|y|1=1

ER,f
y exp

¨

τ0
∫

0

�

ξ
�

Xs
�

− h
�

ds

«�γ

= (h+ 2dκ)γ− γ (h+ 2dκ)γ−2
∑

|y|1=1

h+ 2dκ

h+ 2dκ− ξ(y)
+O

�

(h+ 2dκ)γ−4�

and

h+ 2dκ

h+ 2dκ− ξ(y)
=
∞
∑

n=0

�

ξ(y)
h+ 2dκ

�n

= 1+ ξ(y)
�

(h+ 2dκ)−1+O
�

hα(h+ 2dκ)γ−4
��

.

1540



Lemma 20. Let Assumption (F*) be satisfied. Then there exists R0 = R0(F̄) such that for every R> R0
and c > 2dκ,

P
�

λR,f
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

∼ P
�

λR,0
1 (ξ)> h

�

�

�

bξR ≤ h− c
�

, h→∞.

Proof. Using the representation from Lemma 15, we see that we only have to look at those paths
with τ0 ≥ τ(QR)c in the left hand side of (18) in the proof of Lemma 16. In this case the random
walk X must jump at least 2R+ 1 times until it reaches the origin for the first time. Therefore, we
have to consider only those summands in the right hand side of (18) where k ≥ R. Together with
Lemma 18 this yields

Ey exp

¨

τ0
∫

0

�

ξ
�

Xs
�

− h
�

ds

«

1τ0≥τ(QR)c
1
bξR≤h−c = O

�

h−2−2R
�

.

Remark. If ξ∼Weibull(γ), γ > 1, then we can choose R0 >
γ−1

2
.

Now we would like to use a variant of the Laplace method to calculate exact moment asymptotics.
This is possible due to the strong Tauberian theorem, Theorem 21, in the spirit of [FY83]. Recall
that ϕ =− log F̄ .

Theorem 21. Let ϕ ∈ C2 be ultimately convex and Condition (B) be satisfied. Then

exp {H(t)} ∼ exp
�

tht −ϕ(ht)
	

r

2π

ϕ′′(ht)
, t →∞.

Remark. It follows that

H ′(t)∼ ht and H ′′(t)∼ (ht)
′ = 1/ϕ′′(ht), t →∞.

Proof of Theorem 2. We find that all conditions of Theorem 21 are satisfied. Therefore, the claim
follows together with Theorem 1, where we can take p = 1, f1(x) = x p and t1(t) = t.

In particular we find together with Lemma 19 and an asymptotic expansion of hR,∗
t for Weibull tails:

Corollary 22. Let ξ(0)∼Weibull (γ), γ > 1 and p ∈ (0,∞). Then for t →∞,

〈u(t, 0)p〉 = exp
�

�

γ− 1
�

�

p

γ
t
�

γ

γ−1

− 2dκpt + 2dκ2γ

�

p

γ
t
�

γ−2
γ−1

+ log pt +
1

2
log

2π

γ(γ− 1)

�

p

γ
t
�− γ−2

γ−1

+O
�

t
γ−3
γ−1

�

�

.

1541



5 Relevant potential peaks and intermittency

In this section we prove Theorem 3 which tells us what the potential peaks that contribute to the
intermittency picture look like and how frequently they occur. Fix R> 0 and let

eΥa
t :=






hR,∗

t −
a

Æ

(ϕ∗R)
′′(hR,∗

t )
, hR,∗

t +
a

Æ

(ϕ∗R)
′′(hR,∗

t )






, a > 0,

and recall that

Υa
t =



ht −
a

p

ϕ′′(ht)
, ht +

a
p

ϕ′′(ht)



 , a > 0.

Notice that 1/ϕ′′(ht) = (ht)′ and 1/(ϕ∗R)
′′(hR,∗

t ) = (h
R,∗
t )
′.

Lemma 23. Let Assumption (F) and Condition (B) be satisfied, and R be sufficiently large. Then for
every ε > 0 there exists aε such that

lim
t→∞

D

u(t, 0)1λR,∗
1 ∈eΥ

a
t

E

〈u(t, 0)〉

(

> 1− ε if a > aε,

< 1− ε if a < aε.

Proof. Recall that ψ∗R(t) = thR,∗
t −ϕ(h

R,∗
t ). By Theorems 1 and 21 and with the help of a first order

Taylor expansion we see that there exists ηt ∈ eΥa
t such that

D

u(t, 0)1λR,∗
1 ∈eΥ

a
t

E

∼ t

∫

eΥa
t

exp
¦

th−ϕ∗R(h)
©

dh

= t
exp
¦

ψ∗R(t)
©

Æ

(ϕ∗R)
′′(hR,∗

t )

a
∫

−a

exp

¨

−
(ϕ∗R)

′′(ηt)
2(ϕ∗R)

′′(ht)
u2

«

du

∼ t exp
¦

ψ∗R(t)
©

È

2π

(ϕ∗R)
′′(hR,∗

t )

�

Φ(a)−Φ(−a)
�

∼ 〈u(t, 0)〉
�

Φ(a)−Φ(−a)
�

, t →∞.

Here, Φ denotes the distribution function of the standard normal distribution. The asymptotic equiv-
alence in the third line is due to Condition (B).

Since H ′′(t)∼ 1/(ϕ∗R)
′′(hR,∗

t )∼ 1/ϕ′′(ht) as t tends to infinity, Lemma 23 implies that for all a > 0,

|eΥa
t | ∼ |Υ

a
t | �

p

H ′′(t), t →∞.

Proof of Theorem 3. It follows from [GM98] that only those realisations of ξ contribute to the an-
nealed behaviour where λR,∗

1 = ξ
(1)
R −2dκ+o(1). Therefore, we find that hR,∗

t = ht+o(1) and hence
it follows from Lemma 23,

lim
t→∞

D

u(t, 0)1ξ(0)∈Υa
t

E

〈u(t, 0)〉

(

> 1− ε if a > aε,

< 1− ε if a < aε.
.
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Since we have chosen QL(t) sufficiently large, we can apply the weak LLN and find

∑

x∈QL(t)

u(t, x)1ξ(x)∈Υa
t

∑

x∈QL(t)

u(t, x)
P−→

D

u(t, 0)1ξ(0)∈Υa
t

E

〈u(t, 0)〉
,

which completes the proof.

Now we consider the random set

Γa
t :=

¦

x ∈QL(t) : ξ(x) ∈Υa
t

©

.

Furthermore, let Berp be a Bernoulli process on the lattice with parameter p and let

ia
t = exp

¨

−ϕ
�

ht +
a

p

ϕ′′
�

ht
�

�«

.

We find that the spatial picture of the intermittency peaks looks as follows:

Corollary 24. Asymptotically,
Γa

t ∼ Beria
t
, t →∞.

Proof. The fact that Γa
t is a Bernoulli process follows since ξ is i.i.d.

The value of the parameter follows because

P
�

ξ(0) ∈Υa
t

�

= ia
t − i−a

t ∼ ia
t , t →∞.

If ξ(0)∼ Weibull(γ), γ > 1, we find with a first order Taylor expansion around ht that

ia
t = exp

¨

−
�

t

γ

�γ/γ−1

−
at−γ/2(γ−1)

γ1/(γ−1)(γ− 1)1/2
−

1

2
a2

«

.

If we are interested in those potential peaks that are relevant to the p-th intermittency peak (p ∈
(0,∞)), we only have to replace ia

t by ia
pt . It becomes obvious that the p-th intermittency peaks at

time t correspond to the q-th intermittency peaks at time p/q.

6 Ageing

In this section we prove Theorems 4 and 5 to gain a better understanding on how stable the inter-
mittency peaks are.
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6.1 Intermittency Ageing

We start with the first approach.

Proof of Theorem 4. By Theorem 3 we find

lim
t→∞

As(t) = lim
t→∞

P

�

�

�

�

�

�

1−

∑

x∈QLt+s(t)

u(t + s(t), x)1ξ(x)∈Υa
t

∑

x∈QLt+s(t)

u(t + s(t), x)

�

�

�

�

�

< ε

�

.

Recall that 1/
p

ϕ′′(ht) =
p

(ht)′ ∼
p

H ′′(t). Hence, Υa
t =
h

ht −
p

a(ht)′, ht +
p

a(ht)′
i

and there-

fore Υa
t ∩ Υ

a
t+s(t) = ; if and only if ht +

p

a(ht)′ − ht+s +
p

a(ht+s)′ < 0. For s = o(t) a Taylor
expansion yields

ht +
p

a(ht)′− ht+s +
p

a(ht+s)′ =−s(t)(ht)
′�1+ o(1)

�

+ 2
p

a(ht)′
�

1+ o(1)
�

. (21)

If limt→∞H ′′(t) > 0, then limt→∞(ht)′ > 0 and hence, it follows that the right hand side of (21)
becomes eventually negative and therefore, Υa

t ∩ Υ
a
t+s(t) = ; for t large and all s(t) tending to

infinity.
Furthermore, with the help of Fatou’s lemma we see that asymptotically

1

|QLt+s(t)
|

∑

x∈QLt+s(t)

u(t + s(t), x)1ξ(x)∈Υa
t
≤
D

u(t + s(t), 0)1ξ(0)∈Υa
t

E

.

Now we can conclude that

lim
t→∞

As(t) = lim
t→∞

P

�

�

�

�

�

�

1−

D

u(t + s(t), 0)1ξ(0)∈Υa
t

E

〈u(t + s(t), 0)〉

�

�

�

�

�

< ε

�

= 0.

On the other hand, if limt→∞H ′′(t) = 0 then limt→∞(ht)′ = 0 and hence, if s(t) = o
�

1/
p

(ht)′
�

then eventually Υa
t ∩Υ

a
t+s(t) = ; as above, whereas if 1/

p

(ht)′ = o (s(t)) then
limt→∞ |Υa

t4Υ
a
t+s(t)|= 0.

In the first case we can proceed as above, while in the second case we find that asymptotically

1

|QLt+s(t)
|

∑

x∈QLt+s(t)

u(t + s(t), x)1ξ(x)∈Υa
t

∼
1

|QLt+s(t)
|

∑

x∈QLt+s(t)

u(t + s(t), x)1ξ(x)∈Υa
t+s(t)
=
D

u(t + s(t), 0)1ξ(0)∈Υa
t+s(t)

E

, t →∞.

and hence,

lim
t→∞

As(t) = lim
t→∞

P

�

�

�

�

�

�

1−

D

u(t + s(t), 0)1ξ(0)∈Υa
t+s(t)

E

〈u(t + s(t), 0)〉

�

�

�

�

�

< ε

�

= 1.
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Remark. The result remains true if we replace u by up, p ∈ (0,∞).

Corollary 25. Let ξ(0) ∼ Weibull (γ), γ > 1. Then the PAM ages in the sense of intermittency ageing
if and only if γ > 2.

Proof. It follows from Theorem 2 that all conditions of Theorem 4 are satisfied. Now the assumption
follows by Theorem 4 using the asymptotics in Theorem 2.

If we want to know for how long a large peak of height t1 remains relevant, we have to find
t2 = t2(t1, a) such that

ht1
+

a
p

ϕ′′(ht1
)
= ht2

−
a

p

ϕ′′(ht2
)
.

6.2 Correlation Ageing

Now we come to the second approach.

Proof of Theorem 5. For simplicity we will only consider p = 1. Higher powers can be treated anal-
ogously. The PAM is always intermittent for stationary potentials, i.e. the second moments are
growing much faster than the squares of the first moments. Therefore, it holds

lim
t→∞

Aid(s, t) = lim
t→∞

〈u(t, 0)u(t + s(t), 0)〉
p




u(t, 0)2
�


u(t + s(t), 0)2
�

.

It has been shown in [GM90, (3.13)] that 〈u(t, 0)pu(s, 0)p〉 = 〈u(t + s, 0)p〉 for all t, s ≥ 0 if u0 ≡ 1
for p = 1. The claim for p ∈N follows by similar techniques. Therefore, together with Theorem 21
we find

Λp(t) := log 〈u(t, 0)p〉=ψ∗R
�

pt
�

+
1

2
log

2π

(ϕ∗R)
′′(eh∗pt)

+ ε(pt) with ε(t) = o(1).

Under the given assumptions we find as t tends to infinity,

〈u(t, 0)u(t + s(t), 0)〉
p




u(t, 0)2
�


u(t + s(t), 0)2
�

=
〈u(2t + s(t), 0)〉

p

〈u(2t, 0)〉 〈u(2(t + s(t)), 0)〉

= exp
�

Λ1
�

2t + s(t)
�

−
1

2

�

Λ1 (2t) +Λ1
�

2t + 2s(t)
��

�

∼ exp
�

ψ∗R
�

2t + s(t)
�

−
1

2

�

ψ∗R (2t) +ψ∗R
�

2t + 2s(t)
�

�

�

︸ ︷︷ ︸

=:B
�

t,s(t)
�

×exp
�

ε
�

2t + s(t)
�

−
1

2

�

ε (2t) + ε
�

2t + 2s(t)
��

�

︸ ︷︷ ︸

t→∞−→0

×exp

¨

1

2
log

2π

(ϕ∗R)
′′
�

eh∗2t+s(t)

� −
1

4

�

log
2π

(ϕ∗R)
′′
�

eh∗2t

� + log
2π

(ϕ∗R)
′′
�

eh∗2t+2s(t)

�

�«

︸ ︷︷ ︸

=:D
�

t,s(t)
�

.
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It is well known that Λp ∈ C∞ and (ψ∗R)
′′ > 0.

Expanding B
�

t, s(t)
�

into first order Taylor polynomials around 2t + s(t) we see that there exist
η1(t) ∈ [2t, 2t + s(t)] and η2(t) ∈ [2t + s(t), 2t + 2s(t)] such that

B
�

t, s(t)
�

=−
1

2
s(t)2

�

(ψ∗R)
′′�η1(t)

�

+ (ψ∗R)
′′�η2(t)

�

�

.

Using the estimates from Lemma 17, we find that

(ψ∗R)
′′(t)∼ψ′′(t)∼ H ′′(t), t →∞.

Case 1: lim
t→∞

H ′′(t)> 0.

In this case it follows that limt→∞ B
�

t, s(t)
�

=−∞ which implies limt→∞ Aid(s(t), t) = 0, for all s.

Case 2: lim
t→∞

H ′′(t) = 0.

Remember that under Assumption F we have t = o(H(t)) and hence t−1 = o(H ′′(t)).
In this case we find two constants 0< C1 < C2 <∞ such that

−C1H ′′(2t)s(t)2 ≤ B
�

t, s(t)
�

≤−C2H ′′
�

2t + s(t)
�

s(t)2.

Consequently, if we choose s such that limt→∞H ′′
�

2t + 2s(t)
�

s(t)2 = ∞ it follows Aid(s) = 0,
whereas if we choose s such that limt→∞H ′′(2t)s(t)2 = 0 it follows limt→∞ Aid(s, t) = 1.
We observe that 1/

p

H ′′(t) ∈A which implies that both regimes can occur for functions s of order
o(t). Because of Condition (B), we find that 1/(ϕ∗R)

′′
�

eh∗t
�

= o(t) and hence D
�

t, s(t)
�

tends to zero
as t tends to infinity if s = o(t). Theorem 1 is applicable for s = o(t) and implies that

¬

u(t, 0)pu
�

t + s(t)
�p¶∼




u
�

p
�

2t + s(t)
�

, 0
�

, 0
��

, t →∞,

for p ∈ (0,∞). Hence, we can generalise the result to positive real exponents which completes the
proof.

Notice that the PAM ages if and only if the length of the intervals Υa
t tends to zero as t tends to

infinity. In this case we find that 1/|Υa
t | ∈ A , for all a > 0.

Corollary 26. Let ξ(0) ∼ Weibull (γ), γ > 1. Then the PAM ages for f = x p, p ∈ R+ in the sense of
correlation ageing if and only if γ > 2.

Proof. Analog as in Corollary 25.

We see that for Weibull tails the order of the length of ageing is increasing in γ.

The main obstacle in proving Theorem 5 is that we have to show that d2

dt2 log 〈u(t, 0)〉 is not fluctu-
ating too much. We have proven this under Assumptoin (F*). For more general potentials we are
still able to prove correlation ageing if we replace (7) by only requiring that

lim inf
t→∞

|A f (s1, t)− A f (s2, t)|> 0,

and by modifying the definition of A accordingly. We call this weak correlation ageing. It has been
proven in [HKM06] that under some mild regularity assumptions on ξ there exists a non-decreasing
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and regularly varying scale function α: (0,∞)→ (0,∞) with α(t) = o(t) and a constant χ ∈R such
that

log 〈u(t, 0)〉= H
�

t

α(t)d

�

α(t)d +
t

α(t)2
�

χ + o(1)
�

. (22)

Let Hα(t) := H
�

t
α(t)d

�

α(t)d + t
α(t)2χ and h(t) := log 〈u(t, 0)〉 −Hα(t). Then we find:

Theorem 27. Let Assumptions (H) and (K) from [HKM06] be satisfied. If lim
t→∞

α′′(t) exists and

lim
t→∞

H ′′(t) = 0, then the PAM is weakly correlation ageing for f = id.

Proof. Since α(t) = o(t) and limt→∞α
′′(t) exists this limit must be zero. Therefore, and be-

cause limt→∞H ′′(t) = 0 it follows that limt→∞H ′′α(t) = 0, as well. It follows from (22) that
h(t) = o

�

Hα(t)
�

. Altogether, this and the convexity of log 〈u(t, 0)〉 imply that for every sequence of
intervals I(t) := [l(t), 2l(t)] with limt→∞ l(t) =∞,

λ

�

s ∈ I(t): h′′(s) /∈
�

−H ′′α(t), H ′′α(t)
�

�

λ

�

s ∈ I(t): h′′(s) ∈
�

−H ′′α(t), H ′′α(t)
�

�

t→∞−→ 0,

where λ denotes the Lebesgue measure. Now the claim follows with a Taylor expansion as in the
proof of Theorem 5.

For the first and the second universality class in the classification of [HKM06] we find that α is
constant, and hence, the requirement that lim

t→∞
α′′(t) exists is fulfilled for all distributions in these

classes. Here it holds that 1/
p

H ′′(t) ∈A .
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