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Abstract

By combining the formalism of [8] with a discrete approach close to the considerations of [6],
we interpret and we solve the rough partial differential equation d yt = Ayt d t +

∑m

i=1 fi(yt) d x i
t

(t ∈ [0, T]) on a compact domain O of Rn, where A is a rather general elliptic operator of Lp(O )
(p > 1), fi(ϕ)(ξ) := fi(ϕ(ξ)) and x is the generator of a 2-rough path. The (global) existence,
uniqueness and continuity of a solution is established under classical regularity assumptions for
fi . Some identification procedures are also provided in order to justify our interpretation of the
problem.
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1 Introduction

The rough paths theory introduced by Lyons in [17] and then refined by several authors (see the
recent monograph [12] and the references therein) has led to a very deep understanding of the
standard rough systems

d y i
t =

m∑

j=1

σi j(yt) d x
j
t , y0 = a ∈Rd , t ∈ [0, T], (1)

where σi j : R → R is a smooth enough vector field and x : [0, T] → R
m is a so-called rough

path, that is to say a function allowing the construction of iterated integrals (see Assumption (X)γ
for the definition of a 2-rough path and [18] for a rough path of any order). The theory provides
for instance a new pathwise interpretation of stochastic systems driven by very general Gaussian
processes, as well as fruitful and highly non-trivial continuity results for the Itô solution of (1), i.e.,
when x is a standard Brownian motion.

One of the new challenges of the rough paths theory now consists in adapting the machinery to
infinite-dimensional (rough) equations that involves a non-bounded operator, with, as a final ob-
jective, the possibility of new pathwise interpretations for stochastic PDEs. Some progresses have
recently been made in this direction, with on the one hand the viscosity-solution approach due to
Friz et al (see [2, 3, 10, 9]) and on the other hand, the development of a specific algebraic formalism
by Gubinelli et al (see [14, 15, 8]).

The present paper is a contribution to this global project. It aims at providing, in a concise and
self-contained formulation, the analysis of the following rough evolution equation:

y0 =ψ ∈ Lp(O ) , d yt = Ayt d t +

m∑

i=1

fi(yt) d x i
t , t ∈ [0, T], (2)

where A is a rather general elliptic operator on a bounded domain O of Rn (see Assumptions (A1)-
(A2)), fi(ϕ)(ξ) := fi(ϕ(ξ)) and x generates a m-dimensional 2-rough path (see Assumption (X)γ).
Although the global form of (2) is quite similar to the equation treated in [8], several differences
and notable improvements justify the interest of our study:

(i) The equation is here analysed on a compact domain O of Rn. This allows to simplify the conditions
relative to the vector field fi , which reduce to the classical assumptions of rough paths theory, ie
k-times differentiable (k ∈N∗) with bounded derivatives (see Assumption (F)k).

(ii) The conditions on p are less stringent than in [8], where p has to be taken very large. It will here
be possible to show the existence and uniqueness of a solution in Lp(O ) (for a smooth enough
initial condition ψ) as soon as p > n (see Theorem 2.11). In particular, we can go back to the
Hilbert framework of [15] for the one-dimensional equation (n= 1, p = 2).

(iii) Last but not least, the arguments we are about to use lead to the existence of a global solution for
(2), defined on any time interval [0, T]. This is is a breakthrough with respect to [15, 8], where
only local solutions are obtained, on a time interval that depends on the data of the problem,
namely x , f and ψ.
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In order to reach these three improvements, the strategy will combine elements of the formalism
used in [8] with a discrete approach of the equation, close to the machinery developped in [6] for
rough standard systems. A first step consists of course in giving some reasonable sense to Equa-
tion (2). We have chosen to work with an interpretation à la Davie, derived from the expansion
of the ordinary solution (see Definition 2.6), and we have left aside the sewing map at the core
of the constructions in [8]. Note however that the expansion under consideration here relies on
the operator-valued paths X x ,i , X ax ,i , X x x ,i j which were identified in [8] (see Subsection 2.3), and
which plays the role of an infinite-dimensional rough path adapted to the problem. When applying
the whole procedure to a differentiable driving path x (resp. a standard Brownian motion), the
solution that we retrieve coincides with the classical solution (resp. the Itô solution), as reported in
Subsection 2.4. Together with the continuity statement of Theorem 2.12, this identification proce-
dure allows to fully justify our interpretation of (2) (see Corollary 2.13 and Remark 2.14).

Once endowed with this interpretation, our solving method is based on a discrete approach of the
problem: as in [6], the solution is obtained as the limit of a discrete scheme the mesh of which tends
to 0. Nevertheless, some fundamental differences arise when trying to mimic the strategy of [6].
To begin with, the middle-point argument at the root of the reasoning in the diffusion case (see the
proof of [6, Lemma 2.4]) cannot take into account the space-time interactions that occur in the study
of PDEs, i.e., the classical estimates (22) and (23). Therefore, the argument must here be replaced
with a little bit more complex algorithm described in Appendix A, and which will be used throughout
the paper. Let us also mention that the expansion of the vector field fi(ϕ)(ξ) := fi(ϕ(ξ)) is not as
easy to control as in the standard finite-dimensional case, even if one assumes that the functions
fi : R→ R are very smooth. Observe for instance that if Wα,p (α ∈ (0,1)) stands for the fractional
Sobolev space likely to accomodate the solution path, and if fi is assumed to be differentiable,
bounded with bounded derivative, then one can only rely on the non-uniform estimate (see [23])

‖ fi(ϕ)‖Wα,p ≤ ‖ fi‖L∞(R)+ ‖ f
′
i ‖L∞(R)‖ϕ‖Wα,p for any ϕ ∈Wα,p.

Consequently, more subtle patching arguments must be put forward so as to exhibit a global solution.
The strategy involves in particular a careful examination of the dependence on the initial condition
at each step of the procedure (see for instance the controls (45) and (46)).

The paper is structured as follows: In Section 2, we gather all the elements that allow to understand
our interpretation of Equation (2), and we state the three main results of the paper, namely Theo-
rems 2.10-2.12. The three sections that follow are dedicated to the proof of each of these results,
with the existence theorem first (Section 3) and then the uniqueness (Section 4) and continuity (Sec-
tion 5) results. Finally, Appendix A contains the description and the analysis of the algorithm at the
root of our machinery, while Appendix B is meant to provide the details relative to the identification
procedure in the Brownian case (see Proposition 2.9).

For the sake of clarity, we shall only consider Equation (2) on the generic interval [0,1]. It is
however easy to realize that the whole reasoning remains valid on any (fixed) finite interval [0, T]

at the price of very minor modifications.

Throughout the paper, we will denote by C k,b(R;Rl) (k, l ∈ N
∗) the set of Rl -valued functions

which are k-times differentiable with bounded derivatives.
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Finally, we will use the classical convention for the summation over indexes x i yi =
∑

i x i yi , when-
ever the underlying index set is obvious from the context.

2 Interpretation of the equation

We first give some precisions about the setting of our study, as far as the operator A, the driving
path x and the vector field fi are concerned (Subsection 2.1). Then we introduce the notation and
the tools designed for our analysis (Subsections 2.2 and 2.3), and which enable us to interpret (2)
(Subsection 2.4). We finally state the three main results of the paper (Subsection 2.5), and we
discuss some possible extensions of the strategy to rougher driving paths (Subsection 2.6).

2.1 Assumptions

As it was announced in the introduction, we mean to tackle the equation d yt = Ayt d t + fi(yt) d x i
t ,

t ∈ [0,1], in Lp(O ), where O is a bounded domain of Rn, A is an elliptic operator, fi(ϕ)(ξ) :=
fi(ϕ(ξ)) and x is a Hölder path. More precisely, to be in a position to interpret and solve this
equation, we will be led to assume that (some of) the following conditions are satisfied:

Assumption (A1): A generates an analytic semigroup of contraction S on any Lp(O ). Under this
hypothesis, we will denote Sts := St−s (s ≤ t), Bp := Lp(O ), Bα,p := Dom(Aαp), and we endow
the latter space with the graph norm ‖ϕ‖Bα,p

:= ‖Aαpϕ‖Lp(O ). We also assume that for any function

g ∈ C 1,b(R;R), there exists a constant c1
g such that

‖g(ϕ)‖B1/2,p
≤ c1

g{1+ ‖ϕ‖B1/2,p
} (3)

and for any function g ∈ C 2,b(R;R), there exists a constant c2
g such that

‖g(ϕ)‖Bα,p
≤ c2

g{1+ ‖ϕ‖
2
Bα,p
} if α ∈ (1/2,1) and 2αp > n, (4)

where, in (3) and (4), g(ϕ) is just understood in the composition sense, i.e., g(ϕ)(ξ) := g(ϕ(ξ)).

Assumption (A2): If 2αp > n, then Bα,p is a Banach algebra continuously included in the space

B∞ of continuous functions on O .

Assumption (X)γ: x allows the construction of a 2-rough path

(x ,x2) ∈ C
γ
1 ([0,1];Rm)×C

2γ
2 ([0,1];Rm,m)

for some (fixed) coefficient γ ∈ (1/3,1/2). In other words, we assume that x is a γ-Hölder path and
that there exists a 2-variable path x2 (also called a Lévy area) such that for any 0≤ s ≤ u≤ t ≤ 1,

��x2
ts

��≤ c |t − s|2γ and x
2,i j
ts − x

2,i j
tu − x2,i j

us = (x
i
t − x i

u)(x
j
u− x j

s ).

1492



We will then denote

‖x‖γ :=N [x;C γ1 ([0,1];Rm)] +N [x2;C 2γ
2 ([0,1];Rm,m)],

where

N [x;C γ1 ([0,1];Rm)] := sup
0≤s<t≤1

��x t − xs

��
|t − s|γ

, N [x2;C 2γ
2 ([0,1];Rm,m)] := sup

0≤s<t≤1

��x2
ts

��

|t − s|2γ
.

Assumption (F)k: f belongs to C k,b(R;Rm).

Before pondering over the plausibility of these conditions, let us precise that we henceforth focus on
the mild formulation of Equation (2)

yt = Stψ+

∫ t

0

Stu d x i
u fi(yu) , t ∈ [0,1]. (5)

This is a standard change of perspective for the study of (stochastic) PDEs (see [5]), which allows to
use the regularizing properties of the semigroup. In retrospect, owing to the regularity assumptions
on f , it will however be possible to make a link between the mild and strong interpretations of the
equation, see Remark 2.14.

Application: Properties (A1)-(A2) are satisfied by any elliptic operator on Lp((0,1)n) that can be
written as

A=−
n∑

i, j=1

∂ξi
(ai j · ∂ξ j

) + c , D(Ap) :=W 2,p((0,1)n)∩W
1,p
0 ((0,1)n), (6)

where c ≥ 0 and the functional coefficients ai j are bounded, differentiable with bounded derivatives
on [0,1]n. Indeed, under these assumptions, it is proven in [7] that A generates an analytic semi-
group of contraction. Then, thanks to [20], one can identify the domain D(Aαp) with the complex
interpolation [Lp,D(Ap)]α and one can use the result of [22] to assert that ‖.‖D(Aαp) ∼ ‖.‖F2α

p,2
, where

F2α
p,2 is the classical Triebel-Lizorkin space described (for instance) in [21]. The results of [21] (resp.
[23]) finally enables us to check Condition (A2) (resp. the controls (3) and (4)).

As far as Condition (X)γ is concerned, the process that we have in mind in this paper is the fractional
Brownian motion BH with Hurst index H > 1/3, for which the (a.s) existence of a Lévy area has
been established in [4]. Condition (X)γ is in fact satisfied by a larger class of Gaussian processes, as
reported in [12].

In brief, under the above-stated regularity assumptions, the results that we are about to state and
prove can be applied to the stochastic equation

dYt =


−

n∑

i, j=1

∂ξi
(ai j · ∂ξ j

Yt) + cYt


 d t +

m∑

i=1

fi(Yt) dB
H,i
t , t ∈ [0,1] , ξ ∈ (0,1)n.
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2.2 Hölder spaces

We suppose in this subsection that Assumption (A1) is satisfied. In order to introduce the functional
framework of our analysis, let us focus on the following consideration: we know that one of the most
appropriate space for the study of rough standard systems is the set of Hölder paths {y : [0,1] →
R

d :
��yt − ys

�� ≤ c |t − s|γ} (see [13]), and this is (among others) due to the convenient expression

for the variations of the solution y of (1), namely yt − ys =
∫ t

s
σi j(yu) d x

j
u. Here, if we denote by

y the solution of (5) (assume for the moment that x is a differentiable path), it is readily checked
that for all s < t,

yt − ys =

∫ t

s

Stu d x i
u fi(yu) + ats ys, where ats := Sts − Id .

With this observation in mind, the following notation arises quite naturally:

Notation. For all paths y : [0,1]→Bp and z : S2→Bp, where S2 := {(t, s) ∈ [0,1]2 : s ≤ t}, we
set, for s ≤ u≤ t ∈ [0,1],

(δ y)ts := yt − ys , (δ̂ y)ts := (δ y)ts − ats ys = yt − Sts ys, (7)

(δ̂z)tus := zts − ztu− Stuzus. (8)

The (ordinary) system (5) can now be written in the convenient form

y0 =ψ , (δ̂ y)ts =

∫ t

s

Stu d x i
u fi(yu) , s, t ∈ [0,1]. (9)

To make the notation (7)-(8) even more legitimate in this convolutional context, we let the reader
observe the following elementary properties:

Proposition 2.1. Let y : [0,1]→Bp and x : [0,1]→R be differentiable paths. Then it holds:

• Telescopic sum: δ̂(δ̂ y)tus = 0 and (δ̂ y)ts =
∑n−1

i=0 St t i+1
(δ̂ y)t i+1 t i

for any partition {s = t0 <

t1 < . . .< tn = t} of an interval [s, t] of [0,1].

• Chasles relation: if Jts :=
∫ t

s
Stu d xu yu, then δ̂J = 0.

Like with the standard finite-dimensional systems, the rough-paths treatment of Equation (9) leans

on the controlled expansion of the convolutional integral
∫ t

s
Stu d x i

u fi(yu). To express this control
with the highest accuracy, we are naturally led to consider the following semi-norms, that can be
seen as adapted versions of the classical Hölder seminorms: if y : [0,1] → V , z : S2 → V and
h : S3 → V , where V is any Banach space and S3 := {(t,u, s) ∈ [0,1]3 : s ≤ u ≤ t}, we denote, for
any λ > 0,

N [y; Ĉ λ1 ([a, b]; V )] := sup
a≤s<t≤b

‖(δ̂ y)ts‖V

|t − s|λ
, N [y;C 0

1 ([a, b]; V )] := sup
t∈[a,b]

‖yt‖V , (10)
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N [z;C λ2 ([a, b]; V )] := sup
a≤s<t≤b

‖zts‖V

|t − s|λ
, N [h;C λ3 ([a, b]; V )] := sup

a≤s<u<t≤b

‖htus‖V

|t − s|λ
. (11)

Then Ĉ λ1 ([a, b]; V ) stands for the set of paths y : [0,1]→ V such that N [y; Ĉ λ1 ([a, b]; V )] <∞,
and we define C λ2 ([a, b]; V ) and C λ3 ([a, b]; V ) along the same lines. With this notation, observe for

instance that if y ∈ C λ2 ([a, b];L (V,W )) and z ∈ C
β
2 ([a, b]; V ), the path h defined as htus = ytuzus

(s ≤ u≤ t) belongs to C λ+β3 ([a, b]; W ).

When [a, b] = [0,1], we will use the short form C λ
k
(V ) := C λ

k
([a, b]; V ).

2.3 Infinite-dimensional rough path

By anticipating the proof of Proposition 2.8, we know that, when x is a differentiable path, the

expansion of
∫ t

s
Stu d x i

u fi(yu) puts forward the three following operator-valued paths constructed
from x: ∫ t

s

Stu d x i
u ,

∫ t

s

atu d x i
u ,

∫ t

s

Stu d x i
u (δx j)us.

A priori, these expressions do not make sense for a non-differentiable γ-Hölder (rough)-path x . An
integration by parts argument, retrospectively justified by Lemmas 2.3 and 2.4, leads here to the
general definition:

Definition 2.2. Under Assumptions (A1) and (X)γ, we define the three operator-valued paths X x ,i ,

X ax ,i and X x x ,i j by the formulas

X
x ,i
ts := Sts(δx i)ts −

∫ t

s

AStu(δx i)tu du, (12)

X
ax ,i
ts := ats(δx i)ts −

∫ t

s

AStu(δx i)tu du, (13)

X
x x ,i j
ts := Stsx

2,i j
ts −

∫ t

s

AStu

h
x

2,i j
tu + (δx i)tu(δx j)us

i
du. (14)

If in addition Assumption (F)1 is satisfied, we set Fi j(ϕ) := f ′i (ϕ) · f j(ϕ) and we associate to every path

y : [0,1]→Bp the two quantities

J
y
ts := (δ̂ y)ts − X

x ,i
ts fi(ys)− X

x x ,i j
ts Fi j(ys), (15)

K
y
ts := (δ̂ y)ts − X

x ,i
ts fi(ys). (16)

Lemma 2.3. Suppose that x is a m-dimensional differentiable path and let x2 be its Lévy area, un-

derstood in the classical Lebesgue sense as the iterated integral x
2,i j
ts :=

∫ t

s
d x i

u (δx j)us. Then, under

Assumption (A1),

X
x ,i
ts =

∫ t

s

Stu d x i
u , X

ax ,i
ts =

∫ t

s

atu d x i
u , X

x x ,i j
ts =

∫ t

s

Stu d x i
u (δx j)us. (17)
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Proof. As aforementioned, this is just a matter of integration by parts. For instance, one has

∫ t

s

Stu d x i
u (δx j)us =

∫ t

s

Stu du

�
x2,i j

us

�

=

∫ t

s

Stu du

�
−(δx2,i j)tus + x

2,i j
ts − x

2,i j
tu

�

=

∫ t

s

Stu du

�
−(δx i)tu(δx j)us − x

2,i j
tu

�

= Stsx
2,i j
ts −

∫ t

s

AStu

h
x

2,i j
tu + (δx i)tu(δx j)us

i
du.

Observe now that the three expressions contained in (17) can also be directly interpreted as Itô
integrals when x stands for a standard Brownian motion. This interpretation remains consistent
with Definition 2.2:

Lemma 2.4. Suppose that x is m-dimensional Brownian motion defined on a complete filtered proba-

bility space (Ω,F , P), and let x2 be its Lévy area, understood in the Itô sense as the first iterated integral

of x. Then, under Assumption (A1), the three identifications of the previous lemma remain valid in this

context.

Proof. It suffices to replace the integration by parts argument with Itô’s formula, upon noticing that
only Wiener integrals are involved here. For X x x , we know indeed that for any fixed s, the process
u 7→ x

2,i j
us =

∫ u

s
d x i

v (δx j)vs is a semimartingale and

∫ t

s

Stu d x i
u (δx j)us =

∫ t

s

Stu du(x
2,i j
us ).

To end up with this subsection, let us highlight the regularity properties that will be at our disposal
throughout the study:

Proposition 2.5. Under Assumptions (A1) and (X)γ, one has, for all α ∈ (0,1),κ ∈ [0,γ),

X x ,i ∈ C
γ
2 (L (Bα,p,Bα,p))∩C

γ−κ
2 (L (Bα,p,Bα+κ,p)), (18)

X ax ,i ∈ C
γ+α
2 (L (Bα,p,Bp)), (19)

X x x ,i j ∈ C
2γ
2 (L (Bα,p,Bα,p))∩C

2γ−κ
2 (L (Bα,p,Bα+κ,p)). (20)

We will denote by ‖X‖γ,α,κ the norm attached to X := (X x , X ax , X x x) through Properties (18)-(20),

that is to say

‖X‖γ,α,κ :=
m∑

i, j=1

n
N [X x ,i;C γ2 (L (Bα,p,Bα,p))] + . . .+N [X x x ,i j;C 2γ−κ

2 (L (Bα,p,Bα+κ,p))
o

.
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With this notation, one has ‖X‖γ,α,κ ≤ cγ,α,κ‖x‖γ. Moreover, if X̃ stands for the path associated to

another trajectory x̃ satisfying (X)γ, then

‖X − X̃‖γ,α,κ ≤ cγ,α,κ

¦
1+ ‖x‖γ+ ‖x̃‖γ

©
‖x− x̃‖γ. (21)

Proof. Properties (18)-(20) are straightforward consequences of the well-known estimates (see
[19])

‖Stsϕ‖Bα+κ,p
≤ cκ |t − s|−κ ‖ϕ‖Bα,p

, ‖AStsϕ‖Bα+κ,p
≤ cκ |t − s|−1−κ ‖ϕ‖Bα,p

, (22)

‖atsϕ‖Bp
≤ cα |t − s|α ‖ϕ‖Bα,p

. (23)

For example, for any ϕ ∈Bα,p,

‖X x ,i
ts ϕ‖Bα+κ,p

≤ ‖x‖γ

¨
|t − s|γ ‖Stsϕ‖Bα+κ,p

+

∫ t

s

|t − u|γ ‖AStuϕ‖Bα+κ,p
du

«

≤ cκ‖x‖γ‖ϕ‖Bα,p

¨
|t − s|γ−κ +

∫ t

s

|t − u|−1+γ−κ du

«

≤ cγ,κ‖x‖γ‖ϕ‖Bα,p
|t − s|γ−κ .

The controls of ‖X‖γ,α,κ and ‖X− X̃‖γ,α,κ can be readily checked from the very definitions (12)-(14).
Observe for instance that

‖

∫ t

s

AStu(δx i)tu(δx j)us du−

∫ t

s

AStu(δ x̃ i)tu(δ x̃ j)us du‖L (Bp ,Bp)

≤

∫ t

s

‖AStu‖L (Bp ,Bp)

¦��δ(x i − x̃ i)tu
�� ��(δx j)us

��+
��(δ x̃ i)tu

�� ��δ(x j − x̃ j)us

��© du

≤ c
¦

1+ ‖x‖γ+ ‖x̃‖γ
©
‖x− x̃‖γ

�∫ t

s

|t − u|−1+γ |u− s|γ du

�

≤ c |t − s|2γ
¦

1+ ‖x‖γ+ ‖x̃‖γ
©
‖x− x̃‖γ.

2.4 Interpretation of the equation

Let us now turn to the interpretation of (9) for a generic 2-rough paths x = (x ,x2). Like in [6], our
approach is based on the Taylor expansion of the ordinary mild equation. We first give the general
definition of a solution and then we clarify this definition by considering the two previously-known
situations, namely when x is a differentiable path and when x is a standard Brownian motion.
Remember that the notation J y has been introduced in Definition 2.2.

Definition 2.6. Under Assumptions (A1), (X)γ and (F)1, for all λ ≥ 0 and ψ ∈ Bλ,p, we will call a

solution inBλ,p of the equation

yt = Stψ+

∫ t

0

St−u fi(yu) d x i
u , t ∈ [0,1], (24)
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any path y : [0,1]→Bλ,p such that y0 =ψ and there exists two coefficients µ > 1,ǫ > 0 for which

J y ∈ C
µ
2 ([0,1];Bp) and J y ∈ C ǫ2 ([0,1];Bλ,p). (25)

Remark 2.7. The reader familiar with the strategy of [6] will not be surprised by the condition
J y ∈ C

µ
2 ([0,1];Bp) for some coefficient µ > 1. The second condition J y ∈ C ǫ2 ([0,1];Bλ,p) may be

less expected. In fact, due to the property (23), the fractional spaces Bλ,p naturally arise from the

controlled expansion of
∫ t

s
Stu d x i

u fi(yu) (observe for instance (27)).

Proposition 2.8. Suppose that x is a m-dimensional differentiable path, and let x2 be its Lévy area,

understood in the Lebesgue sense. We suppose that Assumptions (A1) and (F)1 are both satisfied. Then,

for all η ∈ (0,1) and ψ ∈ Bη,p, the (ordinary) solution of Equation (24) is also a solution in Bη,p in

the sense of Definition 2.6.

Proof. Let y be the ordinary solution of (24), with initial condition ψ ∈ Bη,p. Then y ∈

C 0
1 ([0,1];Bη,p) and since (δ̂ y)ts =

∫ t

s
Stu d x i

u fi(yu) and f is bounded, one clearly has y ∈

Ĉ 1
1 ([0,1];Bp). Now, notice that owing to the identification (17), we get

K
y
ts =

∫ t

s

Stu d x i
u fi(yu)− X

x ,i
ts fi(ys) =

∫ t

s

Stu d x i
uδ( fi(y))us,

and so, due to (23), one has

‖K
y
ts‖Bp

≤ ‖
.
x‖∞,[0,1]‖ f

′‖∞

∫ t

s

‖(δ y)us‖Bp
du (26)

≤ cx , f

∫ t

s

n
‖(δ̂ y)us‖Bp

+ ‖aus‖L (Bη,p ,Bp)
‖ys‖Bη,p

o
(27)

≤ cx , f ,y

∫ t

s

�
|u− s|+ |u− s|η

	
du ≤ cx , f ,y |t − s|1+η .

To complete the proof, observe that by resorting to the identification (17) once again, we can write

J
y
ts =

∫ t

s
Stu d x i

u M i
us, with

M i
us = δ( fi(y))us − (δx j)us f ′i (ys) · f j(ys)

=

∫ 1

0

dr f ′i (ys + r(δ y)us) · (δ y)us − (δx j)us f ′i (ys) · f j(ys)

=

∫ 1

0

dr f ′i (ys + r(δ y)us) · aus ys

+

∫ 1

0

dr f ′i (ys + r(δ y)us) · (δ̂ y)us − (δx j)us f ′i (ys) · f j(ys),

and thus

M i
us =

∫ 1

0

dr f ′i (ys + r(δ y)us) · aus ys +

∫ 1

0

dr f ′i (ys + r(δ y)us) · K
y
us

+

∫ 1

0

dr f ′i (ys + r(δ y)us) · X
ax , j
us f j(ys) +

∫ 1

0

dr
�

f ′i (ys + r(δ y)us)− f ′i (ys)
�
· (δx j)us f j(ys), (28)

1498



where we have used the trivial relation X x ,i
us = X ax ,i

us + (δx j)us. From this expression, it is easy to
show that ‖M i

us‖Bp
≤ cy |u− s|η, which leads to (25) with µ= 1+η, ǫ = 1.

Proposition 2.9. Suppose that x is a m-dimensional standard Brownian motion defined on a complete

filtered probability space (Ω,F , P), and let x2 be its Lévy area, understood in the Itô sense. Suppose

also that Assumptions (A1) and (F)2 are both satisfied. Then, for all η ∈ (1/2,1) and ψ ∈ Bη,p, the

Itô solution of Equation (24) is almost surely a solution inBη,p in the sense of Definition 2.6.

Proof. For the sake of clarity, we have postponed the proof of this result to Appendix B.

Together with the forthcoming uniqueness result contained in Theorem 2.11, the above-stated prop-
erties allow to identify, in the two reference situations (i.e., when x is a differentiable path and
when x is a standard Brownian motion), the solution in the sense of Definition 2.6 with the classical
solution. We will then lean on the continuity Theorem 2.12 to fully justify our interpretation of (24)
(see Remark 2.14).

2.5 Main results

With the tools and the definitions we have just introduced, we are in a position to state the three
main results of this paper, which successively provide the existence, uniqueness and continuity of
the solution to (24).

Theorem 2.10. Under Assumptions (A1), (X)γ and (F)2, for all γ′ ∈ (1− γ,γ+ 1/2) and ψ ∈ Bγ′,p,

Equation (24) admits a solution y inBγ′,p in the sense of Definition 2.6, which satisfies

N [y; Ĉ γ1 ([0,1];Bp)] +N [y;C 0
1 ([0,1];Bγ′,p)]≤ C(‖x‖γ,‖ψ‖Bγ′ ,p),

for some function C : (R+)2→R growing with its arguments.

Theorem 2.11. If p > n and if Assumptions (A1), (A2), (X)γ and (F)3 are all satisfied, then for all

γ′ ∈ (1−γ,γ+1/2) andψ ∈Bγ′,p, the solution y inBγ′,p given by Theorem 2.10 is unique. Moreover,

for any

0< β < inf
�
3γ− 1,γ+ γ′− 1,γ− (γ′− 1/2)

�
,

there exists a constant cx ,ψ, f ,β such that for all n,

max
k=0,...,2n

‖ytn
k
− yn

tn
k
‖Bγ′ ,p ≤

cx ,ψ, f ,β

(2n)β
,

where yn stands for the path given by the discrete scheme (35).

Theorem 2.12. Under the assumptions of Theorem 2.11, the solution of (24) is continuous with respect

to the initial condition and the driving rough path. More precisely, if y (resp. ỹ) is the solution inBγ′,p
associated to (x ,x2) (resp. ( x̃ , x̃2)), with initial condition ψ (resp. ψ̃), then

N [y − ỹ; Ĉ γ1 ([0,1];Bp)] +N [y − ỹ;C 0
1 ([0,1];Bγ′,p)]

≤ C
�
‖x‖γ,‖x̃‖γ,‖ψ‖Bγ′ ,p ,‖ψ̃‖Bγ′ ,p

�n
‖ψ− ψ̃‖Bγ′ ,p + ‖x− x̃‖γ

o
, (29)

for some functions C : (R+)4→R
+ growing with its arguments.
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Together with the identification result established in Proposition 2.8, these three theorems offer
another perspective on the solution of Equation (24), which may be more in accordance with the
formalism used in [12] for rough standard systems:

Corollary 2.13. Under the assumptions of Theorem 2.11, suppose that ψ ∈ Bγ′,p and let ( x̃n)n be a

sequence of differentiable paths such that ‖x − x̃n‖γ + ‖x
2 − x̃2,n‖2γ → 0 as n tends to infinity, where

x̃2,n stands for the standard Lévy area constructed from x̃n. Let ỹn be the (ordinary) solution of (24)

associated to each x̃n. If y is the solution of (24) given by Theorem 2.11, then

N [y − ỹn; Ĉ γ1 ([0,1];Bp)] +N [y − ỹn;C 0
1 ([0,1];Bγ′,p)]→ 0 (30)

as n tends to infinity.

Remark 2.14. Through the latter result, one can see that the exhibited solution y is a solution in

the rough paths sense, that is to say a limit of ordinary solutions with respect to some particular
topology (compare with [12, Definition 10.17]). In this context, y can legitimately be called a mild
solution of (2), as a limit of classical mild solutions. Furthermore, it is worth noticing that given the
regularity assumptions on fi , if we suppose in addition that the initial condition ψ belongs to the
domain D(Ap), then each (ordinary) mild solution ỹn is also a strong solution (see [19, Theorem
6.1.6]). Consequently, if ψ ∈ D(Ap), y can also be considered as a strong solution of (2), keeping
in mind the topology of the underlying convergence result (30).

2.6 Extension to rougher paths

Before we turn to the proof of Theorems 2.10-2.12, let us say a few words about the possibility of
extending these results to a rougher path x , or otherwise stated when the Hölder coefficient γ is
smaller than 1/3.

Remember that for standard finite-dimensional rough systems, the results obtained by Davie in [6]
have been generalized to any γ ∈ (0,1) by Friz and Victoir ([11]): essentially, the system (1) can be
interpreted and solved provided that (i) the vector field σi j is smooth enough and (ii) one is able to

construct the iterated integrals of x up to the k-th order, where 1
k+1

< γ≤ 1
k
.

As far as Equation (24) is concerned, let us first consider the next step of the procedure, which
corresponds to 1

4
< γ ≤ 1

3
. For more simplicity, we assume that fi is infinitely differentiable with

bounded derivatives. Suppose for the moment that x is a differentiable path, and let us introduce,
on top of (X x , X ax , X x x), the two additional operator-valued paths

X ax x
ts =

∫ t

s

atu d x i
u (δx j)us , X

x x x ,i jk
ts =

∫ t

s

Stu d x i
u x2, jk

us .

Let us also define F1
i
(ϕ) = fi(ϕ), F2

i j(ϕ) = f ′i (ϕ) · f j(ϕ), F3
i jk
(ϕ) = f ′′i (ϕ) · f j(ϕ) · fk(ϕ) + f ′i (ϕ) ·

f ′j (ϕ) · fk(ϕ), and the three intermediate quantities

L
y
ts = (δ̂ y)ts − X

x ,i
ts F1

i (ys) , K
y
ts = (δ̂ y)ts − X

x ,i
ts F1

i (ys)− X
x x ,i j
ts F2

i j(ys),

J
y
ts = (δ̂ y)ts − X

x ,i
ts F1

i (ys)− X
x x ,i j
ts F2

i j(ys)− X
x x x ,i jk
ts F3

i jk
(ys).
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Once endowed with this notation, a Taylor expansion of the (ordinary) equation (24), similar to
(28), shows that for all s < t ∈ [0,1], one has

(δ̂ y)ts = X
x ,i
ts F1

i (ys) + X
x x ,i j
ts F2

i j(ys) + X
x x x ,i jk
ts F3

i jk
(ys) +

∫ t

s

Stu d x i
u y♯,ius , (31)

where the ’residual’ path y♯ can be decomposed as y♯,i = y♯,i,1+ y♯,i,2, with

y♯,i,1us =

∫ 1

0

dr f ′i (ys + r(δ y)us) ·
h

aus ys + X ax , j
us F1

j (ys) + X ax x , jk
us F2

jk(ys)
i

+

∫ 1

0

dr

∫ 1

0

dr ′ r f ′′i (ys + r(δ y)us) · (δx j)us f j(ys) · X
ax ,k
us F1

k
(ys), (32)

y♯,i,2us =
∫ 1

0

dr f ′i (ys + r(δ y)us) · K
y
us

+

∫ 1

0

dr
�

f ′i (ys + r(δ y)us)− f ′i (ys)
�
· x2, jk

us · f
′
i (ys) · f

′
j (ys) · fk(ys)

+

∫ 1

0

dr

∫ 1

0

dr ′ r f ′′i (ys + r(δ y)us) · L
y
us · (δx j)us · f j(ys)

+

∫ 1

0

dr

∫ 1

0

dr ′ r
�

f ′′i (ys + r(δ y)us)− f ′′i (ys)
�
· (δx j)us(δxk)us · f j(ys) · fk(ys). (33)

By looking closely at these expressions, it is not difficult to realize that the arguments dis-
played in the forthcoming sections 3-5 can be adapted to the decomposition (31) so as to han-
dle the case where γ ∈ (1

4
, 1

3
] (compare for instance (32)-(33) with (40)-(43)). This sup-

poses that the intermediate paths J y , K y , L y should be controlled with the respective topologies
C

4γ
2 (Bp)∩C

ǫ
2 (Bγ′,p),C

3γ
2 (Bp),C

2γ
2 (Bp), and that the space parameter γ′ should be picked in the

(non-empty) interval (1 − γ,γ + 1/2), as in Theorems 2.10-2.12. This also supposes, in order to
extend the path X x x x , that x allows the construction of a 3-rough path x = (x ,x2 =

∫∫
d xd x ,x3 =∫∫∫

d xd xd x) ∈ C
γ
1 ×C

2γ
2 ×C

3γ
2 . We know that this assumption covers in particular the case of a

fractional Brownian motion with Hurst index H > 1/4, see [4].

The situation gets more complicated as soon as γ < 1/4, since we can no longer pick γ′ in the (now
empty) interval (1− γ,γ+ 1/2), and this assumption played a fundamental role in our estimates.
Indeed, on the one hand, the condition γ′ > 1− γ ensures that the order of the terms derived from
(32) or (41) is greater than γ+ γ′ > 1, or otherwise stated that these paths can be considered as
residual terms. On the other hand, the condition γ′ < γ+ 1/2 is used in some estimates like (47)
to go from Bγ′,p to B1/2,p and thus take profit of the linear control (3) (instead of the quadratic
control (4)). Therefore, when γ < 1/4, some sharpness is to be lost in our estimates and the
method under consideration in this paper would only provide us with a local solution, on a time
interval linked to x , f and ψ. To overcome this difficulty, it may be useful to modify the path
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(X x , X ax , X x x , X ax x , X x x x , . . .) into a more appropriate trajectory, which would for instance includes
mixed operators such as

X
xa,i
ts (ϕ1,ϕ2) =

∫ t

s

Stu d x i
u

�
ausϕ1 ·ϕ2

�
, ϕ1,ϕ2 ∈B . (34)

Observe however that the extension of (34) to a generic γ-Hölder path x (with γ < 1) can no longer
be done via an integration by parts argument (as in Lemma 2.3), which considerably increases the
difficulty of the study.

3 Existence of a solution

This section is devoted to the proof of Theorem 2.10. Thus, we henceforth suppose that the as-
sumptions of the theorem, namely (A1), (X)γ and (F)2, are all satisfied. Besides, we fix a parameter
γ′ ∈ (1− γ,γ+ 1/2) and an initial condition ψ ∈Bγ′,p.

3.1 Additional notation

We consider the sequence (Πn)n of dyadic partitions of [0,1] (i.e., tn
k
= k

2n ) and we define the
discrete path yn following the iteration formula:

yn
0 :=ψ , yn

tn
k+1

:= Stn
k+1 tn

k
yn

tn
k
+ X

x ,i
tn
k+1 tn

k

fi(y
n
tn
k
) + X

x x ,i j

tn
k+1 tn

k

Fi j(y
n
tn
k
) , tn

k ∈ Π
n. (35)

The path yn is then extended on [0,1] by linear interpolation. For the sake of clarity, we will denote
in this section Jn := J yn

and Kn := K yn

. Observe that owing to the very definition of yn, one has
Jn

tn
k+1 tn

k

= 0.

In the rest of the paper, we will also appeal to the discrete versions of the generalized Hölder norms
introduced in Subsection 2.2. Thus, for any n ∈N, we denote ¹a, bºn := [a, b]∩Πn and

N [h; Ĉ λ1 (¹tn
p , tn

qºn,Bα,p)] := sup
tn

p≤s<t≤tn
q

s,t∈Πn

‖(δ̂h)ts‖Bα,p

|t − s|λ
,

We define the two quantitiesN [.;C λ2 (¹a, bºn;Bα,p)] andN [.;C λ3 (¹a, bºn;Bα,p)] along the same
lines.

Now, for any (not necessarily uniform) partition Π̃ of [0,1]made of points of Πn, we define the path
Jn,Π̃ for all s < t ∈ Πn as

J
n,Π̃
ts :=





0 if (s, t)∩ Π̃ = ;

(δ̂Jn)tus if (s, t)∩ Π̃ = u

Jn
ts − Jn

t t̃N
−
∑N−1

k=1 St t̃k+1
Jn

t̃k+1 t̃k
− St t̃1

Jn
t̃1s

if (s, t)∩ Π̃ = { t̃1, ..., t̃N}
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Remark 3.1. Since Jn
tn
k+1 tn

k

= 0, one has in particular J
n,Πn

ts = Jn
ts. Besides, if Π̃, Π̂ are two partitions

of [0,1] made of points of Πn and such that Π̃ ∩ (s, t) = { t̃1, . . . , t̃N} (N ≥ 3) and Π̂ ∩ (s, t) =

{ t̃1, . . . , t̃k−1, t̃k+1, . . . t̃N} for 1 ≤ k ≤ N − 1, then J
n,Π̃
ts − J

n,Π̂
ts = St t̃k+1

(δ̂Jn) t̃k+1 t̃k t̃k−1
. With the same

notation, if Π̂∩ (s, t) = { t̃1, . . . , t̃N−1}, then J
n,Π̃
ts − J

n,Π̂
ts = (δ̂Jn)t t̃N t̃N−1

.

3.2 Preliminary results on J n

We fix tn
p < tn

q ∈ Π
n and we apply the algorithm described in Appendix A to the uniform partition

{tn
p , tn

p+1, . . . , tn
q}. Set N := q − p, and so, for any k ∈ {p, . . . ,q}, tn

k
= tn

p +
(k−p)(tn

q−tn
p)

N
. We also

denote by (Πn,m)m∈{1,...,N−1} the (decreasing) sequence of partitions of [tn
p , tn

q] deduced from the

algorithm, and Πn,0 := {tn
p , tn

p+1, . . . , tn
q}. Finally, set J

n,m
tn
q tn

p
:= J

n,Πn,m

tn
q tn

p
. With this notation in hand, one

has

Jn
tn
q tn

p
=

N−1∑

m=0

§
J

n,m
tn
q tn

p
− J

n,m+1
tn
q tn

p

ª
.

Once endowed with this decomposition, we can show the following result, which turns out to be the
starting point of our reasoning:

Lemma 3.2. For all µ > 1 and κ > 0, there exists a constant c = cµ,κ such that

‖Jn
tn
q tn

p
‖Bγ′ ,p ≤ c

����tn
q − tn

p

���
κ

+

���tn
q − tn

p

���
µ−γ′

�

n
N [δ̂Jn;C κ3 (¹tn

p , tn
qºn;Bγ′,p)] +N [δ̂Jn;C µ3 (¹tn

p , tn
qºn;Bp)]

o
, (36)

and

‖Jn
tn
q tn

p
‖Bp
≤ c

���tn
q − tn

p

���
µ

N [δ̂Jn;C µ3 (¹tn
p , tn

qºn;Bp)]. (37)

Proof. We use the notation of Appendix A. By refering to Remark 3.1, one easily deduces

N−1∑

m=0

§
J

n,m
tn
q tn

p
− J

n,m+1
tn
q tn

p

ª

=

M−1∑

r=1



(δ̂Jn)tn

q tn
p+kAr−1+1

tn

p+k−
Ar−1+1

+

Ar∑

m=Ar−1+2

Stn
q tn

p+k+m

(δ̂Jn)tn

p+k+m
tn

p+km
tn

p+k−m





+ (δ̂Jn)tn
q tn

p+kAM−1+1
tn

p+k−
AM−1+1

+ 1{AM−1+1<N−1}(δ̂Jn)tn
q tn

p+kN−1
tn

p
.
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Then, if Cn :=N [δ̂Jn;C κ3 (¹tn
p , tn

qºn;Bγ′,p)] +N [δ̂Jn;C µ3 (¹tn
p , tn

qºn;Bp)], one has

N−1∑

m=0

‖Jn,m
tn
q tn

p
− J

n,m+1
tn
q tn

p
‖Bγ′ ,p

≤ 2 Cn

���tn
q − tn

p

���
κ

+Cn

M−1∑

r=0





����t
n
q − tn

p+k−
Ar−1+1

����
κ

+

Ar∑

m=Ar−1+2

���tn
q − tn

p+k+m

���
−γ′ ���tn

p+k+m
− tn

p+k−m

���
µ





≤ Cn

����tn
q − tn

p

���
κ

+

���tn
q − tn

p

���
µ−γ′

�



2+

M−1∑

r=0





�����1−
k−Ar−1+1

N

�����

κ

+
1

Nµ

Ar∑

m=Ar−1+2

�����1−
k+m

N

�����

−γ′ ��k+m− k−m

��µ









≤ cκ,µ,γ′

����tn
q − tn

p

���
κ

+

���tn
q − tn

p

���
µ−γ′

�
Cn,

thanks to Proposition 6.2. The second control (37) can be obtained with the same arguments, upon
noticing that (65) entails in particular

M−1∑

r=1





�����1−
k−Ar−1+1

N

�����

µ

+
1

Nµ

Ar∑

m=Ar−1+2

��k+m− k−m

��µ



 ≤ cµ <∞.

Lemma 3.3. For every path y : [0,1]→Bp and all s < u< t ∈ [0,1],

(δ̂J y)tus = X
x ,i
tu δ( fi(y))us − X

x ,i
tu (δx j)usFi j(ys) + X

x x ,i j
tu δ(Fi j(y))us (38)

and also

(δ̂J y)tus = Itus + I Itus + I I Itus + IVtus, (39)

with

Itus := X
x ,i
tu

 ∫ 1

s

dr f ′i (ys + r(δ y)us) · K
y
us

!
, (40)

I Itus := X
x ,i
tu

 ∫ 1

s

dr f ′i (ys + r(δ y)us) ·
¦

aus ys + X ax , j
us f j(ys)

©
!

, (41)

I I Itus := X
x ,i
tu

 ∫ 1

0

dr
�

f ′i (ys + r(δ y)us)− f ′i (ys)
�
· (δx j)us f j(ys)

!
, (42)

IVtus := X
x x ,i j
tus δ(Fi j(y))us. (43)
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Proof. Those are only straightforward expansions. For (38), we use the fact that if mts := gtshs,
then (δ̂m)tus = (δ̂g)tushs − gtu(δh)us, together with the algebraic relations

(δ̂X x ,i)tus = 0 , (δ̂X x x ,i j)tus = X
x ,i
tu (δx j)us for all s ≤ u≤ t,

that can be readily checked from the expressions (12) and (14). The expansion of δ( fi(y))us −
(δx j)usFi j(ys) which then leads to (39) has already been elaborated on in the proof of Proposition
2.8, see (28).

3.3 Existence of a solution

Thanks to the above preliminary results, we are first able to control Jn on successive time intervals
independent of n:

Proposition 3.4. Suppose that µ,ǫ satisfy

3γ > µ > 1 , γ+ γ′ > µ > 1 , γ− (γ′−
1

2
)> ǫ > 0. (44)

Then there exists a time T0 = T0(x , f ,γ,γ′,µ,ǫ) > 0, T0 ∈ Π
n, such that for any k,

N [Jn;C ǫ2 (¹kT0, (k+ 1)T0 ∧ 1ºn;Bγ′,p)]≤ 1+ ‖yn
kT0
‖Bγ′ ,p (45)

and

N [Jn;C µ2 (¹kT0, (k+ 1)T0 ∧ 1ºn;Bp)]≤ 1+ ‖yn
kT0
‖Bγ′ ,p . (46)

Proof. This is an iteration procedure over the points of the partition, for which we first focus on
the case k = 0 in (45) and (46). Assume that both estimates hold true on ¹0, tn

qºn. Then, for any
t ∈ ¹0, tn

qºn, one has, thanks to (18), (20) and (3),

‖yn
t ‖Bγ′ ,p ≤ ‖J

n
t0‖Bγ′ ,p + ‖St0ψ‖Bγ′ ,p + c0

x tγ−(γ
′− 1

2
)
n
‖ fi(ψ)‖B1/2,p

+ ‖Fi j(ψ)‖B1/2,p

o
(47)

≤ ‖Jn
t0‖Bγ′ ,p + ‖St0ψ‖Bγ′ ,p + c1

x , f tγ−(γ
′− 1

2
)
n

1+ ‖ψ‖Bγ′ ,p

o

≤ c2
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
, (48)

and so N [yn;C 0
1 (¹0, tn

qºn,Bγ′,p)]≤ c2
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
. Besides, if s < t ∈ ¹0, tn

qºn,

‖(δ̂ yn)ts‖Bp
≤ ‖Jn

ts‖Bp
+ ‖X x ,i

ts fi(y
n
s )‖Bp

+ ‖X
x x ,i j
ts Fi j(y

n
s )‖Bp

≤ |t − s|γ c3
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
,

and hence
N [yn; Ĉ γ1 (¹0, tn

qºn;Bp)]≤ c3
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
. (49)

One can also rely on the estimate

‖Kn
ts‖Bp
≤ ‖Jn

ts‖Bp
+ ‖X

x x ,i j
ts Fi j(y

n
s )‖Bp

≤ c4
x , f |t − s|2γ

n
1+ ‖ψ‖Bγ′ ,p

o
. (50)
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Now, from the decomposition (39), we easily deduce, for all 0≤ s < u< t ∈ ¹0, tn
q+1ºn,

‖(δ̂Jn)tus‖Bp
≤ c5

x , f

n
1+ ‖ψ‖Bγ′ ,p

on
|t − s|3γ+ |t − s|γ+γ

′
o

.

Indeed, one has for instance

‖
�

f ′i (ys + r(δ y)us)− f ′i (ys)
�
· (δx j)us f j(ys)‖Bp

≤ cx , f |u− s|γ ‖(δ y)us‖Bp

≤ cx , f |u− s|γ
n
‖(δ̂ y)us‖Bp

+ ‖aus ys‖Bp

o

≤ cx , f

n
1+ ‖ψ‖Bγ′ ,p

on
|u− s|2γ+ |u− s|γ+γ

′
o
≤ cx , f |u− s|2γ

n
1+ ‖ψ‖Bγ′ ,p

o
,

where the constant cx , f may of course vary from line to line. Consequently,

N [δ̂Jn;C µ3 (¹0, tn
q+1ºn;Bp)]≤ c5

x , f

n
1+ ‖ψ‖Bγ′ ,p

on
T

3γ−µ
0 + T

γ+γ′−µ
0

o
.

On the other hand, it is readily checked from (38) that

‖(δ̂Jn)tus‖Bγ′ ,p ≤ c6
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
|t − s|γ−(γ

′− 1
2
) ,

and therefore

N [δ̂Jn; Ĉ
γ−(γ′− 1

2
)

3 (¹0, tn
q+1ºn;Bγ′,p)]≤ c6

x , f

n
1+ ‖ψ‖Bγ′ ,p

o
.

By using the estimate (36), we get

N [Jn;C ǫ2 (¹0, tn
q+1ºn;Bγ′,p)]≤ c7

x , f

n
1+ ‖ψ‖Bγ′ ,p

o�
T

3γ−µ
0 + T

γ+γ′−µ
0 + T

γ−(γ′− 1
2
)−ǫ

0

�
.

It only remains to pick T0 such that

c7
x , f

�
T

3γ−µ
0 + T

γ+γ′−µ
0 + T

γ−(γ′− 1
2
)−ǫ

0

�
≤ 1.

We can follow the same lines to show (46) from the estimate (37).

It is now easy to realize that the same reasoning (with the same constants) can be applied on the
interval [T0, 2T0] by replacing ψ with yn

T0
, and then on the interval [2T0, 3T0], etc.

Corollary 3.5. With the notation of Proposition 3.4, there exists a constant cx , f such that for any k,

N [Jn;C µ2 (¹kT0, (k+ 2)T0 ∧ 1ºn;Bp)]≤
n

1+ ‖yn
(k+1)T0

‖Bγ′ ,p

o
+ cx , f

n
1+ ‖yn

kT0
‖Bγ′ ,p

o
, (51)

N [Jn;C ǫ2 (¹kT0, (k+ 2)T0 ∧ 1ºn;Bγ′,p)]≤
n

1+ ‖yn
(k+1)T0

‖Bγ′ ,p

o
+ cx , f

n
1+ ‖yn

kT0
‖Bγ′ ,p

o
. (52)

Proof. If kT0 ≤ s < (k+ 1)T0 ≤ t < (k+ 2)T0,

Jn
ts = Jn

t,(k+1)T0
− St,(k+1)T0

Jn
(k+1)T0,s − (δ̂Jn)t,(k+1)T0,s.
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We already know that

‖Jn
t,(k+1)T0

‖Bp
+ ‖Jn

(k+1)T0,s‖Bp
≤ |t − s|µ

n
2+ ‖yn

(k+1)T0
‖Bγ′ ,p + ‖y

n
kT0
‖Bγ′ ,p

o
.

By using the decomposition (39), together with the estimates (48), (49) and (50), we get

‖(δ̂Jn)t,(k+1)T0,s‖Bp
≤ cx |t − s|µ

n
1+ ‖yn

kT0
‖Bγ′ ,p

o
, which yields (51). (52) can be shown with the

same arguments.

Proof of Theorem 2.10. With the same estimates as in (48), we first deduce from Proposition 3.4

N [yn;C 0
1 (¹kT0, (k+ 1)T0 ∧ 1ºn;Bγ′,p]≤ c1

x , f

n
1+ ‖yn

kT0
‖Bγ′ ,p

o
,

where the constant c1
x , f does not depend on k. As T0 is independent of yn, this leads to

N [yn;C 0
1 (¹0,1ºn;Bγ′,p)]≤ c2

x , f

n
1+ ‖ψ‖Bγ′ ,p

o
. (53)

From this uniform control, we get, by repeating the argument of Corollary 3.5,

N [Jn;C µ2 (¹0,1ºn;Bp)]≤ c4
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
, (54)

and then
N [yn; Ĉ γ1 (¹0,1ºn;Bp)]≤ c5

x , f

n
1+ ‖ψ‖Bγ′ ,p

o
. (55)

Now remember that yn is extended on [0,1] by linear interpolation, and so

N [yn;C γ1 ([0,1];Bp)] ≤ 3N [yn;C γ1 (¹0,1ºn;Bp)]

≤ 3N [yn; Ĉ γ1 (¹0,1ºn;Bp)] + cγ′N [y
n;C 0

1 (¹0,1ºn;Bγ′,p)]

≤ c6
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
.

Thus, we are in a position to apply the Ascoli Theorem and to assert the existence of a subsequence
ynk of yn that converges to an element y in C 0

1 ([0,1];Bp). It remains to check that y is a solution
of (24). To do so, let s < t ∈ [0,1] and consider two sequences snk

< tnk
∈ Πnk such that snk

decreases to s and tnk
increases to t. Then

‖J
y
ts‖Bp
≤ ‖J

y
ts − J

ynk

ts ‖Bp
+ ‖J

ynk

ts − J
ynk

tnk
snk
‖Bp
+ ‖J

ynk

tnk
snk
‖Bp

. (56)

On the one hand,
‖J

y
ts − J

ynk

ts ‖Bp
≤ cx , fN [y − ynk ;C 0

1 ([0,1];Bp)]→ 0,

while on the other hand

‖J
ynk

ts − J
ynk

tnk
snk
‖Bp
≤ c f

n
‖X x ,i

ts − X
x ,i
tnk

snk
‖L (Bp,Bp)

+ ‖X
x x ,i j
ts − X

x x ,i j
tnk

snk
‖L (Bp,Bp)

o

+ cx , f

§
‖y

nk

t − y
nk

tnk
‖Bp
+ ‖ynk

snk

− ynk
s ‖Bp

ª
,

from which we easily deduce, with the uniform controls (53) and (55) in mind,

‖J
ynk

ts − J
ynk

tnk
snk
‖Bp
→ 0.
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Finally, owing to (54),

‖J
ynk

tnk
snk
‖Bp
≤ c7

x , f

n
1+ ‖ψ‖Bγ′ ,p

o
|t − s|µ .

Going back to (56), this proves that J y ∈ C
µ
3 ([0,1];Bp). Then we follow the same lines starting

with the estimate N [Jn;C ǫ3 (¹0,1ºn;Bγ′,p)] ≤ c4
x , f

n
1+ ‖ψ‖Bγ′ ,p

o
to get J y ∈ C ǫ3 ([0,1];Bγ′,p),

and so y is indeed a solution of (24) inBγ′,p.

4 Uniqueness of the solution

In this section, we mean to prove Theorem 2.11. Accordingly, we assume that p > n and that
Conditions (A1), (A2), (X)γ and (F)3 are all checked. Let y be a solution of (24) in Bγ′,p, for some
(fixed) parameter γ′ ∈ (1 − γ, 1/2 + γ), with initial condition ψ ∈ Bγ′,p, and let yn be the path
described by the scheme (35), with the same initial condition ψ.

We introduce, for all s < t ∈ Πn, the quantity

N [y − yn;Q(¹s, tºn)] :=

N [y− yn; Ĉ γ1 (¹s, tºn;Bp)]+N [y− yn;C 0
1 (¹s, tºn;Bγ′,p)]+N [K

y−K yn

;C 2γ
2 (¹s, tºn;Bp)].

Besides, we fix µ > 1, ǫ > 0 such that ‖J y
ts‖Bp
≤ c |t − s|µ and ‖J y

ts‖Bγ′ ,p ≤ c |t − s|ǫ.

The proof of Theorem 2.11 is based on the two following preliminary results, which aim at control-
ling, as in the previous section, the residual term J :

Lemma 4.1. For all µ̃ > 1 and κ > 0, there exists two constants cy , cµ̃ such that if s < t ∈ Πn,

‖J
y
ts − J

yn

ts ‖Bγ′ ,p ≤ cy

�
1

(2n)ǫ
+

1

(2n)µ−1

�
+ cµ̃

n
|t − s|κ + |t − s|µ̃−γ

′
o

n
N [δ̂(J y − J yn

);C κ3 (¹s, tºn;Bγ′,p)] +N [δ̂(J
y − J yn

);C µ̃3 (¹s, tºn;Bp)]
o

.

‖J
y
ts − J

yn

ts ‖Bp
≤

cy |t − s|

(2n)µ−1 + cµ̃ |t − s|µ̃N [δ̂(J y − J yn

);C µ̃3 (¹s, tºn;Bp)].

Proof. Going back to the notation of Subsection 3.1, we decompose J
y
ts − J

yn

ts as

J
y
ts − J

yn

ts =
h

J
y,Πn

ts − J
yn,Πn

ts

i
+ R

y,Πn

ts ,

with, if s = tn
k

and t = tn
l
,

R
y,Πn

ts := J
y

t tn
l−1
+

l−2∑

i=k

St tn
i+1

J
y

tn
i+1 tn

i

.

To handle the term into brackets, we use the same arguments as in the proof of Lemma 3.2, which
yield here

‖J
y,Πn

ts − J
yn,Πn

ts ‖Bγ′ ,p ≤ cµ̃,γ′

n
|t − s|κ+ |t − s|µ̃−γ

′
o

n
N [δ̂(J y − J yn

);C κ3 (¹s, tºn;Bγ′,p)] +N [δ̂(J
y − J yn

);C µ̃3 (¹s, tºn;Bp)]
o
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and
‖J

y,Πn

ts − J
yn,Πn

ts ‖Bp
≤ cµ,γ′ |t − s|µ̃N [δ̂(J y − J yn

);C µ̃3 (¹s, tºn;Bp)].

Then it suffices to observe that

‖R
y,Πn

ts ‖Bp
≤

cy

(2n)µ−1

(
��t − tn

l−1

��+
l−2∑

i=k

��tn
i+1− tn

i

��
)
≤

cy |t − s|

(2n)µ−1

and

‖R
y,Πn

ts ‖Bγ′ ,p ≤
cy

(2n)ǫ
+

l−2∑

i=k

��t − tn
i+1

��−γ′ cy

(2n)µ
≤ cy,γ′

�
1

(2n)ǫ
+

1

(2n)µ−1

�
. (57)

Lemma 4.2. Set µ̃ := inf(γ+ γ′, 3γ). Then for all s < t ∈ Πn,

N [δ̂(J y − J yn

);C µ̃3 (¹s, tºn;Bp)]≤ cy,x , f ,ψN [y − yn;Q(¹s, tºn)], (58)

N [δ̂(J y − J yn

);C γ3 (¹s, tºn;Bγ′,p)]≤ cy,x , f ,ψN [y − yn;Q(¹s, tºn)]. (59)

Proof. (58) is a consequence of the decomposition (39). Indeed, one has for instance, if Ny :=
N [y; Ĉ γ1 ([0,1];Bp)] +N [y;C 0

1 ([0,1];Bγ′,p)],

‖ f ′i (ys + r(δ y)us)− f ′i (ys)− f ′i (y
n
s + r(δ yn)us) + f ′i (y

n
s )‖Bp

≤ ‖r

∫ 1

0

dr ′
�

f ′′i (ys + r r ′(δ y)us)− f ′′i (y
n
s + r r ′(δ yn)us)

�
(δ y)us‖Bp

+‖r

∫ 1

0

dr ′ f ′′i (y
n
s + r r ′(δ yn)us)δ(y − yn)us‖Bp

≤ c fNy |u− s|γ
∫ 1

0

dr ′‖(ys + r r ′(δ y)us)− (y
n
s + r r ′(δ yn)us)‖B∞

+c f |u− s|γN [y − yn;Q(I)]

≤ c f ,Ny
|u− s|γN [y − yn;Q(I)],

where we have used the continuous inclusion Bγ′,p ⊂ B∞. As for (59), it suffices to observe, with
the expression (38) in mind, that for instance, due to the assumption (A2) and the control (4), one
has

‖X x ,i
tu ( fi(yu)− fi(y

n
u ))‖Bγ′ ,p

≤ cx |t − s|γ ‖ fi(yu)− fi(y
n
u )‖Bγ′ ,p

≤ cx |t − s|γ ‖

∫ 1

0

dr f ′i (yu+ r(yn
u − yu))(y

n
u − yu)‖Bγ′ ,p

≤ cx |t − s|γ ‖yn
u − yu‖Bγ′ ,p‖

∫ 1

0

dr f ′i (yu+ r(yn
u − yu))‖Bγ′ ,p

≤ cx , f ,Ny ,Nyn |t − s|γN [y − yn;Q(I)]

≤ cx , f ,Ny ,ψ |t − s|γN [y − yn;Q(I)], (60)
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where, to get the last estimate, we have appealed to the uniform control Nyn ≤ cx , f ,ψ established in
the proof of Theorem 2.10.

Proof of Theorem 2.11. Let T1 ≤ 1 ∈ Πn. Write

δ̂(y − yn)ts = X
x ,i
ts

�
fi(ys)− fi(y

n
s )
�
+ X

x x ,i j
ts

�
Fi j(ys)− Fi j(y

n
s )
�
+
h

J
y
ts − J

yn

ts

i
,

and use the two previous lemmas to deduce first

N [y − yn; Ĉ γ1 (¹0, T1ºn;Bp)]≤ cy,x , f ,ψT
γ
1N [y − yn;Q(¹0, T1ºn)] +

cy

(2n)µ−1

and secondly

N [y − yn;C 0
1 (¹0, T1ºn;Bγ′,p)]≤ cy,x , f ,ψT

γ
1N [y − yn;Q(¹0, T1ºn)]

+ cy

�
1

(2n)ǫ
+

1

(2n)µ−1

�
.

Then, since K
y
ts − K

yn

ts = X
x x ,i j
ts

�
Fi j(ys)− Fi j(y

n
s )
�
+
h

J
y
ts − J

yn

ts

i
, one has

N [K y − K yn

;C 2γ
2 (¹0, T1ºn;Bp)]≤ cy,x , f ,ψT

γ
1N [y − yn;Q(¹0, T1ºn)] +

cy

(2n)µ−1

and we have thus proved that

N [y − yn;Q(¹0, T1ºn)]≤ c1
y,x , f ,ψT

γ
1N [y − yn;Q(¹0, T1ºn)] + c1

y

�
1

(2n)ǫ
+

1

(2n)µ−1

�
.

Choose T1 such that c1
y,x , f ,ψT

γ
1 =

1
2

to obtain

N [y − yn;Q(¹0, T1ºn)]≤ 2c1
y

�
1

(2n)ǫ
+

1

(2n)µ−1

�
.

By using the same arguments on ¹kT1, (k+ 1)T1ºn, we get

N [y − yn;Q(¹kT1, (k+ 1)T1ºn)]≤ 2c1
y

�
1

(2n)ǫ
+

1

(2n)µ−1

�
+ cx , f ‖ykT1

− yn
kT1
‖Bγ′ ,p ,

and it is now easy to establish that

N [y− yn; Ĉ γ1 (¹0,1ºn;Bp)]+N [y− yn;C 0
1 (¹0,1ºn;Bγ′,p)]≤ cy,x , f ,ψ

�
1

(2n)ǫ
+

1

(2n)µ−1

�
. (61)

This inequality clearly proves the uniqueness of the solution and therefore, it enables us to identify
y with the solution constructed in Section 3. This identification allows in turn to choose µ and ǫ as
in Proposition 3.4 and to assert that Ny ≤ cx , f ,ψ, which completes the proof.
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5 Continuity of the solution

It remains to prove Theorem 2.12. In accordance with the statement of this result, we suppose that
p > n and that Assumptions (A1), (A2), (X)γ and (F)3 are all satisfied. We fix γ′ ∈ (1−γ,γ+1/2) and
the two initial conditionsψ, ψ̃ ∈Bγ′,p. We denote by X = (X x , X ax , X x x) (resp. X̃ = (X̃ x , X̃ ax , X̃ x x))
the path constructed from (x ,x2) (resp. ( x̃ , x̃2)) through Definition 2.2. With this notation, we
define yn as the path described by the scheme (35) and ỹn as the path obtained by replacing
(ψ, X x , X x x) with (ψ̃, X̃ x , X̃ x x) in the latter scheme.

Besides, we define J̃ and K̃ by replacing (X x , X x x) with (X̃ x , X̃ x x) in Formulas (15) and (16). For
the sake of clarity, we also set Jn := J yn

, Kn := K yn

, J̃n := J̃ yn

, K̃n = K̃ ỹn

, and as in the previous
section, we introduce the intermediate quantity

N [yn− ỹn; Q̃(¹s, tºn)]

:=N [yn− ỹn; Ĉ γ1 (¹s, tºn;Bp)]+N [y
n− ỹn;C 0

1 (¹s, tºn;Bγ′,p)]+N [K
n−K̃n;C 2γ

2 (¹s, tºn;Bp)].

Remember that owing to the results of Section 3, we can rely on the uniform control

N [yn; Ĉ γ1 (¹0,1ºn;Bp)] +N [y
n;C 0

1 (¹0,1ºn;Bγ′,p)] +N [K
n;C 2γ

2 (¹0,1ºn;Bp)]≤ cx ,ψ,

with an equivalent result for ỹn. The proof of Theorem 2.12 now leans on the two following lemmas:

Lemma 5.1. For all µ̃ > 1 and κ > 0, there exists a constant c = cµ̃,κ such that if s < t ∈ Πn,

‖Jn
ts − J̃n

ts‖Bγ′ ,p ≤ c
n
|t − s|κ + |t − s|µ̃−γ

′
o

n
N [δ̂(Jn− J̃n);C κ3 (¹s, tºn;Bγ′,p)] +N [δ̂(J

n− J̃n);C µ̃3 (¹s, tºn;Bp)]
o

and

‖Jn
ts − J̃n

ts‖Bp
≤ c |t − s|µ̃N [δ̂(Jn− J̃n);C µ̃3 (¹s, tºn;Bp)].

Proof. It suffices to follow the lines of the proof of Lemma 3.2.

Lemma 5.2. Set µ̃ := inf(γ+ γ′, 3γ). Then for all s < t ∈ Πn,

N [δ̂(Jn− J̃n);C µ̃3 (¹s, tºn;Bp)]≤ cx , x̃ ,ψ,ψ̃

¦
N [yn− ỹn; Q̃(¹s, tºn)] + ‖x− x̃‖γ

©
(62)

and

N [δ̂(Jn− J̃n);C γ3 (¹s, tºn;Bγ′,p)]≤ cx , x̃ ,ψ,ψ̃

¦
N [yn− ỹn; Q̃(¹s, tºn)] + ‖x− x̃‖γ

©
. (63)

Proof. This is the same type of arguments as in the proof of Lemma 4.2. For (62), resort to the
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decomposition (39) and notice for instance that

‖X x ,i
tu

 ∫ 1

0

dr f ′i (y
n
s + r(δ yn)us) · K

n
us

!
− X̃

x ,i
tu

 ∫ 1

0

dr f ′i ( ỹ
n
s + r(δ ỹn)us) · K̃

n
us

!
‖Bp

≤ c ‖X x ,i
tu − X̃

x ,i
tu ‖L (Bp,Bp)

‖Kn
us‖Bp

+ ‖X̃ x ,i
tu ‖L (Bp,Bp)

‖

∫ 1

0

dr f ′i (y
n
s + r(δ yn)us) · K

n
us −

∫ 1

0

dr f ′i ( ỹ
n
s + r(δ ỹn)us) · K̃

n
us‖Bp

≤ cx , x̃ ,ψ |t − s|3γ ‖x− x̃‖γ + c x̃ |t − u|γ

�
‖

∫ 1

0

dr
�

f ′i (y
n
s + r(δ yn)us)− f ′i ( ỹ

n
s + r(δ ỹn)us)

�
· Kn

us‖Bp

+‖

∫ 1

0

dr f ′i ( ỹ
n
s + r(δ ỹn)us) ·

�
Kn

us − K̃n
us

�
‖Bp

�

≤ c1
x , x̃ ,ψ |t − s|3γ ‖x− x̃‖γ + c2

x , x̃ ,ψ |t − s|3γN [yn− ỹn; Q̃(¹s, tºn)],

where we have used the continuous inclusion Bγ′,p ⊂ B∞. (63) can be proved likewise, with the
same kind of estimates as in the proof of (60).

Proof of Theorem 2.12. By following the same procedure as in the proof of Theorem 2.11, we first
deduce

N [yn− ỹn; Q̃(¹0, T2ºn)]

≤ c1
x , x̃ ,ψ,ψ̃

n
T
γ
2N [y

n− ỹn; Q̃(¹0, T2ºn)] + ‖ψ− ψ̃‖Bγ′ ,p + ‖x− x̃‖γ

o
.

Indeed, one has for instance, if 0≤ s < t ≤ T2,

‖X x ,i
ts

�
fi(y

n
s )− fi( ỹ

n
s )
�
‖Bp

≤ cx |t − s|γ ‖yn
s − ỹn

s ‖Bp

≤ cx |t − s|γ
n
‖δ̂(yn− ỹn)s0‖Bp

+ ‖ψ− ψ̃‖Bγ′ ,p

o

≤ cx |t − s|γ
n

T
γ
2N [y

n− ỹn; Q̃(¹0, T2ºn)] + ‖ψ− ψ̃‖Bγ′ ,p

o
.

Then we take T2 such that c1
x , x̃ ,ψ,ψ̃

T
γ
2 =

1
2

so as to retrieve

N [yn− ỹn; Q̃(¹0, T2ºn)]≤ 2 c1
x , x̃ ,ψ,ψ̃

n
‖ψ− ψ̃‖Bγ′ ,p + ‖x− x̃‖γ

o
.

Repeating the procedure on [T2, 2T2], [2T2, 3T2],..., leads to the uniform control

N [yn− ỹn; Ĉ γ1 (¹0,1ºn;Bp)] +N [y
n− ỹn;C 0

1 (¹0,1ºn;Bγ′,p)]

≤ cx , x̃ ,ψ,ψ̃

n
‖ψ− ψ̃‖Bγ′ ,p + ‖x− x̃‖γ

o
. (64)

To conclude with, let us introduce, for all s < t ∈ [0,1], two sequences sn < tn ∈ Π
n such that sn

decreases to s and tn increases to t, and write (for instance) successively

‖δ̂(y − ỹ)ts‖Bp
≤ ‖δ̂(y − ỹ)t tn

‖Bp
+ ‖δ̂(y − ỹ)tnsn

‖Bp
+ ‖δ̂(y − ỹ)sns‖Bp

,
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‖δ̂(y − ỹ)tnsn
‖Bp
≤ ‖δ̂(y − yn)tnsn

‖Bp
+ ‖δ̂(yn− ỹn)tnsn

‖Bp
+ ‖δ̂( ỹ − ỹn)tnsn

‖Bp
.

The control (64), together with the approximation result (61), then provides (29).

6 Appendix A: a useful algorithm

We give here the description and an analysis of the algorithm used in the proofs of Lemmas 3.2, 4.1
and 5.1.

Consider a generic partition {0,1,2, . . . , N}. We remove the inner points of this partition
({1,2, . . . , N − 1}) one by one according to the following procedure (see Figure 1):

• At step 1, we successively remove, from the right to the left, every two points, starting from N

(excluded) until 0 (also excluded). Then, still at step 1, we take off the point of the (updated)
partition between 0 (excluded) and the last removed point, if such a middle point exists.

• We repeat the procedure with the remaining points (steps 2,3,...) until the partition is empty.

We denote by:

• M the number of steps necessary to empty the partition.

• (km)m∈{1,...,N−1} the sequence of successively removed points.

• k+m the point of the partition (at ’time’ m of the algorithm) that follows km (when reading from
the left to the right), k−m the point that precedes it.

• Ar the total number of points that have been taken off at the end of step r. We also set A0 := 0.

Lemma 6.1. For every r ∈ {0,1, . . . , M},

0≤ Ar − N

�
1−

1

2r

�
≤ 1.

In particular,

���Ar − Ar−1−
N

2r

���≤ 1 and 2M−1 ≤ N ≤ 2M+1.

Proof. This stems from a straightforward iteration procedure based on the formula Ar+1 = Ar +j
N−Ar+1

2

k
, r ∈ {0,1, . . . , M − 1}, where ⌊.⌋ stands for the integer part.
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×××××××××××××××××××
k1k2k19

××××××××××
k20k29 k24 k+24k−24k+29

× × × × ×
k34

× ×
k36

×
k37

Figure 1: The algorithm for N = 38. Each line corresponds to one step. Thus, M = 5, A1 = 19,
A2 = 29, A3 = 34, A4 = 36.

Proposition 6.2. Suppose that µ > 1, 0< γ′ < 1 and κ > 0. Then

M−1∑

r=1





�����1−
k−Ar−1+1

N

�����

κ

+
1

Nµ

Ar∑

m=Ar−1+2

�����1−
k+m

N

�����

−γ′ ��k+m− k−m

��µ



≤ cκ,µ,γ′ , (65)

for some finite constant cκ,µ,γ′ independent of N.

Proof. Actually, we use the following explicit expressions: at step r (r ∈ {1, . . . , M −1}), if N −Ar−1

is even, one has, for every m ∈ ¹Ar−1+ 1,Ar − 1º,

k+m = N − 2r(m− Ar−1) + 2r , (66)

k−m = N − 2r(m− Ar−1), (67)

and k+Ar
= N −2r(Ar −Ar−1)+2r , k−Ar

= 0, while if N −Ar−1 is odd, Formulas (66) and (67) remain

true for m ∈ ¹Ar−1+ 1,Ar − 1º, but k−Ar
= 0, k+Ar

= k+Ar−1 = N − 2r(Ar − Ar−1− 1) + 2r . From these
expressions, we first deduce

M−1∑

r=1

�����1−
k−Ar−1+1

N

�����

κ

=
1

Nκ

M−1∑

r=1

(2r)κ ≤ c1
κ

�
2M

N

�κ
≤ c2

κ,
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according to Lemma 6.1. Then, if N − Ar−1 is even, one has

Ar∑

m=Ar−1+2

�����1−
k+m

N

�����

−γ′ ��k+m− k−m

��µ

=

Ar−1∑

m=Ar−1+2

�����1−
k+m

N

�����

−γ′ ��k+m− k−m

��µ+

�����1−
k+Ar

N

�����

−γ′ ���k+Ar

���
µ

=
2r(µ−γ′)

N−γ
′

Ar−Ar−1−2∑

m=1

m−γ
′

+

�����1−
k+Ar

N

�����

−γ′ ���k+Ar

���
µ

≤ c3
γ′

(2r)µ−γ
′

N−γ
′ (Ar − Ar−1− 2)1−γ

′

+
(2r)−γ

′

N−γ
′ (Ar − Ar−1− 1)−γ

′

(N − 2r(Ar − Ar−1− 1))µ

≤ c3
γ′

(2r)µ−γ
′

N−γ
′ (Ar − Ar−1− 2)1−γ

′

+
(2r)−γ

′

N−γ
′ (N − 2r(Ar − Ar−1− 1))µ.

since Ar − Ar−1 ≥ 2. In the same way, if N − Ar−1 is odd, one has

Ar∑

m=Ar−1+2

�����1−
k+m

N

�����

−γ′ ��k+m− k−m

��µ

≤ c3
γ′

(2r)µ−γ
′

N−γ
′ (Ar − Ar−1− 2)1−γ

′

+
(2r)−γ

′

N−γ
′ (Ar − Ar−1− 2)−γ

′

(N − 2r(Ar − Ar−1− 2))µ

≤ c3
γ′

(2r)µ−γ
′

N−γ
′ (Ar − Ar−1− 2)1−γ

′

+
(2r)−γ

′

N−γ
′ (N − 2r(Ar − Ar−1− 2))µ.

since, in that case, Ar − Ar−1 ≥ 3. Thanks to Lemma 6.1, we now easily deduce

1

Nµ

M−1∑

r=1

Ar∑

m=Ar−1+2

�����1−
k+m

N

�����

−γ′ ��k+m− k−m

��µ ≤
c3
γ′

Nµ−1

M−1∑

r=1

(2r)µ−1+
c4
µ

Nµ−γ
′

M−1∑

r=1

(2r)µ−γ
′

≤ cµ,γ′ .

7 Appendix B

This section is devoted to the proof of Proposition 2.9. To this end, we will resort to the two following
lemmas, respectively borrowed from [15] and [1]:

Lemma 7.1. Fix a time T > 0. For all α,β ≥ 0, p,q ≥ 1, there exists a constant c such that for every

R ∈ C2([0, T];Bα,p),

N [R;C β2 ([0, T];Bα,p)]≤ c

§
Uβ+ 2

q
,q,α,p(R) +N [δ̂R;C β3 ([0, T];Bα,p]

ª
,
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where

Uβ ,q,α,p(R) =



∫

0≤u<v≤T

�
‖Rvu‖Bα,p

|v − u|β

�q

dudv




1/q

.

Lemma 7.2. For every p ≥ 2, the Burkholder-Davies-Gundy inequality holds inBp. In other words, for

every T > 0, if B is a one-dimensional Brownian motion defined on complete filtered probability space

(Ω,F , P) and H is an adapted process with values in L2([0, T];Bp), then for any q ≥ 2, there exists a

constant c independent of H such that

E

�
sup

0≤t≤T


∫ t

0

Hu dBu


q

Bp

�
≤ c E




 ∫ T

0

‖Hu‖
2
Bp

du

!q/2

 . (68)

Proof of Proposition 2.9. On the whole, this is the same identification procedure as in the proof of
Proposition 2.8. The only difference lies in the fact that the direct estimates of the integrals under
consideration will here be replaced with a joint use of Lemmas 7.1 and 7.2.

We denote by y the (Itô) solution of (24), with initial condition ψ ∈ Bη,p. Let us fix γ ∈ (1/3,1/2)
such that γ + η > 1 and 2γ > η. If one refers to [16, Theorem 1], one can assert that y ∈

C 0
1 ([0,1];Bη,p) a.s, and one even knows that supt∈[0,1] E

h
‖yt‖

q

Bη,p

i
<∞ for every q ∈ N. Then,

since (δ̂ y)ts =
∫ t

s
Stu d x i

u fi(yu), one has, thanks to Lemma 7.2,

E

�
‖

∫ t

s

Stu d x i
u fi(yu)‖

q

Bp

�
≤ c E



�∫ t

s

‖Stu fi(yu)‖
2
Bp

du

�q/2



≤ c |t − s|q/2−1

∫ t

s

E
h
‖Stu fi(yu)‖

q

Bp

i
du

≤ c |t − s|q/2 , (69)

and consequently, with the notation of Lemma 7.1,

E

�
Uγ+ 2

q
,q,0,p(δ̂ y)

�
≤



∫∫

0≤u<v≤1

E
h
‖(δ̂ y)vu‖

q

Bp

i

|v − u|γq+2 dudv




1/q

≤

�∫∫

0≤u<v≤1

|v − u|q(
1
2
−γ)−2 dudv

�1/q

<∞

by picking q > 1/(1
2
− γ). Together with the result of Lemma 7.1, this yields y ∈ Ĉ

γ
1 ([0,1];Bp) a.s.

As far as K y is concerned, we already know that δ̂K y = X x ,iδ( fi(y)), which leads to δ̂K y ∈

C
2γ
3 ([0,1];Bp) a.s. Then, from the expression K

y
ts =

∫ t

s
Stu d x i

uδ( fi(y))us, we deduce, as in (69),

E
h
‖K

y
ts‖

q

Bp

i
≤ c |t − s|q, and accordingly, thanks to Lemma 7.1, K y ∈ C

2γ
2 ([0,1];Bp) a.s.
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Finally, for J y , we first lean on the decomposition (39) of δ̂J y to assert that δ̂J y ∈ C
γ+η
3 ([0,1];Bp)

a.s. Then we appeal to the expression of J y that we have exhibited in the proof of Propo-

sition 2.8, namely J
y
ts =

∫ t

s
Stu d x i

u M i
us with M i given by (28), to show that E

h
‖J

y
ts‖

q

Bp

i
≤

c |t − s|q(
1
2
+η). Together with Lemma 7.1, these results clearly provide the expected regularity, i.e.,

J y ∈ C
µ
2 ([0,1];Bp) a.s, with µ= γ+η > 1.

The control of the regularity of J y as a process with values in Bη,p stems from the same rea-
soning. Indeed, we first deduce from (38) that δ̂J y ∈ C

γ
3 ([0,1];Bη,p) a.s, since for instance

‖X x ,i
tu fi(yu)‖Bη,p

≤ cx , f ,y |t − u|γ and

‖X x ,i
tu (δx j)usFi j(ys)‖Bη,p

≤ cx |t − s|2γ−(η−
1
2
) ‖Fi j(yu)‖B1/2,p

≤ cx , f ,y |t − s|γ .

We can then write J y as J
y
ts =

∫ t

s
Stu d x i

uδ( fi(y))us − X
x x ,i j
ts Fi j(ys) to easily derive E

h
‖J

y
ts‖

q

Bη,p

i
≤

cx , f ,y |t − s|q/2, and hence J y ∈ C
γ
2 ([0,1];Bη,p) a.s.
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