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Abstract

The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its dis-
tributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson
process. This paper shows that a traditional Poisson process, with the time variable replaced
by an independent inverse stable subordinator, is also a fractional Poisson process. This result
unifies the two main approaches in the stochastic theory of time-fractional diffusion equations.
The equivalence extends to a broad class of renewal processes that include models for tempered
fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also
discusses the relation between the fractional Poisson process and Brownian time.
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1 Introduction

The fractional Poisson process (FPP) was introduced and studied by Repin and Saichev [42], Jumarie
[25], Laskin [30], Mainardi et al. [32, 33], Uchaikin et al. [46] and Beghin and Orsingher [6, 7].
The FPP is a natural generalization of the usual Poisson process, with an interesting connection to
fractional calculus. This renewal process has IID waiting times Jn that satisfy

P(Jn > t) = Eβ(−λtβ) (1.1)

for 0< β ≤ 1, where

Eβ(z) =
∞
∑

k=0

zk

Γ(1+ βk)
· (1.2)

denotes the Mittag-Leffler function. When β = 1, the waiting times are exponential with rate λ,
since ez = E1(z). Let Tn = J1+ · · ·+ Jn be the time of the nth jump. Then the FPP

Nβ(t) =max{n≥ 0 : Tn ≤ t} (1.3)

is a renewal process with Mittag-Leffler waiting times.

A compound FPP is obtained by subordinating a random walk to the FPP. The resulting process
is non-Markovian (unless β = 1) and the distribution of that process solves a “master equation”
analogous to the Kolmogorov equation for Markov processes, with the usual integer order time
derivative replaced by a fractional derivative.

The continuous time random walk (CTRW) is another useful model in fractional calculus. Consider
a CTRW whose IID particle jumps Yn have PDF w(x), and whose IID waiting times (Jn) are Mittag-
Leffler variables independent of (Yn). The particle location after n jumps is S(n) = Y1+ · · ·+Yn, and
the CTRW S(Nβ(t)) gives the particle location at time t ≥ 0. Hilfer and Anton [22] show that the
PDF p(x , t) of the CTRW S(Nβ(t)) solves the fractional master equation

∂
β
t p(x , t) =−λp(x , t) +λ

∫ ∞

−∞
p(x − y, t)w(y) d y (1.4)

where ∂ βt denotes the Caputo fractional derivative. The Caputo fractional derivative, defined for
0≤ n− 1< β < n by

∂
β
t g(t) =

1

Γ(n− β)

∫ t

0

(t − r)n−1−β g(n)(r)dr, (1.5)

where g(k) denotes the k-th derivative of g, was invented to properly handle initial values [13].

If β = 1, then ∂ βt is the usual first derivative. The corresponding CTRW S(N1(t)) is a compound
Poisson process, and (1.4) reduces to

∂t p(x , t) =−λp(x , t) +λ

∫ ∞

−∞
p(x − y, t)w(y) d y, (1.6)

the Cauchy problem associated with this infinitely divisible Lévy process. Then a general result on
Cauchy problems [3, Theorem 3.1] implies that the PDF of the time-changed process S(N1(E(t)))
solves the fractional Cauchy problem (1.4), where

E(t) = inf{r > 0 : D(r)> t} (1.7)
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is the right-continuous inverse (hitting time, first passage time) of D(t), a standard β-stable subor-
dinator with E[e−sD(t)] = e−tsβ for some 0< β < 1.

Since the PDF of both S(Nβ(t)) and S(N1(E(t))) solve the same governing equation (1.4), with the
same point-source initial condition (i.e., both processes start at the origin), these two processes have
the same one dimensional distributions. Heuristically, the degenerate case Yn ≡ 1 gives S(n) = n,
which strongly suggest that the FPP Nβ(t) and the process N1(E(t)) have the same one dimensional
distributions. We will call N1(E(t)) the fractal time Poisson process (FTPP), since it comes from a
self-similar time change (see, e.g., [35, Proposition 3.1]). In this paper, we will prove that the FPP
and the FTPP are in fact the same process, by showing that the waiting times between jumps in the
FTPP are IID Mittag-Leffler. This strong connection between the FPP and the FTPP unifies the two
main approaches in the stochastic theory of fractional diffusion. For example, the FPP approach was
used recently in the work of Behgin and Orsingher [6], while the inverse stable subordinator is a
key ingredient in [39].

2 Two equivalent formulations

Recall that the fractional Poisson process (FPP) Nβ(t) is a renewal process with Mittag-Leffler wait-
ing times (1.1), and the fractal time Poisson process (FTPP) N1(E(t)) is Poisson process, with rate
λ > 0, time-changed via the inverse stable subordinator (1.7). The proof that the FPP and the FTPP
are the same process requires the following simple lemma.

Lemma 2.1. Let D(t) be a strictly increasing right-continuous process with left-hand limits, and let
E(t) be its right-continuous inverse defined by (1.7). Then

D(r−) = sup{t > 0 : E(t)< r} (2.1)

for any r > 0.

Proof. Let t0 = sup{t > 0 : E(t) < r}. Then there exists a sequence of points tn ↑ t0 such that
E(tn) < r for all n. Let εn = r − E(tn) > 0. If r > E(t) then, since D(t) is strictly increasing,
D(r) > t. Since D(r) is right-continuous, it follows that D(E(t)) ≥ t for all t > 0. Then we have
tn ≤ D(E(tn)) = D(r − εn)< D(r−). Letting n→∞ shows that D(r−)≥ t0.

Since D has left-hand limits, for any rn ↑ r we have D(rn)→ D(r−) as n→∞. If D(r−) > t0, then
for some rn < r we have D(rn) > t0. Since E(t) is nondecreasing and continuous, this implies that
E(D(rn)) ≥ r, by definition of t0. But, E(D(r)) = r for all r > 0 implying that rn ≥ r, which is a
contradiction. Thus, (2.1) follows.

Theorem 2.2. For any 0 < β < 1, the FTPP N1(E(t)) is also a FPP. That is, the waiting times between
jumps of the FTPP are IID Mittag-Leffler.

Proof. Let Wn be an IID sequence with P(Wn > t) = e−λt and Vn =W1+ · · ·+Wn so that the Poisson
process N1(t) =max{n≥ 0 : Vn ≤ t}. Let

τn = sup{t > 0 : N1(E(t))< n} (2.2)
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denote the jump times of the FTPP. This definition of the jump times takes into account the fact
that E(t) has constant intervals corresponding to the jumps of the process D(t). Using the fact that
{N1(t)< n}= {Vn > t} for the Poisson process, along with (2.2), we have

τn = sup{t > 0 : E(t)< Vn}.

Then Lemma 2.1 implies that τn = D(Vn−). Define X1 = τ1 and Xn = τn − τn−1 for n ≥ 2, the
waiting times between jumps of the FTPP. In order to show that the FTPP is an FPP, it suffices to
show that Xn are IID Mittag-Leffler, i.e., they are IID with the same distribution (1.1) as Jn.

Recall that the Laplace transform of the exponential distribution E(e−sWn) = λ/(λ+ s). Also recall
that E(e−sD(t)) = e−tsβ . Since D(t) is a Lévy process, it has no fixed points of discontinuity and
hence D(t−), D(t) are identically distributed for all t ≥ 0. (Indeed, D(t) = D(t−) a.s. [2, Lemma
2.3.2]).

Then a conditioning argument yields

E(e−sτ1) = E(e−sD(W1−)) = E
�

E
�

e−sD(W1−)
�

�W1

��

= E
�

E
�

e−sD(W1)
�

�W1

��

= E
h

e−W1sβ
i

=
λ

λ+ sβ
·

(2.3)

Let fβ(x) = ∂x[1− Eβ(−λxβ)] be the Mittag-Leffler PDF of Jn. It is well known that

∫ ∞

0

e−sx Eβ(−λxβ) d x =
sβ−1

λ+ sβ
,

see for example [39, Eq. (3.4)]. Now integrate by parts to see that

E(e−sT1) =

∫ ∞

0

e−sx fβ(x) d x

=

∫ ∞

0

se−sx
�

1− Eβ(−λxβ)
�

d x

= s

�

1

s
−

sβ−1

λ+ sβ

�

=
λ

λ+ sβ
= E(e−sτ1)

(2.4)

and then the uniqueness theorem for LT implies that T1,τ1 are identically distributed. In particular,
X1 has the same Mittag-Leffler distribution as J1.

A straightforward extension of this argument shows that (T1, . . . , Tn) is identically distributed with
(τ1, . . . ,τn) for any positive integer n. To ease notation, we only write the case n = 2. First observe
that

E(e−s1T1 e−s2T2) = E(e−s1J1 e−s2(J1+J2)) =
λ

λ+ (s1+ s2)β
·
λ

λ+ sβ2
,

using the independence of J1 and J2. Next write

E(e−s1D(t1)e−s2D(t1+t2)) = E(e−s1D(t1)e−s2[D(t1)+D(t1+t2)−D(t1)])

= E(e−(s1+s2)D(t1)e−s2[D(t1+t2)−D(t1)])

= e−t1(s1+s2)β e−t2sβ2 ,
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using the fact that D(t) has independent increments. Then

E(e−s1τ1−s2τ2) = E(e−s1D(W1−)−s2D([W1+W2]−))

= E
�

E
�

e−s1D(W1)−s2D(W1+W2)
�

�W1, W2

��

= E
h

e−W1(s1+s2)β e−W2sβ2
i

=
λ

λ+ (s1+ s2)β
·
λ

λ+ sβ2
= E(e−s1T1 e−s2T2).

Now an application of the continuous mapping theorem shows that (J1, . . . , Jn) is identically dis-
tributed with (X1, . . . , Xn) for any positive integer n. Then (Xn) is an IID sequence, so N1(E(t)) is a
renewal process.

Remark 2.3. Theorem 2.2 extends a result in Behgin and Orsingher [6]. They define (in our no-
tation) a random variable E(t) and show that the two random variables Nβ(t) and N1(E(t)) have
the same density function, by comparing their Laplace transforms. They identify E(t) only through
its density function, which they express in terms of an integral involving the density of D(t), see
Remark 3.2 for more detail. Cahoy, Uchaikin, Woyczynski [12] also connect the Mittag-Leffler dis-
tribution with a stable law. They note that (in our notation) P(Jn > t) = E[exp(−λtβ/D(1)β)],
which is useful in simulations. To connect this with our work, note that E(t) = (t/D(1))β in distri-
bution (see Corollary 3.1 in [35]), so that P(Jn > t) = E[exp(−λE(t))]. A result of Bingham [9]
shows that the the Laplace transform of the stable hitting time E(t) is Mittag-Leffler, so that (1.1)
holds.

Remark 2.4. The proof of Theorem 2.2 uses the fact that, if D(t) is a β-stable subordinator and
W1 is exponential, then D(W1) has a Mittag-Leffler distribution. This fact was first noticed by Pillai
[41], who showed that W 1/β

1 D(1) is Mittag-Leffler. These are equivalent because D(t) is identically
distributed with t1/βD(1). This Mittag-Leffler distribution is also known as the positive Linnik law,
e.g., see Huillet [24]. It has the property of geometric stability: A geometric random sum of Mittag-
Leffler variables is again Mittag-Leffler, e.g., see Kozubowski [28].

Next we want to show that the FTPP N1(E(t)), and hence also the FPP Nβ(t), occurs naturally as a
CTRW scaling limit. This provides a further justification for the FPP as a robust physical model, see
for example Laskin [30]. Suppose now that P(Jn > t) = t−β L(t), where 0 < β < 1 and L is slowly
varying. For example, this is true of the Mittag-Leffler waiting times. Then J1 belongs to the strict
domain of attraction of some stable law D with index 0< β < 1, i.e., there exist bn > 0 such that

bn(J1+ · · ·+ Jn)⇒ D, (2.5)

where D(1) = D > 0 almost surely, and ⇒ denotes convergence in distribution. Let b(t) = b[t].
Then b(t) = t−1/β L0(t) for some slowly varying function L0(t) (e.g., see [19, XVII.5]). Since b
varies regularly with index −1/β , b−1 is regularly varying with index 1/β > 0 and so by [45,
Property 1.5.5] there exists a regularly varying function b̃ with index β such that 1/b(b̃(c)) ∼ c, as
c →∞. Here we use the notation f ∼ g for positive functions f , g if and only if f (c)/g(c)→ 1 as
c→∞. Let Tn = J1+ · · ·+ Jn and define a renewal process

R(t) =max{n≥ 0 : Tn ≤ t} (2.6)

with these waiting times. Next, construct a CTRW with iid Bernoulli jumps Y (p)n withP(Y (p)n = 1) = p
and P(Y (p)n = 0) = 1− p, independent of (Jn). Let S(p)(n) = Y (p)1 + · · ·+ Y (p)n , a binomial random
variable. Then S(p)(R(t)) is a CTRW with heavy tailed waiting times and Bernoulli jumps.
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Theorem 2.5. The FTPP is the process limit of a CTRW sequence:
�

S(1/b̃(c))([λR(c t)])
	

t≥0⇒
�

N1(E(t))
	

t≥0 (2.7)

as c→∞ in the M1 topology on D([0,∞),R).

Proof. Since the sequence (Jn) is in the strict domain of attraction of a β-stable random variable D,
[35, Corollary 3.4] shows that

�

b̃(c)−1R(c t)
	

t≥0⇒
�

E(t)
	

t≥0 as c→∞.

in the Skorokhod J1 topology, where D(t) is the stable subordinator with D(1) = D, and E(t) is
given by (1.7).

Since the binomial random variable S(p)(n) has LT E(e−sS(p)(n)) = (1+ (e−s − 1)p)n for any n≥ 0, it
follows that

E(e−sS(p)([λt/p])) = (1+ (e−s − 1)p)[λt/p]→ exp(−λt(1− e−s)),

as p→ 0, using the fact that (1+ ap)1/p → ea as p→ 0. It follows by the continuity theorem for LT
that S(p)([λt/p])⇒ N1(t) for any t > 0, since exp(−λt(1− e−s)) is the LT of the Poisson random
variable N1(t). Then a standard argument (e.g., see [34, Example 11.2.18] shows that we also get

�

S(p)([λt/p])
	

t≥0

f .d.
=⇒

�

N1(t)
	

t≥0,

as p→ 0, where
f .d.
=⇒ denotes convergence of all finite dimensional distributions. Since the sample

paths of S(p)([λt/p]) are increasing and N1(t) is continuous in probability, being a Lévy process, J1
convergence follows using [9, Theorem 3].

Since the CTRW waiting times (Jn) are independent of the jumps (Y (p)n ), and since 1/b̃(c) → 0 as
c→∞, it follows that

(S(1/b̃(c))([λt b̃(c)]), b̃(c)−1R(c t))⇒ (N1(t), E(t))

in the J1 topology of the product space D([0,∞),R×R), by [8, Theorem 3.2]. Since the process
E(t) is nondecreasing and continuous, [47, Theorem 13.2.4] along with the continuous mapping
theorem yields

S(1/b̃(c))([λR(c t)]) = S(1/b̃(c))([λ · b̃(c)−1R(c t) · b̃(c)])⇒ N1(E(t))

in the M1 topology on D([0,∞),R).

Remark 2.6. For the specific case of Mittag-Leffler waiting times, where P(Jn > t) = Eβ(−tβ), we
can take bn = n−1/β in (2.5). To check this, note that

E(e−sbnTn) =

�

1

1+ (sbn)β

�n

=

�

1−
sβ

n+ sβ

�n

→ e−sβ = E(e−sD(1))

as n→∞. Then b̃(c) = cβ and the CTRW convergence (2.7) reduces to S(c
−β )([λR(c t)])⇒ N1(E(t))

as c→∞. Substitute p = c−β to get

S(p)([λR(p−1/β t)])⇒ N1(E(t)), as p→ 0. (2.8)
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3 Fractional calculus

This section develops some interesting connections between the fractional Poisson process and frac-
tional calculus. In the process, some connections between results in the existing literature will be
established. Behgin and Orsingher [6, Eq. (2.17)] show that the FPP of order 0 < β < 1 has
distribution

P(Nβ(t) = k) =

∫ ∞

0

e−λx (λx)k

k!
V (x , t) d x , (3.1)

where V (x , t) is a “folded PDF” defined on x > 0, for each t > 0, by V (x , t) = 2v(x , t), and v(x , t)
is another PDF with x ∈R for each t > 0 that solves

∂
2β
t v(x , t) = ∂ 2

x v(x , t);

v(x , 0) = δ(x);

∂t v(x , 0)≡ 0, if 1/2< β < 1.

(3.2)

It is also stated in [6, Eq. (1.9)] that the FPP Nβ(t) = N1(Tt), where Tt is a random variable with
PDF V (x , t) for t > 0.

On the other hand, a simple conditioning argument shows that the equivalent FTPP process has
distribution

P(N1(E(t)) = k) =

∫ ∞

0

P(N1(x) = k)h(x , t) d x =

∫ ∞

0

e−λx (λx)k

k!
h(x , t) d x (3.3)

where h(x , t) is the density of E(t), a PDF on x > 0 for each t > 0. It follows from [37, Theorem
4.1] that this PDF solves

∂
β
t h(x , t) =−∂xh(x , t); h(x , 0) = δ(x). (3.4)

In view of Theorem 2.2, the two distributions (3.1) and (3.3) must be equal. Thus, the main purpose
of this section is to reconcile the two fractional differential equations (3.2) and (3.4).

Theorem 3.1. Let Nβ(t) be a fractional Poisson process (1.3) with 0 < β < 1, so that (3.1) holds.
Let N1(E(t)) be the equivalent fractal time Poisson process, where E(t) is the standard inverse β-stable
subordinator with PDF h(x , t), so that (3.3) holds. Then

h(x , t) = 2v(x , t) for all x > 0 and t > 0. (3.5)

In particular, the two fractional partial differential equations (3.2) and (3.4) are consistent, in the sense
that the folded solution V (x , t) = 2v(x , t) to (3.2) coincides with the solution h(x , t) to (3.4).

Proof. Mainardi [31, Eq. (3.2)] shows that the solution to the fractional diffusion-wave equation
(3.2) has LT

ṽ(x , s) =

∫ ∞

0

e−st v(x , t)d t =
1

2
sβ−1e−|x |s

β

(3.6)

while [37, Eq. (3.13)] shows that
h̃(x , s) = sβ−1e−xsβ . (3.7)
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Since both are differentiable in t, they are also continuous, so LT uniqueness for continuous func-
tions implies (3.5).

Take Fourier transforms in (3.6) to see that the solution to (3.2) has Fourier-Laplace transform (FLT)

v̄(k, s) =

∫ ∞

0

e−st

∫ ∞

−∞
e−ikx v(x , t)d xd t =

s2β−1

s2β + k2
, (3.8)

where we have used the fact that e−a|x | has FT 2a/(a2+ k2). Rearrange to get

s2β v̄(k, s)− s2β−1 =−k2 v̄(k, s)

and invert the FT to get
s2β ṽ(x , s)− s2β−1v(x , 0) = ∂ 2

x ṽ(x , s),

using the fact that ∂x f (x) has FT (ik) f̂ (k) and v(x , 0) = δ(x) has FT v̂(k, 0) ≡ 1. To invert the
LT, note that the Caputo fractional derivative ∂ βt f (t) has LT sβ f̃ (s)− sβ−1 f (0) if 0 < β ≤ 1, and
LT sβ f̃ (s) − sβ−1 f (0) − sβ−2 f ′(0) if 1 < β ≤ 2. This is easy to verify from the definition (1.5),
using the corresponding formula for the integer derivative, along with the fact that sβ−1 is the LT of
t−β/Γ(1− β). Now use the remaining initial condition ∂t v(x , 0) ≡ 0 for 1/2 < β < 1 to invert the
LT, and arrive at (3.2).

Likewise, the solution to (3.4) has FLT

h̄(k, s) =

∫ ∞

0

e−ikx sβ−1e−xsβ d x =
sβ−1

sβ + ik
, (3.9)

using the fact that eax I(x ≥ 0) has FT 1/(a+ ik). To see that these are consistent, compute the FLT
of h(|x |, t):

∫ ∞

0

e−st

∫ ∞

−∞
e−ikxh(|x |, t)d xd t =

∫ ∞

0

e−st

�
∫ ∞

0

e−ikxh(x , t)d x +

∫ ∞

0

eikxh(x , t)d x

�

d t

=
sβ−1

sβ + ik
+

sβ−1

sβ − ik
= 2

�

s2β−1

s2β + k2

�

= 2v̄(k, s).

Invert the FLT to see that h(|x |, t) = 2v(x , t) for all x ∈ R and t > 0. To verify the LFT solution,
take FT in (3.4) to get

∂
β
t ĥ(k, t) =−ik ĥ(x , t)

and apply the LT to get sβ h̄(k, s)−sβ−1 =−ik h̄(k, s), using the point source initial condition ĥ(k, 0)≡
1.

Remark 3.2. Behgin and Orsingher [6, Eq. (2.21)] show that

v(x , t) =
1

2Γ(1− β)

∫ t

0

(t −w)−β p(|x |, t)d x ,

where p(x , t) is the density of the stable subordinator D(t), while [37, Theorem 3.1] implies that

h(x , t) =
1

Γ(1− β)

∫ t

0

(t −w)−β p(x , t)d x .

This gives another proof that h(|x |, t) = 2v(x , t).
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Remark 3.3. A closed form expression for the probability mass function p(n, t) = P(N1(E(t)) = n) =
P(Nβ(t) = n) is

p(n, t) =
(λtβ)n

n!

∞
∑

r=0

(n+ r)!
r!

(−λtβ)r

Γ(β(r + n) + 1)
. (3.10)

See for example Jumarie [25], Laskin [30], Beghin and Orsingher [6, 7] and Cahoy [11] for differ-
ent derivations of this result

The equivalence in Theorem 3.1 results from folding the solution to the fractional diffusion-wave
equation (3.2). Another fractional partial differential equation for the density h(x , t) of the standard
inverse β-stable subordinator E(t), which is closer to the form (3.2), can be obtained by arguments
similar to those used in [4] to connect the inverse stable subordinator to iterated Brownian motion.
In that theory, it is customary to avoid distributions by imposing a functional initial condition.

Theorem 3.4. Let E(t) be the standard inverse β-stable subordinator with density h(x , t). Then for
any f ∈ L2(R)∩ C1(R), the function

u(x , t) = Ex[ f (E(t))] =

∫ ∞

0

f (x + y)h(y, t)d y (3.11)

solves the fractional differential equation

∂
2β
t u(x , t) =−∂x f (x)

tβ−1

Γ(1− β)
+ ∂ 2

x u(x , t); u(x , 0) = f (x). (3.12)

In particular, when β = 1/2, (3.11) solves

∂tu(x , t) =
−∂x f (x)
p
πt

+ ∂ 2
x u(x , t); u(0, x) = f (x), (3.13)

and in this case we also have u(x , t) = Ex[ f (|B(t)|)], where B(t) is a Brownian motion with variance
2t.

Remark 3.5. Equation (3.13) in Theorem 3.4 is a special case of Theorem 0.1 in [1] using the Markov
process X (t) = X (0)−t. The semigroup associated with X (t) is T (t) f (x) = Ex[ f (X (t))] = f (x−t),
with infinitesimal generator −∂x .

Proof of Theorem 3.4. From (3.9), we have

ū(k, s) =
sβ−1 f̂ (k)

sβ + ik
=

sβ−1 f̂ (k)

sβ + ik
·

sβ − ik

sβ − ik
=

s2β−1− iksβ−1

s2β + k2
f̂ (k)

so that s2β ū(k, s)− s2β−1 f̂ (k) = −ik f̂ (k)sβ−1 − k2ū(k, s), which inverts to (3.12). It is well known
that the Brownian motion first passage time D(y) = inf{t > 0 : B(t) > y} is a stable subordinator
with index β = 1/2 [2, Example 1.3.19]. Then it is easy to see that

E(t) = inf{y > 0 : D(y)> t}= sup{B(r) : 0≤ r ≤ t}

and this recovers the fact, typically proven using the reflection principle, that

P(E(t)> y) = 2P(B(t)> y).
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Then E(t) and |B(t)| have the same one dimensional distributions, so we also have u(x , t) =
Ex[ f (|B(t)|)]. Note that X (t) = X (0) − t is a fortiori a continuous Markov process associated
with the shift semigroup T (t) f (x) = Ex[ f (X (t))] = f (x − t) with generator

Lx f (x) = lim
t→0+

T (t) f (x)− f (x)
t

=−∂x f (x).

Then [4, Corollary 3.4] and [1, Theorem 0.1] imply that u(x , t) solves the equation

∂tu(x , t) =
Lx f (x)
p
πt

+ Lx
2u(x , t); u(0, x) = f (x).

When Lx =−∂x , this reduces to (3.13), a special case of (3.12) with Γ(1/2) =
p
π.

Remark 3.6. In the case f (x) = δ(x), Theorem 3.4 gives an alternative governing equation for
h(x , t). Note that (3.12) is very similar to the governing equation (3.2) for the unfolded PDF.

Remark 3.7. The process |B(t)| in Theorem 3.4 is not the same process as the inverse 1/2-stable
subordinator E(t) in Theorem 2.2, although they have the same one dimensional distributions. One
reason is the fact that as a process E(t) has nondecreasing sample paths, whereas |B(t)| does not
have this property. Hence, the FTPP N1(E(t)) is not the same as the Brownian time Poisson process
N1(|B(t)|). However, we do have E(t) = sup{B(r) : 0 ≤ r ≤ t}, see for example [10], so that a
Poisson process subordinated to the supremum of a Brownian motion is an FPP with β = 1/2.

Remark 3.8. Let E(t) be the standard inverse stable subordinator of index β = 1/m for integer
m > 1. Then [4, Remark 3.11], [40, Theorem 1.1] and Keyantuo and Lizama [26, Theorem 3.3]
imply that u(x , t) = Ex[ f (E(t))] solves

∂tu(x , t) =
m−1
∑

j=1

t j/m−1

Γ( j/m)
(−∂x)

j f (x) + (−∂x)
mu(x , t); u(0, x) = f (x),

for t > 0 and x ∈ R, which is then equivalent to (3.4). The proof is similar to Theorem 3.4. For
example, when β = 1/3 use

ū(s, k) =
s−2/3 f̂ (k)

s1/3+ ik
·

s2/3− s1/3ik+ k2

s2/3− s1/3ik+ k2
=

1− s−1/3ik+ s−2/3k2

s+ ik3 f̂ (k).

4 Renewal processes and inverse subordinators

Theorem 2.2 shows that a Poisson process, time-changed by an inverse stable subordinator, yields a
renewal process with Mittag-Leffler waiting times. This section extends that result to arbitrary sub-
ordinators that are strictly increasing. Let Dψ(t) be a strictly increasing Lévy process (subordinator)
with E[e−sDψ(t)] = e−tψ(s), where the Laplace exponent

ψ(s) = bs+

∫ ∞

0

(e−sx − 1)φ(d x), (4.1)

b ≥ 0, and φ is the Lévy measure of Dψ. Then we must have either

φ(0,∞) =∞, (4.2)
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or b > 0, or both. Let
Eψ(t) = inf{τ≥ 0 : Dψ(τ)> t} (4.3)

be the inverse subordinator (1.7), and recall that N1(t) is a Poisson process with rate λ.

Theorem 4.1. The time-changed Poisson process N1(Eψ(t)) is a renewal process whose IID waiting
times (Jn) satisfy

P(Jn > t) = E[e−λEψ(t)]. (4.4)

Proof. The proof is similar to Theorem 2.2. Take N1(t) = max{n ≥ 0 : Vn ≤ t}, where Vn =
W1+ · · ·+Wn, with Wn IID as P(Wn > t) = e−λt . Let

τn = sup{t > 0 : N1(Eψ(t))< n}= sup{t > 0 : Eψ(t)< Vn}

and apply Lemma 2.1 to get τn = Dψ(Vn−). Then, as in the proof of Theorem 2.2, we have

E(e−sτ1) = E(e−sDψ(W1−))

= E
�

E
�

e−sDψ(W1)
�

�W1

��

= E
�

e−W1ψ(s)
�

=
λ

λ+ψ(s)
.

(4.5)

By [37, Corollary 3.5], the IID random variables Jn in (4.4) satisfy
∫ ∞

0

e−st P(Jn > t) d t =

∫ ∞

0

e−st E[e−λEψ(t)] d t =
ψ(s)

s(λ+ψ(s))
. (4.6)

Integrate by parts to get
∫ ∞

0

e−st PJn
(d t) =

∫ ∞

0

se−st �1−P(Jn > t)
�

d t = 1−
ψ(s)

λ+ψ(s)
=

λ

λ+ψ(s)
, (4.7)

which shows that T1 = J1 is identically distributed with τ1. Extend this argument, as in the proof
of Theorem 2.2, to show that (T1, . . . , Tn) is identically distributed with (τ1, . . . ,τn) for any positive
integer n. For example, when n= 2, write

E(e−s1Dψ(t1)e−s2Dψ(t1+t2)) = E(e−(s1+s2)Dψ(t1)e−s2[Dψ(t1+t2)−Dψ(t1)]) = e−t1ψ(s1+s2)e−t2ψ(s2)

and condition to get

E(e−s1τ1−s2τ2) = E(e−s1Dψ(W1−)−s2Dψ([W1+W2]−))

= E
�

E
�

e−s1Dψ(W1)−s2Dψ(W1+W2)
�

�W1, W2

��

= E
�

e−W1ψ(s1+s2)e−W2ψ(s2)
�

=
λ

λ+ψ(s1+ s2)
·

λ

λ+ψ(s2)
.

On the other hand,

E(e−s1T1 e−s2T2) = E(e−s1J1 e−s2(J1+J2)) =
λ

λ+ψ(s1+ s2)
·

λ

λ+ψ(s2)

using the fact that (Jn) are IID. To finish the proof, use continuous mapping to show that (J1, . . . , Jn)
is identically distributed with (X1, . . . , Xn), where Xn = τn − τn−1 are the waiting times between
jumps for the process N1(Eψ(t)).
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Remark 4.2. Let Nψ(t) denote the renewal process from Theorem 4.1, so that

Nψ(t) =max{n≥ 0 : Tn ≤ t}, (4.8)

where Tn =
∑n

i=1 Ji and (Jn) are IID according to (4.4). Theorem 4.1 shows that Nψ(t) = N1(Eψ(t)).
This extends the relation Nβ(t) = N1(E(t)) from Theorem 2.2, the special case of an inverse stable
subordinator E(t) and Mittag-Leffler waiting times Jn, to a general inverse subordinator.

Remark 4.3. Let M(t) = E(Nψ(t)) denote the renewal function of the renewal process Nψ(t). Then
using Lageras [29, Equation 4], it follows that the LT of M(t) is λ/ψ(s).

Remark 4.4. A simple conditioning argument shows that

pψ(n, t) = P(Nψ(t) = n) =

∫ ∞

0

P(N1(x) = n)hψ(x , t) d x =

∫ ∞

0

e−λx (λx)n

n!
h(x , t) d x

where hψ(x , t) is the density of Eψ(t). A straightforward calculation shows that

p̃ψ(n, s) =
s−1ψ(s)
λ+ψ(s)

·
λn

(λ+ψ(s))n
. (4.9)

Use (4.6) and (4.7) to see that the first factor in (4.9) is the LT (t 7→ s) of h̃ψ(λ, t) = P(Jn > t) =
E(e−λEψ(t)), and the second is the LT of Tn = J1 + J2 + · · ·+ Jn with Jn IID as in (4.4). Denote the
distribution of Tn by F (n,∗), the n-fold convolution of the distribution function F of J1. Invert the LT
to get

pψ(n, t) =

∫ t

0

h̃ψ(λ, t − s)F (n,∗)(ds) (4.10)

which extends (3.10).

5 CTRW scaling limits and governing equations

In this section, we extend the fractional calculus results of Section 3 to the inverse subordinators of
Section 4. A general theory of CTRW scaling limits and governing equations is developed in [37].
Consider a sequence of CTRW indexed by a scale parameter c > 0. Take J c

n nonnegative IID random
variables representing the waiting times between particle jumps and T c(n) =

∑n
i=1 J c

i , the time of
the nth jump. Let Y c

i be IID random vectors on Rd representing the particle jumps, independent
of the waiting times, and set Sc(n) =

∑n
i=1 Y c

i , the location of the particle after n jumps. Define
N c

t =max{n≥ 0 : T c(n)≤ t}, the number of jumps by time t ≥ 0 and

X c(t) = Sc(N c
t ) =

N c
t
∑

i=1

Y c
i (5.1)

the position of the particle at time t ≥ 0 and scale c > 0. Assume a triangular array limit

{(Sc(c t), T c(c t))}t≥0⇒ {(A(t), Dψ(t)}t≥0, as c→∞, (5.2)
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in the J1 topology on D([0,∞),Rd ×R+), so that A(t) and Dψ(t) are independent Lévy processes
on Rd and R, respectively. Since the waiting times are nonnegative, Dψ(t) is a subordinator. In this
section, we assume the drift b = 0 in (4.1), as well as condition (4.2) and

∫ 1

0

y| ln y|φ(d y)<∞. (5.3)

Assumption (4.2) implies that the process {Dψ(t)} is strictly increasing, i.e., Dψ(t) is not compound
Poisson. Then [37, Theorem 3.1] shows that the inverse subordinator Eψ(t) in (4.3) has a Lebesgue
density

hψ(x , t) =

∫ t

0

φ(t − y,∞)PDψ(x)(d y). (5.4)

Write E[e−sDψ(t)] = e−tψ(s), as before. Let P(x , t) = P(A(t) ≤ x) be the distribution function of
A(t), and write

P̂(k, t) =

∫

e−ik·x P(d x , t) = e−tψA(k),

whereψA(k) is the Fourier symbol of A. The symbols define pseudo-differential operators: ψ(∂t) f (t)
has LTψ(s) f̃ (s), andψA(−i∂x) f (x) has FTψA(k) f̂ (k), for suitable functions f . Then [37, Theorem
2.1] establishes the CTRW scaling limit

{X c(t)}t≥0⇒ {A(Eψ(t))}t≥0, as c→∞, (5.5)

in the M1-topology on D([0,∞),Rd). Recall that a function Q is a mild solution to a space-time
pseudo-differential equation if its (Fourier-Laplace or Laplace-Laplace) transform solves the equiva-
lent algebraic equation in transform space. The next result is a small extension and simplification of
[37, Theorem 4.1].

Theorem 5.1. Assume (5.2) holds, where Dψ(t) is a subordinator without drift such that conditions
(4.2) and (5.3) hold. The distribution function of the CTRW limit process A(Eψ(t)) in (5.5) is given by

Q(x , t) =

∫ ∞

0

P(x , u)hψ(u, t) du (5.6)

where hψ(u, t) is the density (5.4) of the inverse subordinator Eψ(t). The distribution function Q(x , t)
solves the generalized Cauchy problem

ψ(∂t)Q(x , t) =−ψA(−i∂x)Q(x , t) +H(x)φ(t,∞) (5.7)

in the mild sense, where H(x) = I(x ≥ 0) is the Heaviside function. Furthermore, P(x , u) solves the
Cauchy problem

∂t P(x , t) =−ψA(−i∂x)P(x , t); P(x , 0) = H(x), (5.8)

and hψ(x , t) solves the Cauchy problem (in the x variable)

∂xhψ(x , t) =−ψ(∂t)hψ(x , t); hψ(0, t) = φ(t,∞). (5.9)
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Proof. The proof is similar to [37, Theorem 4.1]. Equation (5.6) follows from a simple conditioning
argument. Apply [37, Theorem 3.6] to see that Q(x , t) has FLT

Q̄(k, s) =

∫ ∞

0

e−st

∫

Rd

e−ik·xQ(d x , t) d t =
1

s

ψ(s)
ψA(k) +ψ(s)

(5.10)

and rearrange to get
ψ(s) Q̄(k, s) =−ψA(k) Q̄(k, s) + s−1ψ(s). (5.11)

From [37, Eq. (3.12)] we get
∫ ∞

0

e−suφ(u,∞) du= s−1ψ(s). (5.12)

Now invert the FLT (5.11), using (5.12) and
∫

e−ik·x H(d x) ≡ 1, to arrive at (5.7). It is well known
that P(x , t) solves the Cauchy problem (5.8), see for example [23].

Equation (4.6) shows that the bivariate Laplace transform (LLT)

h̄ψ(λ, s) =

∫ ∞

0

∫ ∞

0

e−λx−sthψ(x , t) d t d x =
1

s

ψ(s)
λ+ψ(s)

.

This rearranges to
λh̄ψ(λ, s)− s−1ψ(s) =−ψ(s)h̄ψ(λ, s). (5.13)

Using (5.12) again, it follows from (5.4) and the convolution property of the LT that

h̃(x , s) =

∫ ∞

0

e−sthψ(x , t) d x = s−1ψ(s)e−xψ(s)

and hence h̃(0, s) = s−1ψ(s). Now invert the Laplace transform in the x variable in equation (5.13)
to get

∂x h̃(x , s) =−ψ(s)h̃(x , s),

and then invert the LT in the t variable to see that hψ(x , t) solves (5.9).

For any random walk S(n) =
∑n

i=1 Yi , the compound Poisson process A(t) = S(N1(t)) is a Lévy
process. Introduce IID waiting times (4.4) between these random walk jumps to get a CTRW. In this
case, the CTRW is exactly of the form A(Eψ(t)), without passing to the limit. Then the governing
equations in Theorem 5.1 pertain to the CTRW itself.

Theorem 5.2. Assume Dψ(t) is a subordinator without drift such that conditions (4.2) and (5.3) hold,
and let Eψ(t) be the inverse subordinator (4.3). Take Jn IID waiting times according to (4.4), and let
Nψ(t) denote the renewal process (4.8). Take Yn IID jumps onRd , independent from (Jn), with common
distribution µ, and let S(n) =

∑n
i=1 Yi . Then the distribution function P(x , t) = P(X (t) ≤ x) of the

CTRW X (t) = S(Nψ(t)) solves the generalized Cauchy problem

ψ(∂t)P(x , t) =−λP(x , t) +λ

∫

P(x − y, t)µ(d y) +H(x)φ(t,∞) (5.14)

in the mild sense. Furthermore, X (t) = A(Eψ(t)), where A(t) = S(N1(t)) is a compound Poisson
process.
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Proof. Theorem 4.1 yields Nψ(t) = N1(Eψ(t)), and then the CTRW is

X (t) = S(Nψ(t)) = S(N1(Eψ(t))) = A(Eψ(t)).

A standard conditioning argument shows that the compound Poisson FT P̂(k, t) = e−tψA(k), where
the Fourier symbol ψA(k) = λ(1− µ̂(k)). The inverse FT of ψA(k) f̂ (k) is

ψA(−i∂x) f (x) =−λ f (x) +λ

∫

f (x − y)µ(d y) (5.15)

using the FT convolution property. Now Theorem 5.1 implies that (5.14) holds.

Remark 5.3. In the situation of Theorem 5.2, where A(t) is compound Poisson, the distribution
function P(x , t) = P(A(t) ≤ x) solves the Cauchy problem (5.8), which can be written in this case
as

∂t P(x , t) =−λP(x , t) +λ

∫ ∞

−∞
P(x − y, t)µ(d y); P(x , 0) = H(x). (5.16)

This is the Kolmogorov forward equation for the Markov process A(t). If µ has density w(x), apply
∂x on both sides of (5.16) to see that the probability density p(x , t) = ∂x P(x , t) of A(t) solves (1.6).
If D is the stable subordinator with Laplace symbol ψ(s) = sβ , then (5.14) holds with φ(t,∞) =
t−β/Γ(1− β) and ψ(∂t) = D

β
t , the Riemann-Liouville fractional derivative. The Riemann-Liouville

fractional derivative is defined for 0≤ n− 1< β < n by

D
β
t g(t) =

1

Γ(n− β)
dn

d tn

∫ t

0

(t − r)n−1−β g(n)(r) dr, (5.17)

which differs from the Caputo derivative (1.5) in that the derivative is applied after the integration.
The LT of Dβt g(t) is sβ g̃(s). Apply ∂x to both sides of (5.14) in this case to get

D
β
t p(x , t) =−λp(x , t) +λ

∫

p(x − y, t)µ(d y) +δ(x)
t−β

Γ(1− β)
,

the fractional kinetic equation of Zaslavsky [48]. To recover (1.4), use ∂ βt g(t) = D
β
t g(t) −

g(0)t−β/Γ(1− β) and p(x , 0) = δ(x).

Remark 5.4. In the special case where µ = ε1 is a point mass, so that Yn = 1 almost surely, A(t) =
N1(t) is a Poisson process with rate λ > 0. Then the distribution function P(x , t) of the renewal
process Nψ(t) = A(Eψ(t)) solves

ψ(∂t)P(x , t) =−λ[P(x , t)− P(x − 1, t)] +H(x)φ(t,∞). (5.18)

If D is the stable subordinator with Laplace symbol ψ(s) = sβ , Equation (5.18) reduces to

∂
β
t P(x , t) =−λ[P(x , t)− P(x − 1, t)]

as in Remark 5.3. The probability mass function p(n, t) = P(n, 1)− P(n−1, t) = ∆P(n, t) for n> 0.
Apply the difference operator ∆ on both sides to obtain

∂
β
t p(n, t) =−λ[p(n, t)− p(n− 1, t)]

as in Jumarie [25].
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Remark 5.5. Scher and Lax [44] showed that a CTRW with waiting time distribution ω and jump
distribution ν has FLT

Q̄(k, s) =
1

s

1− ω̃(s)
1− ω̃(s)ν̂(k)

,

where ν̂(k) =
∫

e−ik·xν(d x). To reconcile with Theorem 5.2, recall from (4.7) that the waiting times
(4.4) in Theorem 5.2 have LT

ω̃(s) =

∫

e−stω(d t) =
λ

λ+ψ(s)

and then it follows thatψ(s) = λ(1− ω̃(s))/ω̃(s). The jumps Yn in Theorem 5.2 have Fourier symbol
ψA(k) = λ(1− µ̂(k)) and then (5.10) implies

Q̄(k, s) =
1

s

ψ(s)
ψA(k) +ψ(s)

=
1

s

1−ω̃(s)
ω̃(s)

1−ω̃(s)
ω̃(s) + (1− µ̂(k))

=
1

s

1− ω̃(s)
1− ω̃(s)µ̂(k)

which provides a different proof that the CTRW equals A(Eψ(t)) in this case. To simulate the sample
paths of the non-Markovian process A(Eψ(t)), it is sufficient to simulate the CTRW. In particular, the
renewal process Nψ(t) gives the exact jump times of the inverse subordinator Eψ(t).

Remark 5.6. In the general case, where A(t) is not compound Poisson, Theorem 5.2 provides a useful
approximation. Given a Lévy process A(t), take Yn = A(n)−A(n−1), so that S(n) = A(n). Take N(t)
a Poisson process with rate 1, so that S(λ−1N(λt)) is compound Poisson with Fourier symbol

λ(1− e−λ
−1ψA(k))→ψA(k), as λ→∞.

Then S(λ−1N(λt))⇒ A(t) as λ→∞, and the CTRW with IID waiting times (4.4) and these com-
pound Poisson jumps converges to A(Eψ(t)) as λ→∞. As in Remark 5.5, this fact can be used to
simulate sample paths of the process A(Eψ(t)). This fact has been exploited by Fulger, Scalas and
Germano [20] to develop fast simulation methods for space-time fractional diffusion equations.

Example 5.7. Tempered stable subordinators are theoretically interesting [5, 43] and practically
useful [18, 38]. Take Da(t) tempered stable with Laplace symbol ψ(s) = (s + a)β − aβ for a > 0
and 0 < β < 1, and let Ea(t) be its inverse (1.7). Theorem 4.1 shows that N1(Ea(t)) is a renewal
process. Let (τn) denote the arrival times of this renewal process, and use (4.5) to get

E(e−sτ1) =
λ

λ+ (s+ a)β − aβ
.

This tempered fractional Poisson process N1(Ea(t)) has tempered Mittag-Leffler waiting times, but
with a different rate parameter: Use (2.4) to see that the Mittag-Leffler PDF f (t) = ∂t[1−Eβ(−ηtβ)]
has Laplace transform η/(η+ sβ), and so

∫ ∞

0

e−st f (t)e−at d t =
η

η+ (s+ a)β
.

Of course f (t)e−at is not a PDF, and in fact we have (set s = 0 above)
∫ ∞

0

f (t)e−at d t =
η

η+ aβ
.
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Then the tempered Mittag-Leffler PDF fa(t) = f (t)e−at(η+ aβ)/η has LT
∫ ∞

0

e−st fa(t)d t =
η+ aβ

η+ (s+ a)β
=

λ

λ+ (s+ a)β − aβ
= E(e−sτ1)

when η + aβ = λ. Cartea and Del-Castillo [14] show that the tempered fractional derivative
ψ(∂t)g(t) = e−at ∂

β
t [e

at g(t)]− aβ g(t). It is also known (e.g., see [5]) that the corresponding Lévy
measure is exponentially tempered: φ(d t) = e−atφβ(d t), where φβ(t,∞) = t−β/Γ(1− β) is the
Lévy measure of the standard β-stable subordinator. Then Theorem 5.2 shows that the CTRW with
tempered Mittag-Leffler waiting times and compound Poisson jumps solves a tempered fractional
Cauchy problem

e−at ∂
β
t [e

at P(x , t)]− aβ P(x , t) =ψA(−i∂x)P(x , t) +H(x)φ(t,∞)

with ψA(−i∂x) given by (5.15) and φ(t,∞) = β
∫∞

t
e−at t−β−1d t/Γ(1− β). More generally, Theo-

rem 5.1 shows that the distribution function of the CTRW scaling limit A(Eψ(t)) is governed by this
equation, with the corresponding operator ψA(−i∂x). Apply ∂x on both sides of (5.18) to see that
the PDF of the renewal process with tempered Mittag-Leffler waiting times solves

e−at ∂
β
t [e

at p(x , t)]− aβ p(x , t) =−λ[p(x , t)− p(x − 1, t)] +δ(x)φ(t,∞).

A wide variety of tempered stable models inRd are discussed in Rosiński [43]. Random walks inRd

with tempered stable scaling limit are developed in [15]. For exponentially tempered stable waiting
times in R1, a renewal process with tempered Mittag-Leffler waiting times gives the same process
exactly, without taking limits. This can be useful for simulating sample paths.

Example 5.8. Chechkin et al. [17, 16] used distributed order fractional derivatives to model multi-
scale anomalous subdiffusion, where a different power law pertains at short and long time scales,
and ultraslow diffusion, for a plume of particles spreading at a logarithmic rate. Given a finite Borel
measure ν on (0,1), the distributed order fractional derivative is defined by

Dνt g(t) =

∫ 1

0

∂
β
t g(t)ν(dβ), (5.19)

where ∂ βt is the Caputo fractional derivative (1.5). If ν is discrete, this is a linear combination of
fractional derivatives. Let Dν(t) be the distributed order stable subordinator with Laplace symbol
ψ(s) =

∫

sβν(dβ) and Eν(t) its inverse (4.3). Let ν(dβ) = p(β)dβ for some p ∈ C1(0, 1), then by
(2.19) in Kochubei [27]

P(Jn > t) = E(e−λEν (t)) =
λ

π

∫ ∞

0

r−1e−t rΦ(r, 1)dr (5.20)

where

Φ(r, 1) =

∫ 1

0
rβ sin(βπ)Γ(1− β)p(β)dβ

[
∫ 1

0
rβ cos(βπ)Γ(1− β)p(β)dβ +λ]2+ [

∫ 1

0
rβ sin(βπ)Γ(1− β)p(β)dβ]2

.

Substitute (5.20) into (4.10) to obtain an explicit formula for the probability mass function of the
distributed order Poisson process. In the special case where ψ(s) = sβ0 for some 0 < β0 < 1, we
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have p(β) = Γ(1− β)−1δ(β − β0) and Dν(t) is a stable subordinator. In this case (5.20) reduces to
the following formula for the Mittag-Leffler function [21, Equation (3.25)]:

Eβ0
(−λtβ0) =

λ

π

∫ ∞

0

r−1e−t r rβ0 sin(β0π)

[rβ0 cos(β0π) +λ]2+ [rβ0 sin(β0π)]2
dr

If ν(dβ) = p(β)dβ , where p(β) is regularly varying at β = 0 with index α− 1 for some α > 0,
then ψ(s) = R(log s) and R is regularly varying at infinity with index −α, see [36, Lemma 3.1].
Then Eν(t) is “ultraslow” in that E(Eν(t)γ) = S(log t), where S varies regularly with index γα at
infinity, by [36, Theorem 3.9]. Take an IID sequence of mixing variables (Bi) with distribution µ
concentrated on (0, 1), and assume P(J c

i > u|Bi = β) = c−1u−β for u ≥ c−1/β , so that the waiting
times are conditionally Pareto. Then [36, Theorem 3.4] implies that the distributed order stable
subordinator is a random walk limit

∑[c t]
i=1 J c

i ⇒ Dν(t). This requires
∫

(1− β)−1µ(dβ) <∞ so that
ν(dβ) = Γ(1 − β)µ(dβ) is a finite measure. An easy computation shows that the Lévy measure

φ(t,∞) =
∫ 1

0
t−βν(dβ)/Γ(1−β). Then Theorem 5.1 implies that a CTRW with these conditionally

Pareto waiting times has a scaling limit A(Eν(t)) whose distribution Q(x , t) solves the distributed-
order fractional diffusion equation

Dνt Q(x , t) =−ψA(−i∂x)Q(x , t).

If A(t) is compound Poisson, Theorem 5.2 shows that the distribution function P(x , t) of a CTRW
with waiting times (4.4) solves

Dνt P(x , t) =−λP(x , t) +λ

∫

P(x − y, t)µ(d y),

without passing to the limit. Then the PDF p(x , t) of the renewal process with waiting times (4.4)
solves

Dνt p(x , t) =−λ[p(x , t)− p(x − 1, t)].
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