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Abstract

It is well known that standard one-dimensional Brownian motion B(t) has no isolated zeros
almost surely. We show that for any α < 1/2 there are α-Hölder continuous functions f for
which the process B − f has isolated zeros with positive probability. We also prove that for any
continuous function f , the zero set of B− f has Hausdorff dimension at least 1/2 with positive
probability, and 1/2 is an upper bound on the Hausdorff dimension if f is 1/2-Hölder continuous
or of bounded variation .
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1 Introduction

Let B be standard one-dimensional Brownian motion and f : I → R a continuous function defined
on some interval I ⊂ R+. A standard result is that the zero set of B has no isolated points almost
surely, see Theorem 2.28 in [15]. By the Cameron-Martin theorem (see Theorem 1.38 in [15] or
Theorem 2.2 in Chapter 8 in [16]) the zero set of the process B − f has no isolated points almost
surely if f is in the Cameron-Martin space D(I) (integrals of functions in L2(I)). We will prove that
the same is true for any function f which is 1/2-Hölder continuous. Since all functions in D(I) are
1/2-Hölder continuous, this is a stronger statement than the one implied by the Cameron-Martin
theorem. For any function g defined on some subset (or the whole) of R+ denote by Z (g) the set of
zeros of g in (0,∞). We remove the origin from consideration since the origin is an isolated zero of
the process B− f for any f growing fast enough in the neighborhood of the origin, say f (t)> t1/3.

Proposition 1.1. For f : R+→R which is 1/2-Hölder continuous on compact intervals, the set Z (B−
f ) has no isolated points almost surely.

The condition that f is 1/2-Hölder continuous is sharp in the following sense.

Theorem 1.2. For every α < 1/2 there is an α-Hölder continuous function f : R+ → R such that the
set Z (B− f ) has isolated points with positive probability.

Theorem 1.2 will follow directly from Proposition 3.1. An example of function f satisfying Theorem
1.2 is given in Section 3. For γ < 1/2, let Cγ denote the middle (1− 2γ)-Cantor set and let fγ be
the corresponding Cantor function, shifted to an interval away from the origin; see Figure 1 and
Section 3 for a precise definition. For γ < 1/4, the set Z (B − fγ) has isolated zeros with positive
probability, and all such zeros are contained in the Cantor set Cγ. The proof of this claim consists
of constructing a subset of Cγ which contains zeros of B− fγ with positive probability, and in which
any zero is isolated. En route we obtain the following result of independent interest.

Theorem 1.3. Let fγ be a Cantor function. Then P(Z (B− fγ)∩ Cγ 6= ;)> 0 if and only if γ 6= 1/4.

The case γ = 1/4 of the above theorem has already been resolved by Taylor and Watson (see
Example 3 in [17]). Their interest in the graph of the restriction fγ|Cγ stemmed from the fact that,
although the projection of this set on the vertical axis is an interval, the graph of Brownian motion
does not intersect this set almost surely.

Part (ii) of Proposition 2.2 shows that isolated zeros of the process B − f can occur only where the
function f increases or decreases very quickly. In the following theorem we bound the Hausdorff
dimension of such sets. The Hausdorff dimension of a set A⊂R+ will be denoted dim(A).

Theorem 1.4. For any continuous function f : R+→R there exists a set A f , such that dim(A f )≤ 1/2
and such that, almost surely, all isolated points of Z (B− f ) are contained in A f .

It is a classical result that the zero set of Brownian motion has Hausdorff dimension 1/2 almost
surely, see Theorem 4.24 in [15]. Of course, for any compact interval I not containing 0 and any
continuous function f : I → R the event {Z (B − f ) = ;} will have a non-zero probability, and it is
easy to construct a function f : R+ → R with the same property. However, we prove that adding a
continuous drift can not decrease the Hausdorff dimension of the zero set almost surely. This is the
content of the following theorem.
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Figure 1: Approximations of the Cantor function on the interval [1, 2] (functions fγ,n from the
construction in Section 3) for γ = 0.4 and n = 1, 2,5. Approximations of the Cantor set (sets Cγ,n
from the construction in Section 3) are drawn in bold.

Theorem 1.5. For continuous function f : R+→R, the set Z (B− f ) has Hausdorff dimension greater
than or equal to 1/2 with positive probability.

As the following example shows, upper bounds on the Hausdorff dimension of the zero set can not
be obtained without additional assumptions on the drift f . Recall that fractional Brownian motion
B(H) : R+ → R with Hurst index 0 < H < 1 is a continuous, centered Gaussian process, such that
E(|B(H)(t) − B(H)(s)|2) = |t − s|2H . Taking the drift f to be an independent sample of fractional
Brownian motion with Hurst index H, one gets that the Hausdorff dimension dim(Z (B − f )) is
bounded from below by 1 − H, almost surely. This follows from the proof of the same fact for
unperturbed fractional Brownian motion in Theorem 4 in Chapter 18 of [9] (see also Proposition
5.1 and Section 7.2 in [2]).

Theorem 1.6. Let f : R+ → R be either 1/2-Hölder continuous on compact intervals or of bounded
variation on compact intervals. Then the Hausdorff dimension of Z (B − f ) is at most 1/2, almost
surely.

Arguments from the proof of Theorem 1.5 and Theorem 1.6 imply the following corollary.

Corollary 1.7. If f : [0,1] → R is a 1/2-Hölder continuous function, such that f (0) = 0, then the
Hausdorff dimension of Z (B− f ) is equal to 1/2, almost surely.

Remark 1.8. For a function g : R+ → R, define Mg(t) = max0≤s≤t g(s) and denote the set of its
record times by Rec(g) = {t > 0 : Mg(t) = g(t)}. For standard Brownian motion B, a result of Lévy
says that the processes (MB(t)− B(t))t and (|B(t)|)t have the same distribution (see e.g. Theorem
2.34 in [15]), which implies that sets Z (B) and Rec(B) have the same distribution (on the Borel
sigma algebra of families of closed subsets of R+, generated by the Hausdorff metric). In general,
for Brownian motion with drift there is no such correspondence. Actually, one can see that there are
no isolated points in the set of record times of the process B− f almost surely. This is proven in part
(ii) of Proposition 3.4.

1.1 Related results

Connection between Hölder continuity of drift f and path properties of B − f has already been
observed. For d ≥ 2, a function f : R+→Rd is called polar if, for d-dimensional Brownian motion B
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started at the origin and any point x ∈Rd , the probability that there is a t > 0 such that B(t)− f (t) =
x is positive. In [7] Graversen constructed α-Hölder continuous functions which are polar for two
dimensional Brownian motion, for α < 1/2. In [11] Le Gall showed that 1/2-Hölder continuous
functions are not polar for two dimensional Brownian motion and that the same conclusion holds
in higher dimensions when f satisfies a slightly stronger condition than 1/d-Hölder continuity. In a
recent paper [1] it was shown that for any α < 1/d there are α-Hölder continuous functions f such
that the image of B− f covers an open set almost surely.

We will briefly review some related results on intersections of Brownian trajectories with non-smooth
paths. Let Sα be the family of all functions f : [0,1] → R such that sup0≤t≤1 | f (t)| ≤ 1 and
sup0≤s,t≤1 | f (s)− f (t)|/|s− t|α ≤ 1. Define the local time of Brownian motion B on f by the formula

L f
t = limε↓0(1/2ε)

∫ t

0
1[ f (s)−ε, f (s)+ε](B(s))ds. It was proved in [3, 4] that the supremum over f ∈ Sα

of L f
1 is finite for α > 5/6 and infinite for α < 1/2. The function ( f , t) → L f

t is continuous over
Sα× [0, 1] for α > 5/6.

Suppose that g : R+ → R is a continuous function and let X be Brownian motion reflected on g;
see [5] for a precise definition. Let Ag be the set of all t > 0 such that P(X (t) = g(t)) > 0. It was
proved in [5] that for every continuous function g we have dim(Ag)≤ 1/2 and for some continuous
functions g we have dim(Ag) = 1/2.

2 Isolated zeros - general results

For an interval I we denote its length by |I | and say it is dyadic if it is of the form I = [k2m, (k+1)2m]
for integers k > 0 and m. For intervals I and J , we will write I < J if J is located to the right of I .

Remark 2.1. We will repeatedly use the following simple observations.

(i) Suppose that Fk, k ≥ 1, are events and for some p > 0 and all k we have P(Fk) ≥ p. Recall that
lim supk Fk =

⋂

n≥1

⋃

k≥n Fk is the event that infinitely many Fk ’s occur. Then P(lim supk Fk)≥ p.

(ii) As an easy consequence of the Cauchy-Schwarz inequality we have P(Z > 0)E(Z2) ≥ (EZ)2,
for any nonegative variable Z . See Lemma 3.23 in [15].

Proposition 2.2. Let f : R+→R be a continuous function.

(i) Let A⊂R+ be a set such that for any t ∈ A there is an α < 1/2 such that lim infs→t
| f (s)− f (t)|
|t−s|α > 0.

Then, almost surely any point in Z (B− f )∩ A is isolated in Z (B− f ).

(ii) Almost surely all isolated points of Z (B− f ) are located inside the set A+f ∪A−f , where A+f = {t ∈

R+ : limh↓0
f (t+h)− f (t)p

h
=∞} and A−f = {t ∈R

+ : limh↓0
f (t+h)− f (t)p

h
=−∞}.

Proof. (i) First assume that the set A is contained in [0, N] for some large N . If a zero s ∈ A∩Z (B− f )
is not isolated, then we can find a sequence (sn) ⊂ A∩Z (B − f ), converging to s, which, for some
α < 1/2, necessarily satisfies

lim inf
n→∞

| f (sn)− f (s)|
|sn− s|α

> 0 and lim inf
n→∞

|B(sn)− B(s)|
|sn− s|α

> 0.
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However, this is impossible since, by Levy’s modulus of continuity, almost surely, there exists an
h1 > 0 such that for all h ∈ (0, h1) and all 0 ≤ t ≤ N we have |B(t + h)− B(t)| ≤ 3

p

h log(1/h), see
e. g. Theorem 1.14 in [15]. If A is unbounded, apply the above reasoning to AN = A∩ [0, N] and let
N go to infinity.

(ii) First define τq =min
�

t ≥ q : B(t) = f (t)
	

and notice that any isolated zero of the process B− f
must equal τq, for some q ∈ Q. This is because, for any zero s ∈ Z (B− f ), not of the form τq, and
a sequence of rational numbers (qn) converging to s from below, we have limnτqn

= s. Therefore, it
is enough to prove that for each q ∈ Q+, the event that τq /∈ A+f ∪ A−f and that τq is isolated in the
set Z (B− f ), has probability zero.

Fix a positive integer M and define sequences of functions

s−n (t) =max{0≤ h≤ 1/n : f (t + h)− f (t)≤ M
p

h}

and
s+n (t) =max{0≤ h≤ 1/n : f (t + h)− f (t)≥−M

p

h}.

Since f is continuous, it is easy to see that for each n, the functions s+n and s−n are measurable. Also
define

Af (M) =
n

t : lim inf
h↓0

f (t + h)− f (t)
p

h
< M , limsup

h↓0

f (t + h)− f (t)
p

h
>−M

o

.

For all t ∈ Af (M) it holds that s+n (t) > 0 and s−n (t) > 0, for all n. Since τq is a stopping time, the
process Bq(t) = B(τq + t)− B(τq), is, by the strong Markov property, a Brownian motion indepen-

dent of the sigma algebra Fτq
. Let F− denote the event that Bq(s−n (τq)) ≥ M

p

s−n (τq) happens for
infinitely many n’s. Since the random variables s−n (τq) are measurable with respect to Fτq

, Blumen-

thal’s 0-1 law implies that P(F− | Fτq
) is equal to 0 or 1 on the event {τq ∈ Af (M)}. On the event

{τq ∈ Af (M)}, for every n, we have

P
�

Bq(s
−
n (τq))≥ M

p

s−n (τq) | Fτq

�

= P(Bq(1)≥ M | Fτq
)> 0.

Since the right hand side does not depend on n, by Remark 2.1 (i), P(F− | Fτq
) = 1 on the event

{τq ∈ Af (M)}. Similarly, if F+ denotes the event that Bq(s+n (τq)) ≤ −M
p

s+n (τq) happens for
infinitely many n’s then P(F+ | Fτq

) = 1 on the event {τq ∈ Af (M)}. By the definition of the
sequences (s−n (t)) and (s+n (t)), if F− ∪ F+ holds then τq is not an isolated zero from the right.
Therefore, the probability that τq ∈ Af (M) and that τq is an isolated point of Z (B − f ) is equal to
zero. Taking the union over all rational q’s and observing that (A−f ∪A+f )

c =
⋃∞

M=1 Af (M) proves the
claim.

Remark 2.3. By Proposition 2.2 (ii) and the time reversal property of Brownian motion it follows
that, almost surely all isolated points of Z (B− f ) are contained in the set

n

t ∈R+ : lim
h↑0

f (t + h)− f (t)
p

|h|
=∞

o

∪
n

t ∈R+ : lim
h↑0

f (t + h)− f (t)
p

|h|
=−∞

o

.

Every point t for which the limits

lim
h↓0

f (t + h)− f (t)
p

h
= lim

h↑0

f (t + h)− f (t)
p

|h|
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are equal to ∞ or −∞ is a strict local minimum or maximum. Since a function can have only
countable many strict local extrema, almost surely all isolated points of Z (B − f ) are contained in
the set

n

t ∈R+ : lim
h→0

f (t + h)− f (t)
p

|h| sign(h)
=∞

o

∪
n

t ∈R+ : lim
h→0

f (t + h)− f (t)
p

|h| sign(h)
=−∞

o

.

In particular, all isolated points of Z (B− f ) are contained in the set of points of increase or decrease
of f (recall that t is a point of increase of f if for some ε > 0 we have f (s) < f (t) for t − ε < s < t
and f (t) < f (s) for t < s < t + ε and points of decrease are defined analogously). Therefore, if
f is a function with at most countable many points of increase or decrease, then Z (B − f ) has no
isolated points almost surely. Examples of such functions include functions constructed by Loud in
[12] which satisfy a certain local reverse Hölder property at each point (see also the construction
in [13]). These functions are defined as g(t) =

∑∞
k=1 gk(t) where gk(t) = 2−2Aαk g0(22Ak t), for

0 < α < 1, a positive integer A such that 2A(1− α) > 1, and a continuous function g0 which has
value 0 at even integers, value 1 at odd integers and is linear at all other points. To prove that these
functions have at most countably many points of increase or decrease, we proceed analogously as in
the proof of the lower bound in [12]. We will take t /∈Q and show that t is not a point of increase.
First observe that b22Am tc is odd for infinitely many integers m. For such an integer m assume that
gm(t) ≥ 2−2Aαm−1 and denote tm = t + 2−2A(m+1). Then by construction gk(t) = gk(tm) for all
k > m, gm(tm) = gm(t)− 2−2A(αm+1) and |gk(tm)− gk(t)| ≤ 22Ak(1−α)−2A(m+1), for k < m. Therefore

g(tm)− g(t)≤−2−2A(αm+1)+ 2−2A(m+1)
m−1
∑

k=1

22Ak(1−α)

=
2−2A(αm+1)+1− 2−2Aα(m+1)− 2−2A(m+α)

22A(1−α)− 1
.

Using the fact that 2A(1 − α) > 1, it is easy to check that the right hand side above is negative,
and since tm > t can be arbitrarily close to t the claim follows. If gm(t) < 2−2Aαm−1 then define
tm = t − 2−2A(m+1), which now satisfies gm(tm) = gm(t) + 2−2A(αm+1) and proceed analogously to
prove that g(tm)> g(t).

Proof of Proposition 1.1. This is straightforward from part (ii) of Proposition 2.2.

3 Isolated zeros

For 0 < γ < 1/2, we will define the middle (1− 2γ)-Cantor set and denote it by Cγ. Take a closed
interval I of length |I |. Define Cγ,1 as the set consisting of two disjoint closed subintervals of I of
length γ|I |, the left one (for which the left endpoint coincides with the left endpoint of I) and the
right one (for which the right endpoint coincides with the right endpoint of I). Continue recursively,
if J ∈ Cγ,n, then include in the set Cγ,n+1 its left and right closed subintervals of length γn+1|I |.
Define the set Cγ,n as the union of all the intervals from Cγ,n. For any n, the family Cγ,n is the set of
all connected components of the set Cγ,n. The Cantor set is a compact set defined as Cγ =

⋂∞
n=1 Cγ,n.

It is easy to show that dim(Cγ) = log2/ log(1/γ).
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Now we recall the construction of the standard Cantor function. Define the function fγ,1 so that it
has values 0 and 1 at the left and the right endpoint of the interval I , respectively, value 1/2 on
I\Cγ,1 and interpolate linearly on the intervals in Cγ,1. Recursively, construct the function fγ,n+1 so
that for every interval J = [s, t] ∈ Cγ,n, the function fγ,n+1 agrees with fγ,n at s and t, it has value
( fγ,n(s) + fγ,n(t))/2 on J\Cγ,n+1 and interpolate linearly on the intervals in Cγ,n+1. See Figure 1. It
is easy to see that the sequence of functions ( fγ,n) converges uniformly on I . We define the Cantor
function fγ as the limit fγ = limn fγ,n. Note that for any n and all m ≤ n the functions fγ and fγ,n
agree at the endpoints of intervals J ∈ Cγ,m.

Another way to characterize the Cantor set Cγ and the Cantor function fγ is by representing it as fixed
points of certain transformations. Define linear bijections gγ : [0,γ]→ [0, 1] and hγ : [1− γ, 1]→
[0, 1] by gγ(t) = t/γ and hγ(t) = (t − 1+ γ)/γ. The Cantor set Cγ defined on [0, 1] is the unique
nonempty compact set that satisfies Cγ = g−1

γ (Cγ)∪h−1
γ (Cγ), and the corresponding Cantor function

is the unique continuous function that satisfies

fγ(t) =







fγ(gγ(t))/2, 0≤ t ≤ γ,
1/2, γ≤ t ≤ 1− γ,
1/2+ fγ(hγ(t))/2, 1− γ≤ t ≤ 1.

(1)

It is not hard to see that fγ is log2/ log(1/γ)-Hölder continuous. The value γ= 1/4 is the threshold
at which the functions fγ become 1/2-Hölder continuous. For γ < 1/4 the function f = fγ will give
an example for Theorem 1.2. This threshold is sharp, since by Proposition 1.1, for γ ≥ 1/4 there
are no isolated points in the zero set Z (B − fγ) almost surely. For simplicity, we will assume the
initial interval I to be [1,2], but we note that the analysis works for all compact intervals. To satisfy
the assumptions of Theorem 1.2, the function fγ should of course be extended to R+\[1,2], by, say,
value 0 on [0,1) and value 1 on (2,∞).

Proof of Theorem 1.3. For an interval I = [r, s] ∈ Cγ.n, define Zn(I) as the event B(s) ∈ [ fγ(r), fγ(s)],
and the random variable Zγ,n =

∑

I∈Cγ,n
1(Zn(I)), where 1(Zn(I)) is the indicator function of the

event Zn(I). Note that there is a constant c1 > 0, such that for any 0< γ < 1/2 we have

c12−n ≤ P(Zn(I))≤ 2−n and c1 ≤ E(Zγ,n)≤ 1. (2)

If Zγ,n > 0 happens for infinitely many n’s, then we can find a sequence of intervals Ik = [rk, sk] ∈
Cγ,nk

, such that fγ(rk) ≤ B(sk) ≤ fγ(sk), thus |B(sk)− fγ(sk)| ≤ 2−nk . Since sk ∈ Cγ,nk
, the sequence

(sk) will have a subsequence converging to some s ∈ Cγ, which obviously satisfies B(s) = fγ(s).
Therefore

P(Z (B− fγ)∩ Cγ 6= ;)≥ P(lim sup
n→∞

{Zγ,n > 0}). (3)

To estimate the probabilities P(Zγ,n > 0) from below we will use the inequality from Remark 2.1
(ii), for which we need to bound the second moment E(Z2

γ,n) from above. First we express it as

E(Z2
γ,n) = 2

∑

I ,J∈Cγ,n
I<J

P(Zn(I))P(Zn(J) | Zn(I)) +E(Zγ,n). (4)

Now fix n and intervals I = [s1, t1] and J = [s2, t2] from Cγ,n, so that I < J , and denote ai = fγ(si)
and bi = fγ(t i), for i = 1, 2. Let eB be the process

eB(t) = (t2− t1)
−1/2

�

B(t1+ (t2− t1)t)− B(t1)
�

,
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which is, by the Markov property and Brownian scaling, again a Brownian motion, independent of
Ft1

, and thus independent of the event Zn(I) ∈ Ft1
. The event Zn(J) happens when eB(1) ∈ J for

the interval J = [(t2− t1)−1/2(a2− B(t1)), (t2− t1)−1/2(b2− B(t1))] of length (t2− t1)−1/22−n.

Case γ < 1/4: Fix intervals I0 and J0 in Cγ,`+1, which are contained in a single interval in Cγ,`. Label
the intervals from Cγ,n contained in I0 by I1, . . . , I2n−`−1 , and those contained in J0 by J1, . . . , J2n−`−1 ,
so that Ii+1 < Ii and J j < J j+1. Set I = Ii and J = J j for some 1 ≤ i, j ≤ 2n−`−1, and define
ai , bi , eB and J as before. Conditional on Zn(I), the left endpoint of the interval J is at least
(a2 − b1)(t2 − t1)−1/2, and since a2 − b1 = (i + j − 2)2−n we have J ⊂ [(i + j − 2)2−nγ−`/2,∞).
Because J has length at most (1− 2γ)−1/22−nγ−`/2 we obtain

P(Zn(J j) | Zn(Ii)) = P(eB(1) ∈ J | Zn(I))

≤
2−nγ−`/2

p

2π(1− 2γ)
exp
�

−
(( j+ i− 2)2−nγ−`/2)2

2

�

,

which, by summing over 1≤ i, j ≤ 2n−`−1 gives

∑

1≤i, j≤2n−`−1

P(Zn(J j) | Zn(Ii))

≤ 1+
1

p

2π(1− 2γ)

∞
∑

k=1

(k+ 1)2−nγ−`/2 exp
�

−
(k2−nγ−`/2)2

2

�

. (5)

Here we used the trivial bound for i = j = 1. The sum on the right hand side can be written as

S(a) = a
∞
∑

k=1

(k+ 1)exp(−(ka)2/2),

for a = 2−nγ−`/2. Since exp(−t2/2)≤ exp(−t + 1/2), we see that

S(a)≤ e1/2a
∑

k≥1

(k+ 1)e−ka = e1/2a−1
� a

1− e−a

�2
(2e−a − e−2a).

Since a 7→ ( a
1−e−a )2(2e−a − e−2a) is a bounded function on R+, (5) implies that for any fixed I0 and

J0 as above
∑

I ,J∈Cγ,n
I⊂I0,J⊂J0

P(Zn(J) | Zn(I))≤ 1+ c22nγ`/2, (6)

for some c2 > 0. Therefore, summing the inequality in (6) over all I0 and J0 and ` = 0, . . . , n− 1,
and using it together with (4) and (2), we have

E(Z2
γ,n)≤ 2−n+1

n−1
∑

`=0

�

2`+ 2`c22nγ`/2
�

+ 1≤ 2
n
∑

`=0

�

2−(n−`)+ c2(2
p
γ)`
�

,

which is bounded since 2
p
γ < 1.

Thus we have shown that, for a fixed γ < 1/4, the second moments E(Z2
γ,n) are bounded from

above. Now the lower bound in the second inequality in (2) and the inequality from Remark 2.1 (ii)
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Figure 2: Events Zn(I) and Zn(J) (graph of Brownian motion intersects two bold vertical intervals).
.

imply that P(Zγ,n > 0) ≥ E(Zγ,n)2/E(Z2
γ,n) is bounded from below and the claim follows from (3)

and Remark 2.1 (i).

Case γ > 1/4: Again pick I , J ∈ Cγ,n such that [s1, t1] = I < J = [s2, t2] and define ai , bi , eB and J
as before. By ` denote the largest integer such that both I and J are contained in a single interval
from Cγ,`. Assume that Zn(I) happens. Clearly the endpoints of the interval J satisfy

a2− B(t1)

(t2− t1)1/2
≥ 0 and

b2− B(t1)

(t2− t1)1/2
≤

1

(1− 2γ)1/2(2pγ)`
.

The sequence ((2pγ)−`) is bounded, and therefore the interval J is contained in a compact interval,
which does not depend on the choice of n, `, I or J . Using this and the fact that the length of J is
bounded from above by (1− 2γ)−1/22−nγ−`/2 and from below by c′2−nγ−`/2, we get that for some
positive constants c3 and c4 we have

c32−nγ−`/2 ≤ P(Zn(J) | Zn(I)) = P(eB(1) ∈ J | Zn(I))≤ c42−nγ−`/2. (7)

Note that, since the sequence ((2pγ)−`) is bounded for γ= 1/4, estimates (7) also hold for γ= 1/4.
Substituting (7) and the upper bounds from (2) into (4), and summing over all intervals I and J ,
we obtain

E(Z2
γ,n)≤ 1+ 2−n+1

n−1
∑

`=0

2`22(n−`−1)c42−nγ−`/2 = 1+
c4

2

n−1
∑

`=0

(2
p
γ)−`.

Since 2
p
γ > 1, we have bounded E(Z2

γ,n) from above by a constant not depending on n, and the
claim follows as in the case γ < 1/4.

Case γ = 1/4: Assume that Z (B − fγ) ∩ Cγ 6= ; and define τ as the first zero of B − fγ in the
Cantor set Cγ (τ exists since Z (B − fγ) ∩ Cγ is a closed set). For an interval I = [s, t] ∈ Cγ,n
assume that τ ∈ I . Since τ is a stopping time, and by Brownian scaling, the conditional probability

P
�

Zn(I) | Fτ,τ ∈ I
�

is equal to the probability that Brownian motion at time 1 is between y1 =

( fγ(s)− fγ(τ))(t−τ)−1/2 and y2 = ( fγ(t)− fγ(τ))(t−τ)−1/2. Since fγ(s)≤ fγ(τ)≤ fγ(t) we see that
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Figure 3: If γ ≤ 1/4, conditional on the event that there is a zero of B − fγ in an interval I ∈ Cγ,n
(τ is the first such zero) the probability of the event Zn(I) (Brownian motion intersecting the right
hand side of the rectangle) is bounded from below.

y1 ≤ 0 and y2 ≥ 0. Moreover, the assumption γ = 1/4 implies that t − τ ≤ 4−n = ( fγ(t)− fγ(s))2

which leads to y2− y1 ≥ 1. Thus we can bound the probability

P
�

Zn(I) | Fτ,τ ∈ I
�

≥ P(0≤ B(1)≤ 1) = K−1, (8)

for some K > 0, see also Figure 3.

Therefore, P(Zγ,n > 0 | τ ∈ I)≥ K−1 and, since the events {τ ∈ I} are disjoint for different I ∈ Cγ,n,
we have P(Zγ,n > 0 | Z (B− f )∩ Cγ 6= ;)≥ K−1 for every n. Thus we obtain

P(Z (B− fγ)∩ Cγ 6= ;)≤ K inf
n
P(Zγ,n > 0). (9)

The arguments leading to (8) are true for all γ≤ 1/4 and therefore (9) holds for γ≤ 1/4.

For I = [s, t] ∈ Cγ,n and 0 ≤ ` < n, let I` denote the interval from Cγ,` that contains I , and let
I`1, I`2 ∈ Cγ,`+1 be the left and right subintervals of I`, respectively. Let s = 1.a1a2 . . . an denote the
4-ary expansion of the left endpoint of I (note that the 4-ary expansion of s contains only the digits
0 and 3 and has length at most n, here we add zeros at the end, if necessary, to make it of length
n). It is easy to see that I ⊂ I`1 if a`+1 = 0 and I ⊂ I`2 if a`+1 = 3. Call an interval I balanced
if the sequence a1, . . . , an contains at least n/3 zeros and otherwise unbalanced. For a balanced
interval I = [s, t] ∈ Cγ,n let AI denote the event that I is the leftmost balanced interval for which
Zn(I) happens, and, as before, let 1.a1 . . . an denote the 4-ary expansion of s. Assume that for some
0 ≤ ` < n we have a`+1 = 0 and pick an interval J ∈ Cγ,n such that J ⊂ I`2. Since AI ∈ Ft1

we
can use the same arguments that lead to the lower bound in (7) to conclude that the probability
P(Zn(J) | AI) ≥ c52−(n−`), for some constant c5 > 0. Summing over all J ⊂ I`2 and over all ` such
that a`+1 = 0 gives

E(Zγ,n | AI)≥ c5|{1≤ `≤ n : a` = 0}| ≥ c5n/3.
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By (2) and since events AI are disjoint, we have

P(Zn(I) for some balanced interval I)

≤
E(Zγ,n)

E(Zγ,n | Zn(I) for some balanced interval I)
≤

3

c5n
. (10)

To estimate the probability that Zn(I) happens for some unbalanced interval I notice that the number
of such intervals is bounded from above by e−c6n2n for some c6 > 0. By (2) this gives

P(Zn(I) for some unbalanced interval I)≤ e−c6n. (11)

Now (10) and (11) yield limn→∞P(Zγ,n > 0) = 0 and the claim follows from (9).

Since the Cantor function fγ is log 2/ log(1/γ)-Hölder continuous, the following proposition proves
Theorem 1.2.

Proposition 3.1. For γ < 1/4 consider the Cantor function fγ. Then the set Z (B − fγ) has isolated
points with positive probability.

Proof. For A⊂R+ define Z(A) as the event {Z (B− fγ)∩A 6= ;}. We claim that there exists a constant
c1, such that for any interval J ⊂ [0, 1] of length |J |, we have

P(Z(Cγ ∩ f −1
γ (J)))≤ c1|J |. (12)

To prove this, fix an interval J and take the largest integer n such that |J | ≤ 2−n. Notice that J can
be covered by no more than two consecutive binary intervals J1 and J2 of length 2−n. Moreover,
there are consecutive I1, I2 ∈ Cγ,n such that fγ(Ii) = Ji for i = 1,2, and Cγ ∩ f −1

γ (J) ⊂ I1 ∪ I2, see
Figure 4. Now using the notation from the proof of Theorem 1.3 and the arguments that lead to (8)
we obtain P(Zn(Ii) | Z(Cγ ∩ Ii))≥ K−1 which yields

P(Z(Cγ ∩ Ii))≤ KP(Zn(Ii)). (13)

But by the first inequality in (2), the probability on the right hand side is bounded from above by
2−n. Using this fact in (13) and summing the expression for i = 1, 2, we obtain (12).

By Theorem 1.3 the set Z (B− fγ)∩ Cγ is non-empty with some probability p > 0. Take an arbitrary
γ < γ1 < 1/4 and n0 such that

∑

n≥n0
(2pγ1)n ≤ p/(2c1).

For n ≥ n0 consider the interval Jk,n = [k2−n − γn/2
1 /2, k2−n + γn/2

1 /2] and define the set
Mn0
=
⋃

n≥n0

⋃

0≤k≤2n Jk,n. By (12) and the choice of n0, we have that P(Z(Cγ ∩ f −1
γ (Mn0

)))≤ p/2.
Therefore, the probability that there is a zero of B(t) − fγ(t) in the set Cγ ∩ Int(Cγ,n0

)\ f −1
γ (Mn0

)
is at least p/2 (here Int(Cγ,n0

) is the interior of the set Cγ,n0
). Now the claim will be proven if we

show that any such zero is isolated. Take t ∈ Cγ ∩ Int(Cγ,n0
)\ f −1

γ (Mn0
) and any s 6= t in the same

connected component of Int(Cγ,n0
). The largest integer ` such that both s and t are contained in the

same interval of Cγ,` satisfies ` ≥ n0. Moreover, | fγ(s)− fγ(t)| ≥ γ
(`+1)/2
1 /2 and |s − t| ≤ γ`. Now

it is clear that t satisfies the condition in part (i) of Proposition 2.2 with α = logγ1/(2 logγ) < 1/2.
Therefore, the statement follows from part (i) of Proposition 2.2.
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Figure 4: An interval J ⊂ [0, 1] can be covered by two dyadic intervals J1 and J2 of comparable size.
Intervals I1, I2 ∈ Cγ,n are such that fγ(Ii) = Ji , for i = 1,2.

Remark 3.2. It is not difficult to construct a continuous function f such that the set Z (B − f ) has
isolated points almost surely. Let fγ be the Cantor function with γ < 1/4 defined on the interval
[0, 1]. Construct the function f : R+ → R such that for every n ≥ 1 and 0 ≤ t ≤ 1 we have
f (4−n(1+ 3t)) = 2−n(1+ fγ(t)) and define f on (1,∞) arbitrarily, see Figure 5. By Proposition
3.1 and the Cameron-Martin theorem, the probability that Z (B − f ) has an isolated point in the
interval [1/4,1] is positive, denote it by p. By Brownian scaling the probability that there is an
isolated point of Z (B − f ) in the interval [4−n−1, 4−n] is also equal to p, for any n ≥ 1. Therefore,
in view of Remark 2.1 (i), the probability that there is an isolated point of Z (B− f ) in the interval
[4−n−1, 4−n], for infinitely many n’s is bounded from below by p. By Blumenthal’s zero-one law this
event has probability one, which proves the claim.

The following proposition shows that, with positive probability, the set Z (B − f ) can have only
isolated points, or even only one point.

Proposition 3.3. There exists a continuous function f such that, with positive probability, Z (B − f )
is a singleton.

Proof. Take fγ to be the Cantor function with γ < 1/4 defined on the interval [1,2]. Since Z (B− fγ)
has isolated points with positive probability, there are two rational numbers q1 < q2 such that, with
positive probability, there will be only one zero of B − fγ in the interval (q1, q2). Denote this event
by D and on this event the unique zero by τ. Note that on the event D ∩ {(B(q1)− fγ(q1))(B(q2)−
fγ(q2)) > 0} the unique zero τ is necessarily a local extremum of the process B − fγ and by part
(i) of the upcoming Proposition 3.4 this event has probability zero. Furthermore, on the event
D ∩ {B(q1) < fγ(q1)} ∩ {B(q2) > fγ(q2)} the unique zero τ is necessarily a local point of increase of
the Brownian motion. By a result of Dvoretzky, Erdös and Kakutani in [6], almost surely, Brownian
motion has no points of increase and thus

P(D, B(q1)< fγ(q1), B(q2)> fγ(q2)) = 0,

see also Theorem 5.14 in [15]. Next define

S = {y > fγ(q1) : P(D | B(q1) = y)> 0},
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Figure 5: Construction of the function f from Remark 3.2. On each interval [4−n−1, 4−n] function
f is a scaled and shifted copy of the Cantor function (on the interval (1,∞) the function is defined
arbitrarily).

and notice that by the Markov property and the discussion above P(B(q1) ∈ S) > 0. This implies
that the set S is of positive Lebesgue measure and so is S1 = S∩ ( fγ(q1)+ε,∞), for ε small enough.
Now the claim will follow if we prove that there is a modification f of the function fγ on the intervals
(0, q1) and (q2,∞), such that

1) with positive probability there are no zeros of B− f in (0, q1) and B(q1) ∈ S1,

2) for any y < fγ(q2)− ε, conditional on B(q2) = y , with positive probability there are no zeros
of B− f in (q2,∞).

For 1) define f to be linear on [0, q1] with f (0) = −ε and f (q1) = fγ(q1), if we do not require
f (0) = 0. To prove that the probability that both {Z (B− f )∩ (0, q1) = ;} and {B(q1) ∈ S1} happen
is positive, by the Cameron-Martin theorem, it is enough to prove that

P
�

min
t∈[0,q1]

B(t)>−ε, B(q1) ∈ S2 = S1− fγ(q1)− ε
�

> 0.

While this is intuitively obvious it can be proven by using the reflection principle at the first time the
Brownian motion hits the level −ε to conclude that the probability that both min0<t<q1

B(t) ≤ −ε
and B(q1) ∈ S2 happen is equal to the probability that B(q1) ∈ S3, where S3 is obtained by reflecting
the set S2 around −ε. Since S2 ⊂R+ we have P(B(q1) ∈ S3)< P(B(q1) ∈ S2) and therefore

P
�

min
t∈[0,q1]

B(t)>−ε, B(q1) ∈ S2

�

= P(B(q1) ∈ S2)−P(B(q1) ∈ S3)> 0.

Now the probability that there is a unique zero in the interval (0, q2) is equal to some p > 0. If we
do require f (0) = 0, redefine f on the interval (0,δ) as f (t) = −c t1/3. Here c > 0 is chosen large
enough so that for δ > 0, for which f is continuous, we have P(Z (B− f )∩ (0,δ))< p.
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Figure 6: Function f from Proposition 3.3. It is a continuous function defined as f (t) = −c t1/3 on
[0,δ], linear on both [δ, q1] and [q2,∞) and is a part of the Cantor function on [q1, q2]. For this
trajectory of B, there is only one zero of the process B− f , labelled as z.

To satisfy the condition 2), replace fγ on (q2,∞) by a linear function of slope 1, that is f (q2 + t)−
fγ(q2) = t. To prove that this f satisfies the required condition on (q2,∞) it is enough to prove
that, for standard Brownian motion B, with positive probability there are no zeros of the process
B(t)− t − ε. This probability is equal to 1− e−2ε by (5.13), Sect. 3.5 in [10]. See Figure 6.

The next proposition justifies Remark 1.8.

Proposition 3.4. Let f : R+→R be a continuous function and define the process X (t) = B(t)− f (t).

(i) Almost surely there are no points in Z (X ) which are local extrema.

(ii) Define MX (t) =max0≤s≤t X (s) and the set of record times of the process X as Rec(X ) = {t > 0 :
X (t) = MX (t)}. Almost surely there are no isolated points in the set Rec(X ).

Proof. (i) Take an interval [q1, q2] with q1 > 0 and let M be the maximum of the process X on
this interval. Then, since the process X has independent increments, X (q1) and M − X (q1) are
independent. Since X (q1) has a continuous distribution, so has M = (M − X (q1)) + X (q1), and
therefore P(M = x) = 0 for any x ∈ R. Taking x = 0 and a union over all rational q1 < q2 proves
the claim for local maxima. Similarly the statement holds for local minima. See Figure 7.

(ii) For any continuous function g, any record time s ∈ Rec(g) is a maximum of g on the interval
[s − ε, s], for every ε > 0. Let s > 0 be an isolated point in Rec(g). Then s is a local maximum,
because otherwise we would have record times to the right of s, arbitrarily close to s. Since g is
continuous and there are no record times in the interval (s − ε, s) for some ε > 0, there has to be
an r ∈ Rec(g)∪ {0}, which is also a local maximum and such that r < s and g(r) = g(s). Applying
these observations to g(t) = X (t) = B(t) − f (t), we see that, in order to prove the claim, it is
enough to show that the process X = B − f does not have two equal local maxima almost surely.
See Figure 8. This is well known for standard Brownian motion and can be proven in the same way
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Figure 7: Process X (t) = B(t)− f (t) having a zero and a local extremum at some t > 0; this is an
event of probability zero.

Figure 8: If X (t) = B(t)− f (t) has an isolated record time at time s then there exists a record time
r < s for which X (r) = X (s). In this case both record times r and s have to be local maxima. This is
an event of probability zero.

for the process X . Namely, for two intervals [q1, r1] and [q2, r2], with r1 < q2, define the random
variables Y1 = X (r1)−maxq1≤t≤r1

X (t) and Y3 =maxq2≤t≤r2
X (t)−X (q2), and let Y2 = X (q2)−X (r1).

Clearly these three random variables are independent. Since Y2 is a continuous random variable, so
is Y1 + Y2 + Y3 and P(Y1 + Y2 + Y3 = 0) = 0. Therefore, almost surely the maxima on [q1, r1] and
[q2, r2] are different. Taking the union over all possible rational q1, r1, q2 and r2 as above proves
the claim.

4 On Hausdorff dimension of zero sets

In this Section we prove Theorems 1.4, 1.5 and 1.6.

Recall that an interval I is called dyadic if it is of the form I = [k2m, (k + 1)2m] for some integers
k > 0 and m. For a dyadic interval I , the set of its subintervals which are dyadic and of length
2−n|I |, will be denoted by Gn(I). For intervals I and J we will write I < J if J is located to the right
of I .
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Proof of Theorem 1.4. Recall the definition of sets A+f and A−f from part (ii) of Proposition 2.2. It is
enough to prove that both of these sets have Hausdorff dimension at most 1/2. This follows from
the case α = 1/2 of part (i) of the following lemma, which estimates the Hausdorff dimension of
larger sets.

Lemma 4.1. (i) For a locally bounded function f : R+ → R and 0 < α < 1 the sets B+f = {t ∈ R
+ :

lim infh↓0
f (t+h)− f (t)

hα
> 0} and B−f = {t ∈ R

+ : lim suph↓0
f (t+h)− f (t)

hα
< 0} have Hausdorff dimension

at most α.

(ii) Assume f : R+→R has bounded variation on compact sets. For any 0< α < 1 the set

B f =

(

t ∈R+ : limsup
h↓0

�

� f (t + h)− f (t)
�

�

hα
> 0

)

has Hausdorff dimension at most α.

Proof. (i) Since B−f = B+− f it is enough to prove the claim for B+f . First cover the set B+f by sets

B+f ,n = {t ∈R
+ : f (t + h)− f (t) ≥ hα/n, for all 0 < h≤ 2−n}, that is B+f =

⋃∞
n=1 B+f ,n. Note that for

any positive integer k, and any k points t1 < t2 < · · · < tk from B+f ,n such that tk ≤ t1 + 2−n, we
have

f (tk)≥ f (tk−1) +
(tk − tk−1)α

n
≥ · · · ≥ f (t1) +

k−1
∑

i=1

(t i+1− t i)α

n
.

Therefore, for any dyadic interval I ⊂ R+ of length 2−n there is a constant c1 such that, for any k
points t1 < · · ·< tk from I ∩ B+f ,n, we have

k−1
∑

i=1

(t i+1− t i)
α ≤ c1. (14)

Now for any positive integer m and any dyadic interval J ∈ Gm(I) such that B+f ,n ∩ J 6= ; define

r−J = inf{B+f ,n ∩ J} and r+J = sup{B+f ,n ∩ J}. The familyAm = {[r−J , r+J ] : J ∈ Gm(I), B+f ,n ∩ J 6= ;} is a

cover of the set B+f ,n ∩ I with intervals of diameter at most 2−n−m. From (14) it is easy to see that

∑

J∈Am

|J |α =
∑

J∈Gm(I)
B+f ,n∩J 6=;

(r+J − r−J )
α ≤ c1.

Since m was arbitrary, by the definition of Hausdorff dimension we obtain dim(B+f ,n ∩ I) ≤ α, for

any dyadic interval I of length 2−n. Therefore dim(B+f ,n) ≤ α and taking the union over all n gives

dim(B+f )≤ α.

(ii) It is enough to prove that for any c > 0 the set

B f (c) =
n

t ∈R+ : lim sup
h↓0

�

� f (t + h)− f (t)
�

�

hα
> c
o

has Hausdorff dimension bounded by α from above. Representing B f as the union B f =
⋃∞

n=1 B f (1/n) will prove the claim. Fix a dyadic interval I and an ε > 0. For every t ∈ B f (c) ∩ I
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we can find 0 < ht < ε such that
�

� f (t + ht)− f (t)
�

� ≥ chαt . Denote the interval [t − ht , t + ht] by
It . Clearly the family of intervals {It : t ∈ B f (c) ∩ I} is a cover of the set B f (c) ∩ I . By Besicov-
itch’s covering theorem (see Theorem 2.6 in [14]) we can find an integer k, not depending on ε,
and a subcover which can be represented as a union of k at most countable disjoint subfamilies
{It : t ∈ Si}. More precisely, there are sets Si ⊂ B f (c)∩ I , 1≤ i ≤ k such that

B f (c)∩ I ⊂
k
⋃

j=1

⋃

t∈S j

It and Is ∩ It = ;, for all s, t ∈ Si , s 6= t.

Clearly for any i we have

∑

t∈Si

|It |α = 2α
∑

t∈Si

hαt ≤
2α

c

∑

t∈Si

| f (t + ht)− f (t)| ≤
2αM

c
,

where M is the total variation of f on the interval I . The last inequality follows from the fact that
the intervals It , t ∈ Si are disjoint. Now summing the above inequality over 1≤ i ≤ k we obtain

k
∑

i=1

∑

t∈Si

|It |α ≤
2αMk

c
.

Since {It : t ∈ Si , 1≤ i ≤ k} is a cover of B f (c)∩I of diameter at most 2ε and neither k nor M depend
on ε, the α-dimensional Hausdorff measure of B f (c)∩ I is finite. Therefore dim(B f (c)∩ I)≤ α and,
since the dyadic interval I is arbitrary, the claim follows.

The proof of Theorem 1.5 will be an application of the percolation method due to Hawkes [8], which
we now describe. See Chapter 9 in [15] for more on this method. Fix a dyadic interval I , a real
number 0 < β < 1 and set p = 2−β (the construction and the results can be stated for any interval
I). Construct the set Sβ(1) by including in it (as subsets) each of the two dyadic intervals from G1(I)
with probability p, independently of each other. To construct Sβ(m+ 1), for each dyadic interval
J ∈ Gm(I) such that J ⊂ Sβ(m), include each of its dyadic subintervals from Gm+1(I) in Sβ(m+ 1)
with probability p, independently of each other. We obtain a decreasing sequence of compact sets
(Sβ(m)) whose intersection we denote by Γ[β]. Comparing this to the Galton-Watson process with
binomial offspring distribution B(2, p), we see that P(Γ[β] 6= ;) > 0. The following theorem is due
to Hawkes (Theorem 6 in [8]).

Theorem 4.2 (Hawkes). For any set A⊂ I , if P(A∩Γ[β] 6= ;)> 0 then dim(A)≥ β .

In the above construction of the percolation set we can change the retention probabilities of intervals
at each level. If pn = 2−βn is a retention probability at level n, we denote the union of intervals kept
at level m by S(βn)(m), and the limiting percolation set by Γ[(βn)]. We will use the following result
which is an easy corollary of Hawkes’ theorem.

Corollary 4.3. Let 0 < β < 1 and let (βn) be a sequence converging to β . For any set A ⊂ I , if
P(A∩Γ[(βn)] 6= ;)> 0 then dim(A)≥ β .

Proof. Let α < β and m0 be such that α < βm for all m ≥ m0. There is a realization B of S(βn)(m0)
for which P(A∩Γ[(βn)] 6= ; | S(βn)(m0) = B)> 0. We have

P(A∩Γ[(βn)] 6= ; | S(βn)(m0) = B)≤ P(A∩Γ[α] 6= ; | Sα(m0) = B),
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since we can couple two percolation processes so that for m≥ m0, if an interval J ∈ Gm(I) is retained
in the percolation process with retention probabilities (2−βn), it is also retained in the process with
retention probability 2−α. Since P(Sα(m0) = B) > 0 we get P(A∩ Γ[α] 6= ;) > 0 and, by Hawkes’
theorem, dim(A)≥ α. Since α < β was arbitrary the claim follows.

Proof of Theorem 1.5. It is enough to prove that the Hausdorff dimension of Z (B − f ) ∩ [1,2] is
greater than or equal to 1/2 with positive probability. Let (βn) be a sequence converging to 1/2
from below, to be chosen later. Consider the percolation process on the interval [1, 2] with retention
probabilities (2−βn), independent of Brownian motion. Fix a positive integer m. For a dyadic interval
I ∈ Gm([1,2]) denote by t I its center and, for a fixed ε > 0, consider the event

Fm,ε(I) = {I ⊂ S(βn)(m), |B(t I)− f (t I)| ≤ ε}.

Define Ym,ε =
∑

I∈Gm([1,2]) 1(Fm,ε(I)), where 1(Fm,ε(I)) is the indicator function of the event Fm,ε(I).
Using trivial bounds on the transition density of Brownian motion, the first moment of Ym,ε can be
estimated simply by

c12m−γmε≤ E(Ym,ε)≤ 2ε2m−γm , (15)

for some constant c1 depending only on maxt∈[1,2] | f (t)|, and where γm = β1+ · · ·+βm. In the same
way, for I < J we can estimate the conditional probability

P
�

|B(tJ )− f (tJ )| ≤ ε
�

�

� |B(t I)− f (t I)| ≤ ε
�

≤ 2ε(tJ − t I)
−1/2. (16)

For I , J ∈ Gm([1, 2]) such that I < J let ` be the largest integer so that both I and J are contained in
a single interval from G`([1,2]). In other words there are consecutive intervals I0, J0 ∈ G`+1([1,2]),
contained in a single interval from G`([1, 2]), such that I ⊂ I0 and J ⊂ J0. Then

P(I ∪ J ⊂ S(βn)(m)) = 2−2γm+γ` . (17)

Using independence, (16) and (17)

P(Fm,ε(I)∩ Fm,ε(J))≤ (2ε)22−2γm+γ`(tJ − t I)
−1/2. (18)

Summing (18) over all I ⊂ I0 and J ⊂ J0 for a fixed I0 and J0 as above

∑

I⊂I0,J⊂J0

P(Fm,ε(I)∩ Fm,ε(J))≤ (2ε)22−2γm+γ`
2m−`
∑

k=1

k(k2−m)−1/2

≤ c2(2ε)
22m/2−2γm+γ`23/2(m−`) ≤ 4c2ε

222(m−γm)+γ`−3`/2,

for some universal constant c2 > 0. Summing this over all I0 and J0 and all 0 ≤ ` ≤ m− 1, and
using (15), we can estimate the second moment

E(Y 2
m,ε) = 2

∑

I ,J∈Gm([1,2]),I<J

P(Fm,ε(I)∩ Fm,ε(J)) +E(Ym,ε)

≤ 8c2ε
2

m−1
∑

`=1

�

2`22(m−γm)+γ`−3`/2
�

+ 2ε2m−γm

≤ 8c2ε
222(m−γm)

m−1
∑

`=0

2γ`−`/2+ 2ε2m−γm . (19)
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Now choose a sequence (βn) which converges to 1/2 from below, and so that the series
∑∞
`=0 2γ`−`/2

converges (for example take βn = 1/2− 2/(n log2), then γ` is up to an additive constant equal to
`/2 − 2 log2 `). With such (βn) and for the sequence εm = 2−(m−γm) that converges to zero, we
define Vm = Ym,εm

. By (15) we have E(Vm) ≥ c1 > 0 and by (19) we have E(V 2
m) ≤ C3 <∞, where

C3 is a universal constant. Remark 2.1 (ii) yields P(Vm > 0) ≥ c2
1/C3. Thus the probability of the

event limsupm{Vm > 0} is also bounded from below by c2
1/C3. On this event there is a sequence

(sm), such that each sm is the center of a dyadic interval from Gkm
([1, 2]) contained in S(βn)(km), and

such that |B(sm)− f (sm)| ≤ εkm
. The sequence (sm) contains a subsequence that converges to some

s ∈ Γ[(βn)] such that B(s) = f (s). Therefore we have P(Z (B − f )∩ Γ[(βn)] 6= ;) ≥ c2
1/C3 > 0. By

the independence of Brownian motion and the percolation process and Corollary 4.3 it follows that

P(dim(Z (B− f ))≥ 1/2)≥ c2
1/C3 > 0. (20)

Remark 4.4. Note that, for a continuous function f defined on [1, 2], the lower bound from (20)
depends only on maxt∈[1,2] | f (t)|.

Proof of Theorem 1.6. It is enough to prove that dim(Z (B− f )∩ I)≤ 1/2, for any dyadic interval I .
First we will prove the claim for functions which are 1/2-Hölder on compact intervals.

Assume f is a 1/2-Hölder continuous function on I , that is | f (t)− f (s)| ≤ c0|t−s|1/2 for some c0 > 0
and all s, t ∈ I . For an interval J = [s1, s2] ⊂ I set Z(J) = 1, if there exists t ∈ J such that B(t) =
f (t), and Z(J) = 0 otherwise, and define the interval J = [ f (s1)− c0

p

s2− s1, f (s1) + c0

p

s2− s1].
On the event Z(J) = 1 define the stopping time τ = min{Z (B − f ) ∩ J}. Since (τ, B(τ)) ∈ J × J ,
by the strong Markov property, conditional on the sigma algebra Fτ and on the event {Z(J) = 1},
the probability p1 that B(s2) ∈ J is equal to the probability that B(1) ∈ Jτ, where Jτ is the interval
J shifted by −B(τ) and scaled by (s2 − τ)−1/2. Since the interval Jτ has length at least 2c0 and
contains the origin, p1 is bounded from below by a constant not depending on the choice of the
interval J ; see also arguments in the proof of Theorem 1.3 leading to (8). Therefore, for some
c1 <∞ we obtain P(B(t) ∈ J | Z(J) = 1)≥ c−1

1 . This implies

P(Z(J) = 1)≤ c1P(B(t) ∈ J)≤ c2|J |1/2, (21)

for some c2 > 0.

Now consider the coveringAk of the set Z (B− f )∩ I , consisting of the dyadic intervals from Gk(I)
which intersect the set Z (B− f )∩ I . Since every interval inAk has length 2−k|I |, by (21) we have

E

�

∑

J∈Ak

|J |
1
2

�

= E

�

∑

J∈Gk(I)

Z(J)2−
k
2 |I |1/2

�

≤ 2kc22−
k
2 |I |1/22−

k
2 |I |1/2 = c2|I |.

Fatou’s lemma implies

E

�

lim inf
k→∞

∑

J∈Ak

|J |1/2
�

≤ lim inf
k→∞

E

�

∑

J∈Ak

|J |1/2
�

≤ c2|I |.
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Therefore, almost surely, we can find a sequence of coverings {J k
n , n ≥ 1} of Z (B − f ) ∩ I , with

limk→∞ supn≥1 |J k
n | = 0 and lim supk→∞

∑

n≥1 |J
k
n |

1/2 < ∞. This implies that dim(Z (B − f ) ∩ I) ≤
1/2, a.s.

Now let f be of bounded variation on compact intervals and define the set

B f =

¨

t ∈R+ : lim sup
h↓0

�

� f (t + h)− f (t)
�

�h−1/2 ≥ 1

«

.

By part (ii) of Lemma 4.1 we have dim(B f ) ≤ 1/2. Therefore, it is enough to bound the dimension
of the zero set in the complement, Z (B− f )∩Bc

f , where Bc
f = I\B f . We can cover Bc

f by a countable
union of the sets

D f ,n =
§

t ∈ I :
�

� f (t + h)− f (t)
�

�≤
p

h, for all 0≤ h< 2−n
ª

.

For a fixed n, all t1, t2 ∈ D f ,n with |t1− t2|< 2−n satisfy
�

� f (t2)− f (t1)
�

�≤ |t1− t2|1/2. Therefore, the
restriction f |D f ,n

is 1/2-Hölder continuous, that is, for some positive constant c3 and all t1, t2 ∈ D f ,n

we have
�

� f (t2)− f (t1)
�

� ≤ c3|t1 − t2|1/2. Define the function fn : I → R to be fn(t) = f (t) for all
t ∈ D f ,n. We will define fn for t ∈ I \ D f ,n using linear interpolation, in a sense. If D f ,n = ; then
set fn to be any constant function. Assume that D f ,n 6= ;. Note that the set D f ,n is closed from the
left, that is if (sk) is an increasing sequence of points in D f ,n converging to some s, then s ∈ D f ,n.
Since f has bounded variation, by assumption, the right limit limt↓s f (t) exists for all s ∈ I . Thus
if t ∈ I\D f ,n define t l = max{s ∈ D f ,n : s < t}, tr = inf{s ∈ D f ,n : t < s} as well as al = f (t l) and

ar = lims↓tr
f (s) and notice that |ar − al | ≤ c3

p

tr − t l . Now define fn on [t l , tr] to be linear with
fn(t l) = al and fn(tr) = ar . If t l does not exist, define t l as the left endpoint of I and al = ar , and do
similarly if tr does not exist. Clearly fn is 1/2-Hölder continuous with the same constant c3. We can
apply the first part of the proof to fn, to conclude that the set Z (B− fn) has Hausdorff dimension at
most 1/2 almost surely. Since Z (B− f )∩D f ,n ⊂Z (B− fn), we obtain dim

�

Z (B− f )∩ D f ,n

�

≤ 1/2

and dim
�

Z (B− f )∩
⋃

n∈N D f ,n

�

≤ 1/2. Since Bc
f ⊂
⋃

n∈N D f ,n the claim follows.

We finish the paper with the proof of Corollary 1.7.

Proof of Corollary 1.7. Assume that | f (t)− f (s)| ≤ C
p

|t − s| for all 0 < s, t < 1. For every positive
integer n define a continuous function fn : [1,2] → R as fn(t) = 2n/2 f (t2−n), for all t ∈ [1,2].
Clearly maxt∈[1,2] | fn(t)| ≤ C

p
2 and, by Remark 4.4 and Brownian scaling, there is a constant c > 0

such that

P(dim(Z (B− f )∩ [2−n, 2−n+1])≥ 1/2) = P(dim(Z (B− fn))≥ 1/2)≥ c.

Thus by Blumenthal’s zero-one law, almost surely, there are infinitely many integers n such that the
Hausdorff dimension of the set Z (B − f ) ∩ [2−n, 2−n+1] is greater or equal than 1/2. The upper
bound follows from Theorem 1.6.
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