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Abstract

Consider a deterministic self-adjoint matrix Xn with spectral measure converging to a compactly
supported probability measure, the largest and smallest eigenvalues converging to the edges
of the limiting measure. We perturb this matrix by adding a random finite rank matrix with
delocalised eigenvectors and study the extreme eigenvalues of the deformed model. We give
necessary conditions on the deterministic matrix Xn so that the eigenvalues converging out of
the bulk exhibit Gaussian fluctuations, whereas the eigenvalues sticking to the edges are very
close to the eigenvalues of the non-perturbed model and fluctuate in the same scale.
We generalize these results to the case when Xn is random and get similar behavior when we
deform some classical models such as Wigner or Wishart matrices with rather general entries or
the so-called matrix models.
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1 Introduction

Most of the spectrum of a large matrix is not much altered if one adds a finite rank perturbation
to the matrix, simply because of Weyl’s interlacement properties of the eigenvalues. But the
extreme eigenvalues, depending on the strength of the perturbation, can either stick to the extreme
eigenvalues of the non-perturbed matrix or deviate to some larger values. This phenomenon was
made precise in [9], where a sharp phase transition, known as the BBP transition [34, 27, 38, 29],
was exhibited for finite rank perturbations of a complex Gaussian Wishart matrix. In this case, it
was shown that if the strength of the perturbation is above a threshold, the largest eigenvalue of
the perturbed matrix deviates away from the bulk and has then Gaussian fluctuations, otherwise it
sticks to the bulk and fluctuates according to the Tracy-Widom law. The fluctuations of the extreme
eigenvalues which deviate from the bulk were studied as well when the non-perturbed matrix is
a Wishart (or Wigner) matrix with non-Gaussian entries; they were shown to be Gaussian if the
perturbation is chosen randomly with i.i.d. entries in [7], or with completely delocalised eigenvec-
tors [18, 19], whereas in [12], a non-Gaussian behaviour was exhibited when the perturbation has
localised eigenvectors. The influence of the localisation of the eigenvectors of the perturbation was
studied more precisely in [13].

In this paper, we also focus on the behaviour of the extreme eigenvalues of a finite rank perturbation
of a large matrix, this time in the framework where the large matrix is deterministic whereas the
perturbation has delocalised random eigenvectors. We show that the eigenvalues which deviate
away from the bulk have Gaussian fluctuations, whereas those which stick to the bulk are extremely
close to the extreme eigenvalues of the non-perturbed matrix. In a one-dimensional perturbation
situation, we can as well study the fluctuations of the next eigenvalues, for instance showing
that if the first eigenvalue deviates from the bulk, the second eigenvalue will stick to the first
eigenvalue of the non-perturbed matrix, whereas if the first eigenvalue sticks to the bulk, the
second eigenvalue will be very close to the second eigenvalue of the non-perturbed matrix. Hence,
for a one dimensional perturbation, the eigenvalues which stick to the bulk will fluctuate as the
eigenvalues of the non-perturbed matrix. We can also extend these results beyond the case when
the non-perturbed matrix is deterministic. In particular, if the non-perturbed matrix is a Wishart
(or Wigner) matrix with rather general entries, or a matrix model, we can use the universality of
the fluctuations of the extreme eigenvalues of these random matrices to show that the pth extreme
eigenvalue which sticks to the bulk fluctuates according to the pth dimensional Tracy-Widom law.
This proves the universality of the BBP transition at the fluctuation level, provided the perturbation
is delocalised and random.
The reader should notice however that we do not deal with the asymptotics of eigenvalues
corresponding to critical deformations. This probably requires a case-by-case analysis and may
depend on the model under consideration.

Let us now describe more precisely the models we will be dealing with. We consider a deterministic
self-adjoint matrix Xn with eigenvalues λn

1 ≤ · · · ≤ λ
n
n satisfying the following hypothesis.

Hypothesis 1.1. The spectral measure µn := n−1
∑n

l=1δλn
l

of Xn converges towards a deterministic
probability measure µX with compact support. Moreover, the smallest and largest eigenvalues of Xn
converge respectively to a and b, the lower and upper bounds of the support of µX .
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We study the eigenvalues eλn
1 ≤ · · · ≤ eλ

n
n of a perturbation fXn := Xn + Rn obtained from Xn by

adding a finite rank matrix Rn =
∑r

i=1 θiu
n
i un∗

i . We shall assume r and the θi ’s to be deterministic
and independent of n, but the column vectors (un

i )1≤i≤r chosen randomly as follows. Let ν be a
probability measure on R or C satisfying

Assumption 1.2. The probability measure ν satisfies a logarithmic Sobolev inequality, is centred and
has variance one. If ν is not supported on R, we assume moreover that its real part and its imaginary
part are independent and identically distributed.

We consider now a random vector vn = 1p
n
(x1, . . . , xn)T with (x i)1≤i≤n i.i.d. real or complex random

variables with law ν . Then

1. Either the un
i ’s (i = 1, . . . , r) are independent copies of vn

2. Or (un
i )1≤i≤r are obtained by the Gram-Schmidt orthonormalisation of r independent copies

of a vector vn.

We shall refer to the model (1) as the i.i.d. model and to the model (2) as the orthonormalised model.

Before giving a rough statement of our results, let us make a few remarks.
We first recall that a probability measure ν is said to satisfy a logarithmic Sobolev inequality with
constant c if, for any differentiable funtion f in L2(ν),

∫

f 2 log
f 2

∫

f 2dν
dν ≤ 2c

∫

| f ′|2dν .

It is well known that a logarithmic Sobolev inequality implies sub-gaussian tails and concentration
estimates. The concentration properties of the measure ν that will be useful in the proofs are de-
tailed in Section 6.2 of the Appendix.
In the orthonormalised model, if ν is the standard real (resp. complex) Gaussian law, (un

i )1≤i≤r
follows the uniform law on the set of orthogonal random vectors on the unit sphere of Rn (resp.
Cn) and by invariance by conjugation, the model coincides with the one studied in [10].
For a general probability measure ν , the r i.i.d. random vectors obtained are not necessarily lin-
early independent almost surely, so that the orthonormal vectors described in (2) are not always
almost surely well defined. However, as the dimension goes to infinity, they are well defined with
overwhelming probability when ν satisfies Assumption 1.2 . This means the following: we shall say
that a sequence of events (En)n≥1 occurs with overwhelming probability1 if there exist two constants
C ,η > 0 independent of n such that

P(En)≥ 1− Ce−nη .

Consequently, in the sequel, we shall restrict ourselves to the event when the model (2) is well
defined without mentioning it explicitly.

In this work, we study the asymptotics of the eigenvalues of fXn outside the spectrum of Xn.

1Note that this is a bit different from what is called overwhelming probability by Tao and Vu but will be sufficient for
our purpose.
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It has already been observed in similar situations, see [9], that these eigenvalues converge to the
boundary of the support of Xn if the θi ’s are small enough, whereas for sufficiently large values of
the θi ’s, they stay away from the bulk of Xn. More precisely, if we let GµX

be the Cauchy-Stieltjes
transform of µX , defined, for z < a or z > b, by the formula

GµX
(z) =

∫

1

z− x
dµX (x),

then the eigenvalues of fXn outside the bulk converge to the solutions of GµX
(z) = θ−1

i if they exist.

Indeed, if we let

θ :=
1

limz↓b GµX
(z)
≥ 0, θ :=

1

limz↑a GµX
(z)
≤ 0

and

ρθ :=







G−1
µX
(1/θ) if θ ∈ (−∞,θ)∪ (θ ,+∞),

a if θ ∈ [θ , 0),
b if θ ∈ (0,θ],

then we have the following theorem. Let r0 ∈ {0, . . . , r} be such that

θ1 ≤ · · · ≤ θr0
< 0< θr0+1 ≤ · · · ≤ θr .

Theorem 1.3. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. For all i ∈ {1, . . . , r0}, we
have

eλn
i

a.s.−→ ρθi

and for all i ∈ {r0+ 1, . . . , r},
eλn

n−r+i
a.s.−→ ρθi

.

Moreover, for all i > r0 (resp. for all i ≥ r − r0) independent of n,

eλn
i

a.s.−→ a (resp. eλn
n−i

a.s.−→ b).

The uniform case was proved in [10, Theorem 2.1] and we will follow a similar strategy to prove
Theorem 1.3 under our assumptions in Section 2.

The main object of this paper is to study the fluctuations of the extreme eigenvalues of fXn. Precise
statements will be given in Theorems 3.2, 3.4, 4.3, 4.4 and 4.5. For any x such that x ≤ a or x ≥ b,
we denote by Ix the set of indices i such that ρθi

= x . The results roughly state as follows.

Theorem 1.4. Under additional hypotheses,

1. Let α1 < · · · < αq be the different values of the θi ’s such that ρθi
/∈ {a, b} and denote, for each j,

k j = |Iρα j
| and q0 the largest index so that αq0

< 0. Then, the law of the random vector
�p

n(eλn
i −ρα j

), i ∈ Iρα j

�

1≤ j≤q0

∪
�p

n(eλn
n−r+i −ρα j

), i ∈ Iρα j

�

q0+1≤ j≤q

converges to the law of the eigenvalues of (cα j
M j)1≤ j≤q with the M j ’s being independent matrices

following the law of a k j × k j matrix from the GUE or the GOE, depending whether ν is sup-
ported on the complex plane or the real line. The constant cα j

is explicitly defined in Equation (4).
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2. If none of the θi ’s are critical (i.e. equal to θ or θ), with overwhelming probability, the extreme
eigenvalues converging to a or b are at distance at most n−1+ε of the extreme eigenvalues of Xn
for some ε > 0.

3. If r = 1 and θ1 = θ > 0, we have the following more precise picture about the extreme
eigenvalues:

• If ρθ > b,
p

n(eλn
n − ρθ ) converges towards a Gaussian variable, whereas

n1−ε(eλn
n−i − λn−i+1) vanishes in probability as n goes to infinity for any fixed i ≥ 1

and some ε > 0.

• If ρθ = b and θ 6= θ , n1−ε(eλn
n−i − λn−i) vanishes in probability as n goes to infinity for

any fixed i ≥ 1 and some ε > 0.

• For any fixed j ≥ 1, n1−ε(eλn
j − λ j) vanishes in probability as n goes to infinity for some

ε > 0.

These different behaviours are illustrated in Figure 1 below.
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(a) Case where θ = 0.5
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(b) Case where θ = 1.5

Figure 1. Comparison between the largest eigenvalues of a GUE matrix and those of the same
matrix perturbed: the abscises of the vertical segments correspond to the largest eigenvalues of X ,
a GUE matrix with size 2.103 (under the dotted line) or to those of fXn = X+diag(θ , 0, . . . , 0) (above
the dotted line). In the left picture, θ = 0.5 < θ = 1 and as predicted, eλ1 ≈ b = 2, whereas in the
right one, θ = 1.5 > θ , which indeed implies that eλ1 ≈ ρθ = θ +

1
θ
= 2.17 and eλ2 ≈ b. Moreover,

in the left picture, we have, for all i, eλi ≈ λi , with some deviations

|eλi −λi| � deviation of λi from its limit 2.

In the same way, in the right picture, i, eλi+1 ≈ λi , with some deviations

|eλi+1−λi| � deviation of λi from its limit 2.
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At last, here, in the right picture, we have eλ1 ≈ 2.167, which gives
p

n(eλ1−ρθ )
cθ

≈ 0.040, reasonable
value for a standard Gaussian variable.

The first part of this theorem will be proved in Section 3, whereas Section 4 will be devoted to the
study of the eigenvalues sticking to the bulk, i.e. to the proof of the second and third parts of the
theorem.
Moreover, our results can be easily generalised to non-deterministic self-adjoint matrices Xn that
satisfy our hypotheses with probability tending to one. This will allow us to study in Section 5 the
deformations of various classical models. This will include the study of the Gaussian fluctuations
away from the bulk for rather general Wigner and Wishart matrices, hence providing a new proof
of the first part of [18, Theorem 1.1] and of [5, Theorem 3.1] but also a new generalisation to non-
white ensembles. The study of the eigenvalues that stick to the bulk requires a finer control on the
eigenvalues of Xn in the vicinity of the edges of the bulk, which we prove for random matrices such
as Wigner and Wishart matrices with entries having a sub-exponential tail. This result complements
[18, Theorem 1.1], where the fluctuations of the largest eigenvalue of a non-Gaussian Wishart
matrix perturbed by a delocalised but deterministic rank one perturbation was studied. One should
remark that our result depends very little on the law ν (only through its fourth moment in fact).

Our approach is based upon a determinant computation (see Lemma 6.1), which shows that the
eigenvalues of fXn we are interested in are the solutions of the equation

fn(z) := det
�
h

Gn
s,t(z)

ir

s,t=1
− diag(θ−1

1 , . . . ,θ−1
r )
�

= 0, (1)

with
Gn

s,t(z) := 〈un
s , (z− Xn)

−1un
t 〉, (2)

where 〈·, ·〉 denotes the usual scalar product in Cn.
By the law of large numbers for i.i.d. vectors, by [10, Proposition 9.3] for uniformly distributed
vectors or by applying Theorem 6.4 (with An = (z − Xn)−1), it is easy to see that for any z outside
the bulk,

lim
n→∞

Gn
s,t(z) = 1s=t GµX

(z)

and hence it is clear that one should expect the eigenvalues of fXn outside of the bulk to converge to
the solutions of GµX

(z) = θ−1
i if they exist. Studying the fluctuations of these eigenvalues amounts

to analyse the behavior of the solutions of (1) around their limit. Such an approach was already de-
veloped in several papers (see e.g [7] or [12]). However, to our knowledge, the model we consider,
with a fixed deterministic matrix Xn, was not yet studied and the fluctuations of the eigenvalues
which stick to the bulk of Xn was never achieved in such a generality.

For the sake of clarity, throughout the paper, we will call “hypothesis” any hypothesis we need to
make on the deterministic part of the model Xn and “assumption” any hypothesis we need to make
on the deformation Rn.
Moreover, because of concentration considerations that are developed in the Appendix of the paper,
the proofs will be quite similar in the i.i.d. and orthonormalised models. Therefore, we will detail
each proof in the i.i.d. model, which is simpler and then check that the argument is the same in the
orthonormalised model or detail the slight changes to make in the proofs.

Notations. For the sake of clarity, we recall here the main notations of the paper:
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• λn
1 ≤ · · · · · · ≤ λ

n
n are the eigenvalues of the deterministic matrix Xn,

• eλn
1 ≤ · · · · · · ≤ eλn

n are the eigenvalues of the perturbed matrix fXn = Xn +
∑r

i=1 θiu
n
i un∗

i ,
where r and the θi ’s are independent of n and deterministic and the column vectors un

i are random
and defined above,

• r0 ∈ {0, . . . , r} is such that θ1 ≤ · · · ≤ θr0
< 0< θr0+1 ≤ · · · ≤ θr ,

• for z out of the spectrum of Xn, Gn
s,t(z) = 〈u

n
s , (z− Xn)−1un

t 〉,

• for z out of the support of µ, GµX
(z) =

∫

1
z−x

dµX (x),

• θ = 1
limz↓b GµX (z)

≥ 0 and θ = 1
limz↑a GµX (z)

≤ 0,

• for any non null θ ,

ρθ =







G−1
µX
(1/θ) if θ ∈ (−∞,θ)∪ (θ ,+∞),

a if θ ∈ [θ , 0),
b if θ ∈ (0,θ],

• p+ is the number of i’s such that ρθi
> b, p− is the number of i’s such that ρθi

< a and
α1 < · · · < αq are the different values of the θi ’s such that ρθi

/∈ {a, b} (so that q ≤ p− + p+, with
equality in the particular case where the θi ’s are pairwise distinct),

• γn
1, . . . . . .γn

p−+p+
are the rescaled differences between the eigenvalues with limit out of [a, b] and

their limits:

γn
i =







p
n(eλn

i −ρθi
) if 1≤ i ≤ p−,

p
n(eλn

n−(p−+p+)+i −ρθr−(p−+p+)+i
) if p− < i ≤ p−+ p+,

• for any x such that x ≤ a or x ≥ b, Ix is the set of indices i such that ρθi
= x ,

• for any j = 1, . . . , q, k j is the number of indices i such that θi = α j , i.e. k j = |Iρα j
|.

2 Almost sure convergence of the extreme eigenvalues

For the sake of completeness, in this section, we prove Theorem 1.3. In fact, we shall even prove
the more general following result.

Theorem 2.1. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied.

Let us fix, independently of n, an integer i ≥ 1 and V , a neighborhood of ρθi
if i ≤ r0 and of a if i > r0.

Then eλn
i ∈ V with overwhelming probability.

The analogue result exists for largest eigenvalues: for any fixed integer i ≥ 0 and V , a neighborhood of
ρθr−i

if i < r − r0 and of b if i ≥ r − r0, eλn
n−i ∈ V with overwhelming probability.
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By Lemma 6.1, the eigenvalues of fXn which are not in the spectrum of Xn are the solutions of the
equation

det(Mn(z)) = 0,

with
Mn(z) =

h

Gn
s,t(z)

ir

s,t=1
− diag(θ−1

1 , . . . ,θ−1
r ),

the functions Gn
s,t(·) being defined in (2). For z out of the support of µX , let us introduce the r × r

matrix
M(z) := diag(GµX

(z)− θ−1
1 , . . . . . . , GµX

(z)− θ−1
r ).

The key point, to prove Theorem 2.1, is the following lemma. For A= [Ai, j]ri, j=1 and r × r matrix,
we set |A|∞ := supi, j |Ai, j|.

Lemma 2.2. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. For any δ,ε > 0, with
overwhelming probability,

sup
z, d(z,[a,b])>δ

|M(z)−Mn(z)|∞ ≤ ε.

In the case where the θi ’s are pairwise distinct, Theorem 2.1 follows directly from this lemma,
because the z’s such that det(M(z)) = 0 are precisely the z’s such that for some i, GµX

(z) = 1
θi

and
because close continuous functions on an interval have close zeros. The case where the θi ’s are not
pairwise distinct can then be deduced by an approximation procedure similar to the one of Section
6.2.3 of [10].

Proof of Lemma 2.2. The i.i.d. model. Fix R such that for all x ∈ [a− δ/2, b+ δ/2] and z ∈ C with
|z| ≥ R,

�

�

�

�

1

z− x

�

�

�

�

≤
ε

2
.

Then since the support of µX is contained in [a, b] and for n large enough, the eigenvalues of Xn
are all in [a−δ/2, b+δ/2], it suffices to prove that with overwhelming probability,

sup
|z|≤R, d(z,[a,b])>δ

|M(z)−Mn(z)|∞ ≤ ε.

Now, fix some z such that |z| ≤ R, d(z, [a, b]) > δ, and n large enough. By Proposition 6.2 with
A= (z − Xn)−1, whose operator norm is bounded by 2δ−1, we find that for any ε > 0, there exists
c > 0 such that

P

�
�

�

�

�

Gn
s,t(z)− 1s=t

1

n
Tr((z− Xn)

−1)

�

�

�

�

≥
δ−1

n1/2−ε

�

≤ 4e−cn2ε
. (3)

It follows that there are c,η > 0 such that for all z such that |z| ≤ R, d(z, [a, b])> δ,

P(|M(z)−Mn(z)|∞ > ε/2)≤ e−cnη .

As a consequence, since the number of z’s such that |z| ≤ R and nz have integer real and imaginary
parts has order n2, there is a constant C such that

P(sup
z
|M(z)−Mn(z)|∞ > ε/2)≤ Cn2e−cnη ,
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where the supremum is taken over complex numbers z = k
n
+ i l

n
, with k, l ∈ Z, such that |z| ≤

R, d(z, [a, b]) > δ. Now, note that for n large enough so that the eigenvalues of Xn are all in
[a − δ/2, b + δ/2], the Lipschitz norm for | · |∞ on the set of z’s such that d(z, [a, b]) > δ of the
function z 7−→ Mn(z) is less than 4

δ2 . maxs,t=1...r ‖un
s ‖‖u

n
t ‖. Therefore, by Proposition 6.2 again, with

overwhelming probability z 7−→ Mn(z) is 4
p

n
δ2 -Lipschitz on this set. The function z 7−→ M(z) is

1
δ2 -Lipschitz on this set, so, with overwhelming probability,

sup
|z|≤R,d(z,[a,b])>δ

|Mn(z)−M(z)|∞ ≤ max
|z|≤R,d(z,[a,b])>δ

nz∈Z+iZ

|Mn(z)−M(z)|∞+ 8δ−2n−1/2 ,

which insures that for n large enough,

P

�

sup
|z|≤R,d(z,[a,b])>δ

|M(z)−Mn(z)|∞ > ε
�

≤ Cn2e−cnη .

This concludes the proof for the i.i.d. model.

The orthonormalised model can be treated similarly, by writing Un = W nGn with
p

nW n a matrix
converging almost surely to the identity by Proposition 6.3. �

3 Fluctuations of the eigenvalues away from the bulk

3.1 Statement of the results

Let p+ be the number of i’s such that ρθi
> b and p− be the number of i’s such that ρθi

< a. In
this section, we study the fluctuations of the eigenvalues of fXn with limit out of the bulk, that is
(eλn

1, . . . , eλn
p−

, eλn
n−p++1, . . . , eλn

n). We shall assume throughout this section that the spectral measure of
Xn converges to µX faster than 1/

p
n. More precisely,

Hypothesis 3.1. For all z ∈ {ρα1
, . . . ,ραq

},
p

n(Gµn
(z)− GµX

(z)) converges to 0.

Our theorem deals with the limiting joint distribution of the variables γn
1, . . . ,γn

p−+p+
, the rescaled

differences between the eigenvalues with limit out of [a, b] and their limits:

γn
i =







p
n(eλn

i −ρθi
) if 1≤ i ≤ p−

p
n(eλn

n−(p−+p+)+i −ρθr−(p−+p+)+i
) if p− < i ≤ p−+ p+

Let us recall that for k ≥ 1, GOE(k) (resp. GUE(k)) is the distribution of a k× k symmetric (resp.
Hermitian) random matrix [gi, j]ki, j=1 such that the random variables { 1p

2
gi,i ; 1≤ i ≤ k}∪{gi, j ; 1≤

i < j ≤ k} (resp. {gi,i ; 1 ≤ i ≤ k} ∪ {
p

2ℜ(gi, j) ; 1 ≤ i < j ≤ k} ∪ {
p

2ℑ(gi, j) ; 1 ≤ i < j ≤ k}) are
independent standard Gaussian variables.

The limiting behaviour of the eigenvalues with limit outside the bulk will depend on the law ν

through the following quantity, called the fourth cumulant of ν

κ4(ν) :=

(
∫

x4dν(x)− 3 in the real case,
∫

|z|4dν(z)− 2 in the complex case.
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Note that if ν is Gaussian standard, then κ4(ν) = 0.

The definitions of the α j ’s and of the k j ’s have been given in Theorem 1.4 and recalled in the
Notations gathered at the end of the introduction above.

Theorem 3.2. Suppose that Assumption 1.2 holds with κ4(ν) = 0, as well as Hypotheses 1.1 and 3.1.
Then the law of

(γn
∑ j−1
`=1 k`+i

, 1≤ i ≤ k j)1≤ j≤q

converges to the law of (λi, j , 1 ≤ i ≤ k j)1≤ j≤q, with λi, j the ith largest eigenvalue of cα j
M j with

(M1, . . . , Mq) being independent matrices, M j following the GUE(k j) (resp. GOE(k j)) distribution if ν
is supported on the complex plane (resp. the real line). The constant cα is given by

c2
α =















1
∫

(ρα−x)−2dµX (x)
in the i.i.d. model,

∫ dµX (x)
(ρα−x)2

− 1
α2

�∫

(ρα−x)−2dµX (x)
�2 in the orthonormalised model.

(4)

When κ4(ν) 6= 0, we need a bit more than Hypothesis 3.1, namely

Hypothesis 3.3. For all z ∈R\[a, b], there is a finite number l(z) such that






1
n

∑n
i=1((z− Xn)−1)2i,i −→n→∞

l(z) in the i.i.d. model,
1
n

∑n
i=1(((z− Xn)−1)i,i −

1
n

Tr((z− Xn)−1))2 −→
n→∞

l(z) in the orthonormalised model.

We then have a similar result.

Theorem 3.4. In the case when Assumption 1.2 holds with κ4(ν) 6= 0, under Hypotheses 1.1, 3.1 and
3.3, Theorem 3.2 stays true, replacing the matrices cα j

M j by matrices cα j
M j + D j where the D j ’s are

independent diagonal random matrices, independent of the M j ’s, and such that for all j, the diagonal
entries of D j are independent centred real Gaussian variables, with variance −l(ρα j

)κ4(ν)/G′µX
(ρα j
).

3.2 Proof of Theorems 3.2 and 3.4

We prove hereafter Theorem 3.2 and we will indicate briefly at the end of this section the minor
changes to make to get Theorem 3.4. The main ingredient will be a central limit theorem for
quadratic forms, stated in Theorem 6.4 in the appendix.

For i ∈ {1, . . . q} and x ∈R, we denote by M n(i, x) the r × r (but no longer symmetric) matrix with
entries given by

[M n(i, x)]s,t :=







p
n
�

Gn
s,t

�

ραi
+ xp

n

�

−1s=t
1
αi

�

, if s ∈ Iραi
,

Gn
s,t

�

ραi
+ xp

n

�

−1s=t
1
θs

, if s /∈ Iραi
.
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We set ρi
n(x) := ραi

+ xp
n
.

The first step of the proof will be to get the asymptotic behavior of M n(i, x).

Lemma 3.5. Let i ∈ {1, . . . q} and x ∈ R be fixed. Under the hypotheses of Theorem 3.2, M n(i, x)
converges weakly, as n goes to infinity, to the matrixM (i, x) with entries

[M (i, x)]s,t :=

(

G′µX
(ραi
)(x1s=t − cραi

ns,t), if s ∈ Iραi
,

�

1
αi
− 1
θs

�

1s=t , if s /∈ Iραi
,

(5)

with (ns,t)s,t=1,...,r a family of independent Gaussian variables with ns,s ∼ N (0,2) and ns,t ∼ N (0,1)
when s 6= t in the real case (resp. ns,s ∼N (0, 1) and ℜ(ns,t),ℑ(ns,t) ∼N (0, 1/2) and independent in
the complex case).

Proof. From (3), we know that for s /∈ Iραi
,

lim
n→∞

[M n(i, x)]s,t =
�

GµX
(ραi
)−

1

θs

�

1s=t =
�

1

αi
−

1

θs

�

1s=t . (6)

Let s ∈ Iραi
. We write the decomposition

M n
s,t(i, x) :=

p
n
�

Gn
s,t(ρ

i
n(x))−

1

αi
1s=t

�

=: M n,1
s,t (i, x) +M n,2

s,t (i, x) +M n,3
s,t (i, x)

where

M n,1
s,t (i, x) :=

p
n
�

〈un
s , (ρi

n(x)− Xn)
−1un

t 〉 −1s=t
1

n
Tr((ρi

n(x)− Xn)
−1)
�

,

M n,2
s,t (i, x) := 1s=t

p
n
�

1

n
Tr((ρi

n(x)− Xn)
−1)−

1

n
Tr((ραi

− Xn)
−1)
�

,

M n,3
s,t (i, x) := 1s=t

p
n
�

1

n
Tr((ραi

− Xn)
−1)− GµX

(ραi
)
�

.

The asymptotics of the first term is given by Theorem 6.4 with a variance given by

lim
n→∞

1

n
Tr((ρi

n(x)− Xn)
−2) =−G′µX

(ραi
). (7)

As ραi
is at distance of order one from the support of Xn, we can expand x/

p
n in M n,2

s,t (i, x) to
deduce that

lim
n→∞

M n,2
s,t (i, x) = xG′µX

(ραi
)1s=t . (8)

Finally, by Hypothesis 3.1, we have
lim

n→∞
M n,3

s,t (i, x) = 0. (9)

Equations (6), (7), (8) and (9) prove the lemma (using the fact that the distribution of the Gaussian
variables ns,s and ns,t are symmetric).

1631



The next step is to study the behaviour of (M n(i, x))x∈R as a process onR. We will show in particular
that the dependence in the parameter x is very simple. Let (ns,t)s,t=1,...,r be a family of Gaussian
random variables as in Lemma 3.5 and define the random process M (i, ·) from R to Mn(C) with
[M (i, x)]s,t defined as in (5) (where we emphasize that (ns,t)s,t=1,...,r do not depend on x). Then
we have

Lemma 3.6. Let i ∈ {1, . . . q} be fixed. The random process (M n(i, x))x∈R converges weakly, as n→∞,
toM (i, ·) in the sense of finite dimensional marginals.

Proof. This is a direct application of Remark 6.5, as it is easy to check that for any x , x ′ ∈R,

lim
n→∞

1

n
Tr

 

�

ραi
+

x
p

n
− Xn

�−1

−
�

ραi
+

x ′
p

n
− Xn

�−1!2

= 0

The last point to check is a result of asymptotic independence, from which the in-
dependence of the matrices M1, . . . , Mq will be inherited. In fact, the matrices
(M n(1, x1), . . . , M n(q, xq)) won’t be asymptotically independent but their determinants will.

Lemma 3.7. For any (x1, . . . , xq) ∈Rq, the random variables

det[M n(1, x1)], . . . , det[M n(q, xq)]

are asymptotically independent.

Proof. The key point is to show that,

det [M n(i, x)] = det
�

[M n(i, x)]s,t∈Iραi

�

∏

s/∈Iραi

�

1

αi
−

1

θs

�

+ o(1), (10)

where the remaining term is uniformly small as x varies in any compact of R.

Then, as the set of indices Iρα1
, . . . , Iραq

are disjoint, the submatrices involved in the main terms are
independent in the i.i.d case and asymptotically independent in the orthonormalised case.

Let us now show (10). Firstly, note that by the convergence of M n
s,t(i, x) obtained in the proof of the

Lemma 3.5, we have for all s, t ∈ {1, . . . , r} such that s 6= t or s ∈ Iραi
, for all κ < 1/2,

nκ
�

Gn
s,t(ρ

i
n(x))−1s=t

1

θs

�

−→
n→∞

0 (convergence in probability). (11)

By the formula

det [M n(i, x)] = n
ki
2

∑

σ∈Sr

sgn(σ)
r
∏

s=1

�

Gn
s,σ(s)(ρ

i
n(x))−1s=σ(s)

1

θs

�

,
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it suffices to prove that for any σ ∈ Sr such that for some i0 ∈ {1, . . . , r}\Iραi
, σ(i0) 6= i0,

n
ki
2

r
∏

s=1

�

Gn
s,σ(s)(ρ

i
n(x))−1s=σ(s)

1

θs

�

−→
n→∞

0 (convergence in probability). (12)

It follows immediately from (11) since for any κ < 1/2, in the above product, all the terms with
index in Iραi

are of order at most n−κ, giving a contribution n−kiκ, and i0 is not in Iραi
and satisfies

σ(i0) 6= i0, yielding another term of order at most n−κ. Hence, the other terms being bounded
because ρi

n(x) stays bounded away from [a, b], the above product is at most of order n−κ(ki+1) and

so taking κ ∈ ( ki

2(ki+1) ,
1
2
) proves (12).

Now as we have that, for i ∈ {1, . . . , q} and x ∈R,

det [M n(i, x)] = fn

�

ραi
+

x
p

n

�

n
ki
2 ,

we can deduce from the lemmata above the following

Proposition 3.8. Under the hypothesis of Theorem 3.2, the random process
��

n
k1
2 fn

�

ρα1
+

x
p

n

��

x∈R
, . . . ,

�

n
kq
2 fn

�

ραq
+

x
p

n

��

x∈R

�

converges weakly, as n goes to infinity to the random process
















G′µX
(ραi
)ki det(x I − cαi

Mi)
∏

s/∈Iραi

�

1

αi
−

1

θs

�









x∈R









1≤i≤q

in the sense of finite dimensional marginals, with the constants cαi
and the joint distribution of

(M1, . . . , Mq) as in the statement of Theorem 3.2.

From there, the proof of Theorem 3.2 is straightforward.

Proof. Let
x1(i)< y1(i)< x2(i)< y2(i)< · · ·< yki

(i) (1≤ i ≤ q),

be fixed. Since, by Theorem 2.1, for all ε > 0, for n large enough, fn vanishes exactly at p− + p+
points in R\[a− ε, b+ ε], we have that

P

�

x`(i)< γ
n
∑i−1

m=1 km+`
< y`(i), ∀`= 1, . . . , ki , ∀i = 1, . . . q

�

= P
�

fn

�

ραi
+

y`(i)p
n

�

fn

�

ραi
+

x`(i)p
n

�

< 0, ∀`= 1, . . . , ki , ∀i = 1, . . . , q,
�

−−−→
n→∞

P
�

det
�

y`(i)I − cαi
Mi

�

det
�

x`(i)I − cαi
Mi

�

< 0, ∀`= 1, . . . , ki , ∀i = 1, . . . , q,
�

= P
�

x`(i)< λi,` < y`(i), ∀`= 1, . . . , ki , ∀i = 1, . . . , q,
�
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To prove Theorem 3.4, the only substantial change to make is in the definition (5), in the case when
s ∈ Iραi

, we have to put

[M (i, x)]s,t := G′µX
(ραi
)(x1s=t − cραi

ns,t)−κ4(ν)l(ραi
).

The convergence of [M n(i, x)]s,t to [M (i, x)]s,t is again obtained by applying Theorem 6.4.

4 The sticking eigenvalues

4.1 Statement of the results

To study the fluctuations of the eigenvalues which stick to the bulk, we need a more precise infor-
mation on the eigenvalues of Xn in the vicinity of their extremes. More explicitly, we shall need the
following additional hypothesis, which depends on a positive integer p and a real number α ∈ (0, 1).
Note that this hypothesis has two versions: Hypothesis 4.1[p,α, a] is adapted to the study of the
smallest eigenvalues (it is the version detailed below) and Hypothesis 4.1[p,α, b] is adapted to the
study of the largest eigenvalues (this version is only outlined below).

Hypothesis 4.1. [p,α, a] There exists a sequence mn of positive integers tending to infinity such that
mn = O(nα),

lim inf
n→∞

1

n

n
∑

i=mn+1

1

λn
p −λ

n
i
≥

1

θ
, (13)

and there exist η2 > 0 and η4 > 0, so that for n large enough

n
∑

i=mn+1

1

(λn
p −λ

n
i )

2 ≤ n2−η2 , (14)

and
n
∑

i=mn+1

1

(λn
p −λ

n
i )

4 ≤ n4−η4 . (15)

Hypothesis 4.1. [p,α, b] is the same hypothesis where we replace λn
p − λ

n
i by λn

n−p+1 − λ
n
n−i+1, and

(13) becomes

lim sup
n→∞

1

n

n
∑

i=mn+1

1

λn
n−p+1−λ

n
n−i+1

≤
1

θ
.

For many matrix models, the behaviors of largest and smallest eigenvalues are similar, and Hypoth-
esis 4.1 [p,α, a] is satisfied if and only if Hypothesis 4.1 [p,α, b] is satisfied. In such cases, we shall
simply say that Hypothesis 4.1 [p,α] is satisfied.

For rank one perturbations and in the i.i.d. model, we will only require the two first conditions
(13) and (14) whereas for higher rank perturbations, we will need in addition (15) to control the
off-diagonal terms of the determinant.

Moreover, we shall not study the critical case where for some i, θi ∈ {θ ,θ}.
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Assumption 4.2. For all i, θi 6= θ and θi 6= θ .

In fact, Assumption 4.2 can be weakened into: for all i, θi 6= θ (resp. θi 6= θ) if we only study the
smallest (resp. largest) eigenvalues.

The fact that the eigenvalues of the non-perturbed matrix are sufficiently spread at the edges to
insure the above hypothesis allow the eigenvalues of the perturbed matrix to be very close to them,
as stated in the following theorem.

Theorem 4.3. Let Ia = {i ∈ [1, r] : ρθi
= a} = [p− + 1, r0] (resp. Ib = {i ∈ [1, r] : ρθi

= b} =
[r0 + 1, r − p+]) be the set of indices corresponding to the eigenvalues eλn

i (resp. eλn
n−r+i) converging

to the lower (resp. upper) bound of the support of µX . Let us suppose Hypothesis 1.1, Hypothesis 4.1
[r,α, a] (resp. Hypothesis 4.1 [r,α, b]) and Assumptions 1.2 and 4.2 to hold. Then for any α′ > α, we
have, for all i ∈ Ia (resp. i ∈ Ib),

min
1≤k≤i+r−r0

|eλn
i −λ

n
k| ≤ n−1+α′ ,

(resp. min
n−r+i−r0≤k≤n

|eλn
n−r+i −λ

n
k| ≤ n−1+α′)

with overwhelming probability.

Moreover, in the case where the perturbation has rank one, we can locate exactly in the neighbor-
hood of which eigenvalues of the non-perturbed matrix the eigenvalues of the perturbed matrix
lie.

We state hereafter the result for the smallest eigenvalues, but of course a similar statement holds for
the largest ones.

Theorem 4.4. Let (eλn
i )i≥1 be the eigenvalues of Xn+ θu1u∗1, with θ < 0. Then, under Assumption 1.2

and Hypothesis 1.1, if (13) and (14) in Hypothesis 4.1 [p,α, a] hold for some α ∈ (0,1) and a positive
integer p, then for any α′ > α, we have

(i) if θ < θ , eλn
1 converges to ρθ < a whereas n1−α′(eλn

i+1 − λ
n
i )1≤i≤p−1 vanishes in probability as n

goes to infinity,

(ii) if θ ∈ (θ , 0), n1−α′(eλn
i −λ

n
i )1≤i≤p vanishes in probability as n goes to infinity,

(iii) if, instead of (13) and (14) in Hypothesis 4.1 [p,α, a], one supposes (13) and (14) in Hypothesis
4.1 [p,α, b] to hold, then n1−α′(eλn

n−i −λ
n
n−i)0≤i<p vanishes in probability as n goes to infinity.

Theorem 4.5. Consider the i.i.d. model and let (eλn
i )i≥1 be the eigenvalues of Xn +

∑r
i=1 θiuiu

∗
i . Let

p− (resp. p+) be the number of indices i so that ρθi
< a (resp. ρθi

> b). We assume that Assumptions
1.2 and 4.2, Hypothesis 1.1, and (13) and (14) in Hypotheses 4.1 [p,α, a] and [q,α, b] hold for
some α ∈ (0,1) and integers p, q. Then, for all α′ > α, for all fixed 1 ≤ i ≤ p − (p− + r) and
0≤ j < p− (p++ r),

n1−α′(eλn
p−+i −λ

n
i ) and n1−α′(eλn

n−(p++ j)−λ
n
n− j)

both vanish in probability as n goes to infinity.

Note that if p− (p−+ r)≤ 0 (resp. if p− (p++ r)< 0), then the statement of the theorem is empty
as far as i’s (resp. j’s) are concerned. The same convention is made throughout the proof.
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4.2 Proofs

Let us first prove Theorem 4.3. Let us choose i0 ∈ Ia and study the behaviour of eλn
i0

(the case of the
largest eigenvalues can be treated similarly). We assume throughout the section that Hypotheses
1.1, 4.1 [r,α, a] and Assumptions 1.2 and 4.2 are satisfied. We also fix α′ > α.

We know, by Lemma 6.1, that the eigenvalues of fXn which are not eigenvalues of Xn are the z’s such
that

det(Mn(z)) = 0, (16)

where
Mn(z) =

h

Gn
s,t(z)

ir

s,t=1
− diag(θ−1

1 , . . . ,θ−1
r ) (17)

and for all s, t,
Gn

s,t(z) = 〈u
n
s , (z− Xn)

−1un
t 〉.

Recall that by Weyl’s interlacing inequalities (see [1, Th. A.7])

eλn
i0
≤ λn

i0+r−r0
.

Let ζ be a fixed constant such that max1≤i≤p− ρθi
< ζ < a. By Theorem 2.1, we know that

Lemma 4.6. With overwhelming probability, eλn
i0
> ζ.

We want to show that (16) is not possible on

Ωn :=
�

z ∈ [ζ,λn
i0+r−r0

] ; min
1≤k≤i0+r−r0

|z−λn
k|> n−1+α′

�

.

The following lemma deals with the asymptotic behaviour of the off-diagonal terms of the matrix
Mn(z) of (17).

Lemma 4.7. For s 6= t and κ > 0 small enough,

sup
z∈Ωn

|Gn
s,t(z)| ≤ n−κ (18)

with overwhelming probability.

The following lemma deals with the asymptotic behaviour of the diagonal terms of the matrix Mn(z)
of (17).

Lemma 4.8. For all s = 1, . . . , r, for all δ > 0, any δ > 0,

sup
z∈Ωn

�

�

�

�

Gn
s,s(z)−

1

θ

�

�

�

�

≤ δ (19)

with overwhelming probability.
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Let us assume these lemmas proven for a while and complete the proof of Theorem 4.3. By these
two lemmas, for z ∈ Ωn, we find by expanding the determinant that with overwhelming probability,

det(Mn(z)) =
r
∏

s=1

�

Gn
s,s(z)−

1

θi

�

+O(n−κ), (20)

where the O(n−κ) is uniform on z ∈ Ωn. Indeed, in the second term of the right hand side of

det(Mn(z)) =
r
∏

s=1

�

Gn
s,s(z)−

1

θi

�

+
∑

σ∈Sr\{Id}

sign(σ)
r
∏

s=1

(Gn
s,σ(s)(z)−1s=σ(s)θ

−1
s ),

each diagonal term is bounded and each non diagonal term is O(n−κ).

Since for all i, θi 6= θ , (20) and Lemma 4.8 allow to assert that with overwhelming probability, for
all z ∈ Ωn, det(Mn(z)) 6= 0. It completes the proof of the theorem.

We finally prove the two last lemmas.

Proof of Lemma 4.7. Let us consider z ∈ Ωn (z might depend on n, but for notational brevity, we
omit to denote it by zn). We treat simultaneously the orthonormalised model and the i.i.d. model
(in the i.i.d. model, one just takes W n = I and replaces ‖(Gn(W n)T )s‖2 by

p
n in the proof below).

Observe that if we write Xn = O∗DnO with Dn = (λn
1, . . . ,λn

n) and O a unitary or orthogonal matrix,

Gn
s,t(z) = 〈un

s , (z− Xn)
−1un

t 〉

=
n
∑

l=1

(Oun
s )l(Oun

t )l
z−λn

l

The first step is to show that for any ε > 0, with overwhelming probability,

max
l≤n,s≤r

|(Oun
s )l | ≤ n−

1
2
+ε. (21)

Indeed, with Ol the lth row vector of O and using the notations of Section 6.2,

(Oun
s )l = 〈Ol , un

s 〉=
1

‖(Gn(W n)T )s‖2

r
∑

t=1

W n
s,t〈Ol , gn

t 〉.

But g 7→ 〈Ol , gn
s 〉 is Lipschitz for the Euclidean norm with constant one. Hence, by concentration

inequality due to the log-Sobolev hypothesis (see e.g. [1, section 4.4]), there exists c > 0 such that
for all δ > 0,

P
�

|〈Ol , gn
s 〉|> δ

�

≤ 4e−cδ2

so that

P

�

max
l≤n,s≤r

|〈Ol , gn
s 〉| ≥ nε

�

≤ 4n4e−cn2ε
.

From Proposition 6.3, we know that with overwhelming probability, ‖(Gn(W n)T )s‖2 is bounded
below by

p
nn−ε and the entries of W n are of order one. This gives therefore (21).
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We now make the following decomposition

Gn
s,t(z) =

mn
∑

l=1

(Oun
s )l(Oun

t )l
z−λn

l
︸ ︷︷ ︸

:=An(z)

+
n
∑

l=mn+1

(Oun
s )l(Oun

t )l
z−λn

l
︸ ︷︷ ︸

:=Bn(z)

.

Note that as |(Oun
s )l |, 1≤ l ≤ mn, are smaller than n−

1
2
+ε′ by (21), for any ε′ > 0, with overwhelming

probability, we have, uniformly on z ∈ Ωn,
�

�An(z)
�

�≤ mnn1−α′n−1+2ε′ = O(nα−α
′+2ε′)

We choose 0< ε′ ≤ (α′−α)/4 and now study Bn(z) which can be written

Bn(z) = 〈un
s , P(z− Xn)

−1Pun
t 〉

with P the orthogonal projection onto the linear span of the eigenvectors of Xn corresponding to the
eigenvalues λn

mn+1, . . . ,λn
n. By the second point in Proposition 6.2, with z ∈ Ωn, for all s 6= t,

P

�

�

�〈gn
s , P(z− Xn)

−1P gn
t 〉
�

�≥ δ
q

Tr(P(z− Xn)−2) + κ
p

Tr(P(z− Xn)−4)

�

≤ 4e−cδ2
+ 4e−c min(κ,κ2).

Moreover, by Hypothesis 4.1, for n large enough, for all z ∈ Ωn,

Tr(P(z− Xn)
−2)≤ n2−η2 and Tr(P(z− Xn)

−4)≤ n4−η4 .

We deduce that there is C ,η > 0 such that for all z ∈ Ωn,

P

�
�

�

�

�

1

n
〈gn

s , P(z− Xn)
−1P gn

t 〉
�

�

�

�

> n−
η2∧η4

8

�

≤ Ce−nη (22)

A similar control is verified for s = t since we have, by Proposition 6.2,

P

�
�

�

�

�

1

n
〈gs, P(z− Xn)

−1P gs〉 −
1

n
Tr
�

P(z− Xn)
−1
�

�

�

�

�

≥ δ
�

≤ 4e−c min{δ2nη2 ,δnη2/2}, (23)

whereas Hypothesis 4.1 insures that the term 1
n
Tr(P(z − Xn)−1) is bounded uniformly on Ωn. Thus,

up to a change of the constants C and η, there is a constant M such that for all z ∈ Ωn,

P

�
�

�

�

�

1

n
〈gs, P(z− Xn)

−1P gs〉
�

�

�

�

≥ M

�

≤ Ce−nη .

Therefore, with Proposition 6.3 and developing the vectors un
s ’s as the normalised column vectors of

Gn(W n)T , we conclude that, up to a change of the constants C and η, for all z ∈ Ωn,

P
�

|Bn(z)| ≥ n−
η2∧η4

8

�

≤ Ce−nη . (24)
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Hence, we have proved that there exists κ > 0, C and η > 0 so that for all z ∈ Ωn,

P

��

�

�Gn
s,t(z)

�

�

�≥ n−κ
�

≤ Ce−nη .

We finally obtain this control uniformly on z ∈ Ωn by noticing that z→Gn
s,t(z) is Lipschitz on Ωn, with

constant bounded by (min |z −λi|)−2 ≤ n2−2α′ . Thus, if we take a grid (zn
k )0≤k≤cn2 of Ωn with mesh

≤ n−2+2α′−κ (there are about n2 such zn
k ’s) we have

sup
z∈Ωn

�

�

�Gn
s,t(z)

�

�

�≤ max
1≤k≤cn2

�

�

�Gn
s,t(z

n
k )
�

�

�+ n−κ.

Since there are at most cn2 such k and n2 possible i, j, we conclude that

P

�

sup
z∈Ωn

|Gn
s,t(z)| ≥ 2n−κ

�

≤ c2n4Ce−nη

which completes the proof.

Proof of Lemma 4.8. We shall use the decomposition

Gn
i,i(z) = 〈u

n
i , P(z− Xn)

−1Pun
i 〉+ 〈u

n
i , (1− P)(z− Xn)

−1(1− P)un
i 〉, (25)

with P as above the orthogonal projection onto the linear span of the eigenvectors of Xn correspond-
ing to the eigenvalues λn

mn+1, . . . ,λn
n, and then prove that for z ∈ Ωn,

〈un
s , P(z− Xn)

−1Pun
s 〉 ≈

1

θ
,

whereas

〈un
s , (1− P)(z− Xn)

−1(1− P)un
s 〉 ≤

1

min1≤k≤mn
|z−λn

k|
︸ ︷︷ ︸

≤n1−α′

‖(1− P)un
s ‖

2
2

︸ ︷︷ ︸

≈n−1 rank(1−P)

≈ n−α
′
mn = O(nα−α

′
) = o(1).

Let us now give a formal proof. Again, we first prove the estimate for a fixed z ∈ Ωn, the uniform
estimate on z being obtained by a grid argument as in the previous proof (a key point being that
the constants C and η of the definition of overwhelming probability are independent of the choice of
z ∈ Ωn).

First, observe that (13) implies that for any sequence εn tending to zero,

lim
n→∞

sup
a−εn≤z≤λn

p

�

�

�

�

�

�

1

n

n
∑

i=mn+1

1

z−λn
i
−

1

θ

�

�

�

�

�

�

= 0. (26)

Indeed, for all ε > 0, for n such that λp
n and a−εn are both ≥ a−ε, we have, for all z ∈ [a−εn,λn

p],

1

n

n
∑

i=mn+1

1

λn
p −λ

n
i
≤

1

n

n
∑

i=mn+1

1

z−λn
i
≤

1

n

n
∑

i=mn+1

1

a− ε−λn
i

,
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so that (13) and

lim
ε↓0

limsup
n→∞

1

n

n
∑

i=mn+1

1

a− ε−λn
i
= lim
ε↓0

GµX
(a− ε) =

1

θ

imply (26).

So let us consider z ∈ Ωn (z might depend on n, but for notational brevity, we omit to denote it by
zn). By the inequality |z−λn

k|> n−1+α′ for all 1≤ k ≤ mn and (25), we have

�

�

�Gn
s,s(z)− 〈u

n
s , P(z− Xn)

−1Pun
s 〉
�

�

�≤ n1−α′‖(1− P)un
s ‖

2
2. (27)

But as in the previous proof, we have

〈un
s , P(z− Xn)

−1Pun
s 〉=

n

‖(Gn(W n)T )s‖22

s
∑

t,v=1

W n
s,vW n

s,t

1

n
〈gn

t , P(z− Xn)
−1P gn

v 〉

with, by (22), the off diagonal terms t 6= v of order n−η2∧η4/8 with overwhelming probability,
whereas the diagonal terms are close to 1

n
Tr(P(z − Xn)−1) with overwhelming probability by (23).

Hence, we deduce with Proposition 6.2 that for any δ > 0,
�

�

�

�

〈un
s , P(z− Xn)

−1Pun
s 〉 −

1

n
Tr(P((z− Xn)

−1))

�

�

�

�

≤ δ

with overwhelming probability. Hence, by (26), for any δ > 0
�

�

�

�

〈un
s , P(z− Xn)

−1Pun
s 〉 −

1

θ

�

�

�

�

≤ δ (28)

with overwhelming probability. On the other hand

‖(1− P)un
s ‖

2
2 =

1

‖(Gn(W n)T )s‖22

r
∑

t,v=1

W n
s,tW

n
s,v〈(1− P)gn

t , (1− P)gn
v 〉

By Proposition 6.3, the denominator is of order n with overwhelming probability, whereas by Propo-
sition 6.2, the numerator is of order mn + nε

p
mn (since Tr(1− P) = mn) with overwhelming prob-

ability. As W n is bounded by Proposition 6.3 we conclude that

‖(1− P)un
s ‖

2
2 ≤ 2

mn

n
(29)

with overwhelming probability. Putting together Equations (27), (28) and (29), we have proved
that for any z ∈ Ωn, any δ > 0,

�

�

�

�

Gn
s,s(z)−

1

θ

�

�

�

�

≤ δ

with overwhelming probability, the constants C and η of the definition of overwhelming probability
being independent of the choice of z ∈ Ωn We do not detail the grid argument used to get a control
uniform on z because this argument is similar to what we did in the proof of the previous lemma.
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Proof of Theorem 4.4. In the one dimensional case, the eigenvalues of eXn which do not belong to the
spectrum of Xn are the zeroes of

fn(z) =
1

n
〈g, (z− Xn)

−1 g〉 − εn(g)
1

θ
(30)

with εn(g) = 1 or ‖g‖22/n according to the model we are considering. A straightforward study of
the function fn tells us that the eigenvalues of eXn are distinct from those of Xn as soon as Xn has no
multiple eigenvalue and

(matrix of the eigenvectors of Xn)
∗× g

has no null entry, which we can always assume up to modify Xn and g so slightly that the fluctuations
of the eigenvalues are not affected. We do not detail these arguments but the reader can refer to
Lemmas 9.3, 9.4 and 11.2 of [11] for a full proof in the finite rank case.
Therefore, (30) characterises all the eigenvalues of eXn. Moreover, by Weyl’s interlacing properties,
for θ < 0,

eλn
1 < λ

n
1 <

eλn
2 < λ

n
2 < · · ·< eλ

n
n < λ

n
n .

Theorems 2.1 and 4.3 thus already settle the study of eλn
1 which either goes to ρθ or is at distance

O(n−1+α′) of λn
1 depending on the strength of θ . We consider α′ > α and i ∈ {2, . . . , p} and define

Λn :=
�

λn
i−1+ n−1+α′ ,λn

i − n−1+α′
�

.

Note first that if Λn is empty, then the eigenvalue of fXn which lies between λn
i−1 and λn

i is within
n−1+α′ to both λn

i−1 and λn
i , so we have nothing to prove. Now, we want to prove that fn does not

vanish on Λn and that according to the sign of 1
θ
− 1
θ

, it vanishes on one side or the other of Λn

in ]λn
i−1,λn

i [. This will prove (i) and (ii) of the theorem. Part (iii) can be proved in the same way,
proving that with overwhelming probability, fn does not vanish in

�

λn
n−i−1+ n−1+α′ ,λn

n−i − n−1+α′
�

.

The proof of this fact will follow the same lines as the proof of Lemma 4.8 and we recall that
P was defined above as the orthogonal projection onto the linear span of the eigenvectors of Xn
corresponding to the eigenvalues λn

mn+1, . . . ,λn
n. Then, exactly as for (28), we can show that for all

δ > 0,

sup
z∈[λn

1 ,λn
p]

�

�

�

�

1

n
〈g, P(z− Xn)

−1P g〉 −
1

θ

�

�

�

�

≤ δ

with overwhelming probability. Moreover, for any z ∈ Λn, for any j = 1, . . . , mn, we have

|z−λn
j | ≥min{z−λn

i−1,λn
i − z} ≥ n−1+α′ ,

so that

sup
z∈Λn

�

�

�

�

1

n
〈g, (1− P)(z− Xn)

−1(1− P)g〉
�

�

�

�

≤ n−α
′
〈g, (1− P)g〉.

By Proposition 6.2, we deduce that for any ε > 0,

sup
z∈Λn

�

�

�

�

1

n
〈g, (1− P)(z− Xn)

−1(1− P)g〉
�

�

�

�

≤ nεn−α
′
mn
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with overwhelming probability. We choose ε in such a way that the latter right hand side goes to
zero. Therefore, we know that uniformly on Λn,

fn(z) =
1

θ
−

1

θ
+ o(1)

with overwhelming probability. Since for all n, fn is decreasing, going to +∞ (resp. −∞) as z goes
to any λn

i−1 on the right (resp. λn
i on the left), it follows that according to the sign of 1

θ
− 1
θ

, the zero

of fn in ]λn
i−1,λn

i [ is either in ]λn
i−1,λn

i−1+ n−1+α′[ or in ]λn
i − n−1+α′ ,λn

i [.

Proof of Theorem 4.5. For each `= 0, . . . , r, let us define

fXn
(`)

:= Xn+
∑̀

i=1

θiu
n
i un∗

i

and denote its eigenvalues by eλ(`)1 ≤ · · · · · · ≤ eλ
(`)
n . We also define

p(`)− := ]{i = 1, . . . ,` ; ρθi
< a},

p(`)+ := ]{i = 1, . . . ,` ; ρθi
> b}.

p(`)− and p(`)+ are respectively the numbers of eigenvalues of fXn
(`)

with limit < a and > b. We also
set

f (`)n (z) := 〈un
` , (z−fXn

(`−1)
)−1un

` 〉 −
1

θ`
.

Of course, as before, the eigenvalues of fXn
(`)

are the zeros of f (`)n .

Let us also choose ζa < a and ζb > b such that

ζa >max{ρθi
; ρθi

< a} and ζb <min{ρθi
; ρθi

> b}.

First, as in the proof of Theorem 4.4, up to small perturbations, one can suppose that for all ` =
0, . . . , r, the eigenvalues of fXn

(`)
are pairwise distinct and for all ` = 1, . . . , r, the eigenvalues of

fXn
(`)

are distinct from those of fXn
(`−1)

.

Now, let us state a few facts:

(a) For all `, there is a constant M such that the extreme eigenvalues of fXn
(`)

are in [−M , M] with
overwhelming probability (this follows from Theorem 2.1).

(b) Moreover, for each `, for each i < k, by Weyl’s interlacing inequalities,

0≤
1

eλ
(`)
i+1− eλ

(`)
k−1

≤
1

eλ
(`−1)
i − eλ(`−1)

k

.

which implies, by induction over `, that fXn
(`)

satisfies the first part Hypothesis 1.1 and (13) and
(14) in Hypotheses 4.1 [p− `,α, a] and [q− `,α, b].

We only consider the i.i.d. model, so each fXn
(`)

can be deduced from fXn
(`−1)

by adding an indepen-
dent rank one perturbation.
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In the case where all the θi ’s are in [θ ,θ], also the extreme eigenvalues of fXn
(`)

stick to the bulk and
therefore the full hypothesis 1.1 holds at each step. In this case we can simply apply Theorem 4.4
inductively to prove the theorem. The appearance of spikes is in fact not a problem as Theorem 4.3
insures that for all `, the eigenvalues of X̃ (`)n are close to the eigenvalues of Xn simultaneously with
overwhelming probability, whereas Weyl’s interlacing properties and as in the previous proof discus-
sions on the sign of the functions fn allows to localise in the neighborhood of which eigenvalues of
Xn the eigenvalues of X̃ (`)n lie.

Let us detail a bit this argument. By using (a) and (b) above and following the proof of Lemma 4.8,
one can easily prove that for all `= 1, . . . , r, for any i = p(`)− , . . . , p− ` (resp. j = p(`)+ , . . . , q− `), for
any δ > 0, for

Ωn :=]max{eλ(`)i−1 , ζa}+ n−1+α′ , eλ(`)i − n−1+α′[ (31)

(resp. Ωn :=]eλ(`)n− j + n−1+α′ , min{eλ(`)n− j+1 , ζb} − n−1+α′[ ), (32)

with overwhelming probability,

sup
z∈Ωn

�

�

�

�

〈un
` , (z−fXn

(`−1)
)−1un

` 〉 −
1

θ

�

�

�

�

≤ δ (33)

(resp. sup
z∈Ωn

�

�

�

�

〈un
` , (z−fXn

(`−1)
)−1un

` 〉 −
1

θ

�

�

�

�

≤ δ ). (34)

Let us now fix ` ∈ {1, . . . , r} and compare the eigenvalues of fXn
(`)

to the ones of fXn
(`−1)

.

We suppose for example that θ` > 0.

Then by Weyl’s inequalities, we have

eλ
(`−1)
1 < eλ

(`)
1 < eλ

(`−1)
2 < eλ

(`)
2 < · · · · · ·< eλ(`−1)

n−1 < eλ
(`)
n−1 <

eλ(`−1)
n < eλ(`)n .

• Let us first consider the smallest eigenvalues. Under the overwhelming event (33), f (`)n < 0
on any interval Ωn as defined in (31). So, since f (`)n is decreasing and vanishes exactly once

on ]eλ(`−1)
i−1 , eλ(`−1)

i [, its zero eλ(`)i−1 is within n−1+α′ from eλ
(`−1)
i−1 .

• Let us now consider the largest eigenvalues. Under the overwhelming event (34), f (`)n has the

same sign as 1
θ
− 1
θ`

on any interval Ωn as defined in (32), so eλ(`)n− j is within n−1+α′ from eλ(`−1)
n− j

if θl < θ and eλ(`)n− j is within n−1+α′ from eλ
(`−1)
n− j+1 if θl > θ .

To conclude, up to n−1+α′ errors, each perturbation by a positive rank one matrix θ`u
n
`
un∗
`

does
move the smallest eigenvalues and translates each largest one to the following eigenvalue if θl > θ

and does not move the largest eigenvalues if θl < θ . Of course, the analogue result holds for
perturbations by negative rank one matrices.

The theorem follows.
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5 Application to classical models of matrices

Our goal in this section is to show that if Xn belongs to some classical ensembles of matrices, the
extreme eigenvalues of perturbations of such matrices have their asymptotics obeying to Theorems
2.1, 3.2 and 4.3. For that, a crucial step will be the following statement. If (Xn) is a sequence of
random matrices, we say that it satisfies an hypothesis H in probability if the probability that Xn
satisfies H converges to one as n goes to infinity (for example, if H states a convergence to a limit `,
“H in probability" is the convergence in probability to `).

Theorem 5.1. Let (Xn) be a sequence of random matrices independent of the un
i ’s. Under Assumption

1.2,

1. If Hypothesis 1.1 holds in probability, Theorem 2.1 holds.

2. If κ4(ν) = 0 and Hypotheses 1.1 and 3.1 hold in probability, Theorem 3.2 holds. If κ4(ν) 6= 0
and Hypotheses 1.1 and 3.3 hold in probability, Theorem 3.4 holds.

3. Under Assumption 4.2, if Hypotheses 1.1 and 4.1 hold in probability, Theorem 4.3 holds “with
probability converging to one” instead of “with overwhelming probability”; Theorems 4.4 and
Corollary 4.5 hold.

This result follows from the results with deterministic sequences of matrices Xn. Indeed, to prove
that a sequence converges to a limit ` in a metric space, it suffices to prove that any of its
subsequences has a subsequence converging to `. If the convergences of the hypotheses hold in
probability, then from any subsequence, one can extract a subsequence for which they hold almost
surely. Then up to a conditioning by the σ-algebra generated by the Xn’s, the hypotheses of the
various theorems hold.

The remaining of this section is devoted to showing that such results hold if Xn, independent of
(un

i )1≤i≤r , is a Wigner or a Wishart matrix or a random matrix which law has density proportional
to e−Tr V for a certain potential V . In each case, we have to check that the hypotheses hold in
probability.

5.1 Wigner matrices

Let µ1 be a centred distribution onR (respectively on C) and µ2 be a centred distribution onR, both
having a finite fourth moment (in the case where µ1 is not supported on the real line, we assume
that the real and imaginary part are independent). We define σ2 =

∫

z∈C |z|
2dµ1(z).

Let (x i, j)i, j≥1 be an infinite Hermitian random matrix which entries are independent up to the
condition x j,i = x i, j such that the x i,i ’s are distributed according to µ2 and the x i, j ’s (i 6= j) are

distributed according to µ1. We take Xn =
1p
n

�

x i, j

�n

i, j=1
, which is said to be a Wigner matrix. For

certain results, we will also need an additional hypothesis, which we present here:

Hypothesis 5.2. The probability measures µ1 and µ2 have a sub-exponential decay, that is there exists
positive constants C , C ′ such that if X is distributed according to µ1 or µ2, for all t ≥ C ′,

P(|X | ≥ tC)≤ e−t .

Moreover, µ1 and µ2 are symmetric.
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The following Proposition generalises some results of [36, 18, 12, 13] which study the effect of a
finite rank perturbation on a non-Gaussian Wigner matrix. In particular, it includes the study of the
eigenvalues which stick to the bulk.

Proposition 5.3. Let Xn be a Wigner matrix. Assume that Assumption 1.2 holds. The limits of the
extreme eigenvalues of fXn are given by Theorem 2.1 and the fluctuations of the ones which limits are
out of [−2σ, 2σ] are given by Theorem 3.2, where the parameters a, b,ρθ , cα are given by the following
formulas : b =−a = 2σ,

ρθ :=







θ + σ2

θ
if |θ |> σ,

2σ if 0< θ ≤ σ,

−2σ if −σ ≤ θ < 0,

and

cα =







p

α2−σ2 in the i.i.d. model,

σ
p
α2−σ2

α
in the orthonormalized model.

Assume moreover that, for all i, θi 6∈ {−σ,σ} and Hypothesis 5.2 holds. If the perturbation has rank
one, we have the following precise description of the fluctuations of the sticking eigenvalues :

• If θ > σ (resp. θ < −σ), for all p ≥ 2, n2/3(eλn
n−p+1 − 2σ) (resp. n2/3(eλn

p + 2σ)) converges in
law to the p− 1th Tracy Widom law.

• If 0 ≤ θ < σ (resp. −σ < θ ≤ 0), for all p ≥ 1, n2/3(eλn
n−p+1 − 2σ) (resp. n2/3(eλn

p + 2σ))
converges in law to the pth Tracy Widom law.

If the perturbation is rank more than one and Assumption 4.2 holds, the extreme eigenvalues of fXn are
at distance less than n−1+ε for any ε > 0 to the extreme eigenvalues of Xn, which have Tracy-Widom
fluctuations. We can localize exactly near which eigenvalue of Xn they lie by using Theorem 4.5 in the
i.i.d model.

Remark 5.4. All the Tracy-Widom laws involved in the statement of the proposition above, are the ones
corresponding respectively to the GOE if µ1 is supported on R and to the GUE if µ1 is supported on C.

According to Theorem 5.1, it suffices to verify that the hypotheses hold in probability for (Xn)n≥1.
We study separately the eigenvalues which stick to the bulk and those which deviate from the bulk.

•Deviating eigenvalues.

If Xn is a Wigner matrix (that is, with our terminology, with entries having a finite fourth moment),
the fact that Xn satisfies Hypothesis 1.1 in probability is a well known result (see for example [4,
Th. 5.2]) for µX the semicircle law with support [−2σ, 2σ]. The formulas for ρθ and cα can be
checked with the well known formula [1, Sect. 2.4]:

∀z ∈R\[−2σ, 2σ], GµX
(z) =

z− sgn(z)
p

z2− 4σ2

2σ2 . (35)

Moreover, [5, Th. 1.1] shows that Tr( f (Xn)) − n
∫

f (x)dσ(x) converges in law to a Gaussian
distribution for any function f which is analytic in a neighborhood of [−2σ, 2σ]. For any fixed
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z /∈ [−2σ, 2σ], applied for f (t) = 1
z−t

, we get that n(Gµn
(z)−GµX

(z)) converges in law to a Gaussian
distribution, hence

p
n(Gµn

(z) − GµX
(z)) converges in probability to zero, so that Hypothesis 3.1

holds in probability.

•Sticking Eigenvalues.

We now assume moreover that the laws of the entries satisfy Hypothesis 5.2. In order to lighten
the notation, we shall now suppose that σ = 1. Let us first recall that by [41, 39], the extreme
eigenvalues of the non-perturbed matrix Xn, once re-centred and renormalised by n2/3, converge
to the Tracy-Widom law (which depends on whether the entries are complex or real). We need to
verify that Hypothesis 4.1[p,α] for any finite p and an α < 1/3 is fulfilled in probability. By [41],
the spacing between the two smallest eigenvalues of Xn is of order greater than n−γ for γ > 2/3
with probability going to one and therefore, by the inequality

n
∑

i=mn+1

1

(λn
p −λ

n
i )

k
≤ (λn

p+1−λ
n
p)

1−k ×
n
∑

i=mn+1

1

λn
i −λ

n
p

, (k = 2 or 4),

it is sufficient to prove the first point of Hypothesis 4.1[p,α]. We shall prove it by replacing first
the smallest eigenvalue by the edge −2 thanks to a lemma that Benjamin Schlein [40] kindly com-
municated to us. We will then prove that the sum of the inverse of the distance of the eigenvalues
to the edge indeed converges to the announced limit, thanks to both Soshnikov paper [41] (for
sub-Gaussian tails) or [39] (for finite moments), and Tao and Vu article [42].

Lemma 5.5 (B. Schlein). Suppose the entries of Xn have a uniform sub-exponential tail. Then for all
δ > 0, for all integer number p,

lim
n→∞

P







�

�

�

�

�

�

1

n

n
∑

j=p+1

1

λn
j −λ

n
p
−

1

n

n
∑

j=p+1

1

λn
j + 2

�

�

�

�

�

�

≥ δ






= 0.

Proof. We write

1

n

n
∑

j=p+1

1

λn
j −λ

n
p
−

1

n

n
∑

j=p+1

1

λn
j + 2

=
λn

p + 2

n

n
∑

j=p+1

1

(λn
j −λ

n
p)(λ

n
j + 2)

.

Hence for any K1 > 0,

P







�

�

�

�

�

�

1

n

n
∑

j=p+1

1

λn
j −λ

n
p
−

1

n

n
∑

j=p+1

1

λn
j + 2

�

�

�

�

�

�

≥ δ







≤ P(|λn
p + 2| ≥ K1n−2/3)

+P







K1

n5/3

n
∑

j=p+1

1

|(λn
j −λ

n
p)(λ

n
j + 2)|

≥ δ and |λn
p + 2|< K1n−2/3






. (36)
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Now, for any K2 > K1, on the event {|λn
p + 2|< K1n−2/3}, for any κ > 0, we have

K1

n5/3

n
∑

j=p+1

1

|(λn
j −λ

n
p)(λ

n
j + 2)|

≤
K1

n5/3

+∞
∑

`=0

Nn[2K2n−2/3+ `n−κ, 2K2n−2/3+ (`+ 1)n−κ]

(K2n−2/3+ `n−κ)2

+
K1

n5/3

n
∑

j=p+1

1λ j+2≤2K2n−2/3

|(λn
j −λ

n
p)(λ

n
j + 2)|

, (37)

where Nn[a, b] := ]{i ; −2+ a ≤ λn
i ≤ −2+ b}. Note that, from the upper bound on the density of

eigenvalues in microscopic intervals, due to [15, Theorem 4.6], we know that for any κ < 1, there
is a constant M independent of n so that for all `≥ 1

E(Nn[2K2n−2/3+ `n−κ, 2K2n−2/3+ (`+ 1)n−κ])≤ Mn1−κ. (38)

Let us fix κ ∈ (2
3
, 1). It follows that the first term of the r.h.s. of (37) can be estimated by

P

 

K1

n5/3

+∞
∑

`=0

Nn[2K2n−2/3+ `n−κ, 2K2n−2/3+ (`+ 1)n−κ]

(K2n−2/3+ `n−κ)2
≥
δ

2

!

≤
2K1

δn5/3

+∞
∑

`=0

E(Nn[2K2n−2/3+ `n−κ, 2K2n−2/3+ (`+ 1)n−κ])

(K2n−2/3+ `n−κ)2

≤
2MK1

δn2/3

1

nκ

+∞
∑

`=0

1

(K2n−2/3+ `n−κ)2

≤
2MK1

δn2/3

1

nκ(K2n−2/3)2
+

2MK1

δn
2
3

∫ +∞

0

dt

(t + K2n−
2
3 )2

≤
2MK1

δK2
2 nκ−2/3

+
2MK1

δK2
. (39)

Let us now estimate the second term of the r.h.s. of (37). For any positive integer K3, we have

P







K1

n5/3

n
∑

j=p+1

1|λn
j+2|≤2K2n−2/3

|(λn
j −λ

n
p)(λ

n
j + 2)|

≥
δ

2







≤ P
�

Nn(−∞, 2K2n−2/3]≥ K3

�

+P

 

K1K3

n5/3

1

minp+1≤ j≤K3
|(λn

j −λ
n
p)(λ

n
j + 2)|

≥
δ

2

!

≤ P
�

λn
K3
≤−2+ 2K2n−2/3

�

+P



 min
p≤ j≤K3

|λn
j + 2| ≤

p

2K1K3n−5/6

p
δ





+P



|λn
p −λ

n
p+1| ≤

p

2K1K3n−5/6

p
δ



 (40)
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From (36), (37), (39) and (40), we conclude that

P







�

�

�

�

�

�

1

n

n
∑

j=p+1

1

λn
j −λ

n
1
−

1

n

n
∑

j=p+1

1

λn
j + 2

�

�

�

�

�

�

≥ δ







≤ P(|λn
1 + 2| ≥ K1n−2/3) +

2MK1

δK2
+P

�

λK3
≤−2+ 2K2n−2/3

�

+P



 min
1≤ j≤K3

|λn
j + 2| ≤

p

2K1K3n−5/6

p
δ



+
2MK1

δK2
+P



|λn
2 −λ

n
1| ≤

p

2K1K3n−5/6

p
δ





for arbitrary 0 < K1 < K3 and K3 ≥ 1. Taking the limit n → ∞, the last two terms disappear,
because by [42, Th. 1.16], the distribution of the smallest K3 eigenvalues lives on scales of order
n−2/3� n−5/6. Therefore,

lim
n→∞

P







�

�

�

�

�

�

1

n

n
∑

j=2

1

λn
j −λ

n
1
−

1

n

n
∑

j=2

1

λn
j + 2

�

�

�

�

�

�

≥ δ







≤ lim
n→∞

P(|λn
1 + 2| ≥ K1n−2/3) +

2MK1

δK2
+ lim

n→∞
P
�

λK3
≤−2+ 2K2n−2/3

�

,

still for any 0< K1 < K3 and K3 ≥ 1. Now, note that for K1 large enough, the first term can be made
as small as we want. Then, keeping K1 fixed, K2 can be chosen in such a way to make the second
term as small as we want too. At last, keeping K2 fixed, one can choose K3 large enough to make
the third term as small as we want (as can be computed since the limit is given by the K3 correlation
function of the Airy kernel). �
To complete the proof of Hypothesis 4.1, we therefore need to show that

Lemma 5.6. Assume that the entries of Xn satisfy Hypothesis 5.2. Then, for any δ > 0, any finite
integer number p,

lim
n→∞

P







�

�

�

�

�

�

1

n

n
∑

j=p+1

1

λn
j + 2

− 1

�

�

�

�

�

�

> δ






= 0

Proof. Notice that by [41, 39] we know that the p smallest eigenvalues of Xn converge in law
towards the Tracy-Widom law, so that

lim
ε↓0

lim
n→∞

P

�

min
1≤ j≤p

|λn
j + 2|< εn−2/3

�

= 0.

Thus, for any finite p, with large probability,

1

n

p
∑

j=2

1

|λn
j + 2|

≤ pε−1n−
1
3
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and therefore it is enough to prove the lemma for any particular p. As in the previous proof, we
choose p large enough so that λn

p ≥−2+n−
2
3 with probability greater than 1−δ(p) with δ(p) going

to zero as p goes to infinity. We shall prove that with high probability

lim
γ↓0

lim
n→∞

1

n

[γn]
∑

j=p

1

λn
j + 2

≤ 0. (41)

This is enough to prove the statement as for any γ > 0, 2 + λn
[nγ] converges to δ(γ) > 0 so that

µX ([δ(γ), 2]) = 1− γ, see [43, Theorem 1.3],

lim
n→∞

1

n

n
∑

i=[nγ]

1

λn
i + 2

=

∫ 2

δ(γ)

1

2+ x
dµX (x),

which converges as γ goes to zero to
∫

(2 + x)−1dµX (x) = 1 (by e.g. (35)). To prove (41), we

choose ρ ∈ (2/3,
p

2/3) and write, on the event λn
j + 2≥ λn

p + 2≥ n−
2
3 ≥ n−ρ for j ≥ p,

1

n

[γn]
∑

j=p

1

λn
j + 2

≤
∑

1≤k≤K

nρ
k−1Nn[n

−ρk
, n−ρ

k+1
] +

[γn]
∑

j=2

1
λn

j≥−2+n−ρK+1

n(λn
j + 2)

=: An+ Bn.

For the first term, we use Sinai-Soshnikov bound, which under the weakest hypothesis are given
in [39, Theorem 2.1]. It implies that with probability going to one with M going to infinity, for
sn = o(n2/3) going to infinity,

n
∑

i=1

�

λn
i

2

�sn

≤ M
n

s
3
2
n

.

This implies, by Tchebychev’s inequality and taking sn = n+ρ
k+1

that

Nn[n
−ρk

, n−ρ
k+1
]≤ ]

¨

i :

�

�

�

�

λi

2

�

�

�

�

≥ 1− n−ρ
k+1

«

≤ (1− n−ρ
k+1
)−sn

n
∑

i=1

�

�

�

�

λn
i

2

�

�

�

�

sn

≤ eMn1− 3
2
ρk+1

.

Consequently we deduce that

An ≤ eM
∑

1≤k≤K

nρ
k
n−

3
2
ρk+1
≤ Cn−ρ

K ( 3
2
ρ−1)

which goes to zero as ρ > 2/3. For the second term Bn, note that by [42, Theorem 1.10], for any
ε > 0 small enough,

�

�Nn[n
−ε`, n−ε(`+ 1)]− nµX ([−2+ n−ε`,−2+ n−ε(`+ 1)])

�

�≤ n1−δ(ε)

with δ(ε) = 2ε−1
10

. Hence, since µX ([−2+ n−ε`,−2+ n−ε(`+1)])∼ n−
3ε
2
p
`, we deduce for ε small

enough that for all `≥ 1,

Nn[n
−ε`, n−ε(`+ 1)]≤ 2n1− 3ε

2

p

`.

This allows to bound Bn by

Bn ≤ 2
[γnε]
∑

`=1

nε

`
n−

3ε
2

p

`≤ 2

∫ γ

0

1
p

x
d x = 2

p
γ

which goes to zero as n goes to infinity and then γ goes to zero.
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5.2 Coulomb Gases

We can also consider random matrices Xn which law is invariant under the action of the unitary or
the orthogonal group and with eigenvalues with law given by

dPn(λ1, . . . ,λn) =
1

Zn
|∆(λ)|β e−nβ

∑n
i=1 V (λi)

n
∏

i=1

dλi (42)

with a polynomial function V of even degree and positive leading coefficient and β = 1,2 or 4.
We assume moreover that V is such that the limiting spectral measure µV of (Xn) is connected and
compact and that its smallest and largest eigenvalues converge to the boundaries of the support.
This set of hypotheses is often referred to as the “one-cut assumption”. It holds in particular if V is
strictly convex and this includes the classical Gaussian ensembles GOE and GUE (with V (x) = x2/4
and β = 1,2).

Proposition 5.7. Under the above hypothesis on V, the extreme eigenvalues of Xn converge to the
boundary of the support. The convergence of the extreme eigenvalues of fXn is given by Theorem 2.1.
These eigenvalues have Gaussian fluctuations as stated in Theorem 3.2 if they deviate away from the
bulk.
Suppose moreover that Assumption 4.2 holds.
If the perturbation is of rank one and is strong enough so that the largest eigenvalues deviates from the
bulk, for all k ≥ 2, the rescaled kth largest eigenvalue n

2
3 (eλn

n−k+1 − bV ) converges weakly towards the
k − 1-th Tracy Widom law. If the perturbation is of rank one and is weak enough, for all k ≥ 1, the
rescaled kth largest eigenvalue n

2
3 (eλn

n−k+1− bV ) converges weakly towards the k-th Tracy Widom law.
If the perturbation is of rank more than one, the extreme eigenvalues of fXn sticking to the bulk are at
distance less than n−1+ε for any ε > 0 from the eigenvalues of Xn. In the i.i.d model, Theorem 4.5
prescribes exactly in the neighborhood of which eigenvalues of Xn each of them lie.

Proof. As explained above, it suffices to verify that the hypotheses hold in probability for (Xn)n≥1.

Note that the convergence of the spectral measure, of the edges and the fluctuations of the extreme
eigenvalues were obtained in [47]. The fact that

p
n(Gµn

(z)− Gsc(z)) converges in probability to
zero is a consequence of [28] so that Hypothesis 3.1 holds.

We next check Hypothesis 4.1[p,α] for the matrix model Pn. We shall prove it for any α > 1/3 and
any integer p. We first show that

lim
n→∞

E







1

n

∑

i 6=p

1

λn
i −λ

n
p






=−V ′(aV ) . (43)

Indeed, the joint distribution of (λn
1, . . . ,λn

n) is

1

Zβn
e−n

∑

i=1 V (λi)
n
∏

1≤i< j≤n

(λi −λ j)
β
1∆n

dλ1 · · ·dλn,

with β = 1,2 or 4, Zβn is the normalising constant and ∆n = {λ1 < · · ·< λn}.
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Therefore,

E






β
∑

i 6=p

1

λn
i −λ

n
p






= −

1

Zβn

∫

∆n

e−nβ
∑n

i=1 V (λi)
∂

∂ λp

n
∏

1≤i< j≤n

(λi −λ j)
βdλ1 · · ·dλn,

=
1

Zβn

∫

∆n

∂

∂ λp

�

e−nβ
∑n

i=1 V (λi)
�

n
∏

1≤i< j≤n

(λi −λ j)
βdλ1 · · ·dλn,

= −nβE
h

V ′(λn
p)
i

,

by integration by parts. Equation (43) follows, since λn
p converges almost surely to aV (and concen-

tration inequalities insures V ′(λn
p) is uniformly integrable). But, for any ε > 0,

1

n

∑

i 6=p

1

λn
i −λ

n
p
≥

1

n

∑

i 6=p

1

ε+λn
i −λ

n
p

with, by convergence of the spectral measure and of λn
p, the right hand side converging to

−GµX
(−aV − ε) which converges as ε decreases to zero to −GµX

(−aV ) = −V ′(aV ). Hence,
1
n

∑

i 6=p
1

λn
i −λ

n
p

is bounded below by −V ′(aV ) with large probability for large n, and converges in

expectation to −V ′(aV ), and therefore converges in probability to −V ′(aV ).

Moreover, by [47] (see [45] in the Gaussian case), the joint law of
�

n2/3(λn
1 − aV ), n2/3(λn

2 − aV ), . . . , n2/3(λn
p − aV )

�

converges weakly towards a probability measure which is absolutely continuous with respect to
Lebesgue measure. As a consequence, we also deduce from the first point that n−1

∑

i<mn
(λn

p−λ
n
i )
−1

vanishes as n goes to infinity in probability for mn� n1/3 and therefore (43) proves the lacking point
of Hypothesis 4.1.

For the two other points, observe that [47] implies that for any ε > 0, P(|λn
2 −λ

n
1| ≤ n−

2
3
−ε) −→

n→∞
0.

On the event {|λn
2 −λ

n
1|> n−

2
3
−ε}, we have |λn

i −λ
n
1|> n−

2
3
−ε for all i ∈ [2, n− 1], so that

1

n2

n
∑

i=2

1

(λn
i −λ

n
1)

2 ≤ n−
1
3
+ε 1

n

n
∑

i=2

1

λn
i −λ

n
1

1

n4

n
∑

i=2

1

(λn
i −λ

n
1)

4 ≤ n−1+3ε 1

n

n
∑

i=2

1

λn
i −λ

n
1

so that by (43) and Markov’s inequality, Hypothesis 4.1 holds in probability for any η < 1/3, η4 < 1
and α > 1/3. �

5.3 Wishart matrices

Let Gn be an n × m real (or complex) matrix with i.i.d. centred entries with law µ such that
∫

zdµ(z) = 0,
∫

|z|2dµ(z) = 1 and
∫

|z|4dµ(z)<∞. Let Xn = GnG∗n/m.
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Proposition 5.8. Let n, m tend to infinity in such a way that n/m → c ∈ (0, 1). The limits of the
extreme eigenvalues of fXn are given by Theorem 2.1 and the fluctuations of those which limits are out of
[a, b] are given by Theorem 3.2, where the parameters a, b,ρθ , cα are given by the following formulas:
a = (1−

p
c)2, b = (1+

p
c)2

ρθ :=







θ + θ
θ−c

if |θ − c|>
p

c,

b if |θ − c| ≤
p

c and θ > 0,

a if |θ − c| ≤
p

c and θ < 0,

and

c2
α =











α2
�

1− c
(α−c)2

�

in the i.i.d. model,

α2c
(α−c)2

�

1− c
(α−c)2

�

in the orthonormalised model.

Assume now that the law of the entries satisfy Hypothesis 5.2. If the perturbation has rank one, we have
the following precise description of the fluctuations of the extreme eigenvalues of fXn :

• If θ > c +
p

c (resp. θ < c −
p

c), for all p ≥ 2, n2/3(eλn
n−p+1 − 2σ) (resp. n2/3(eλn

p − 2σ))
converges in law to the p− 1th Tracy Widom law.

• If 0≤ θ < c+
p

c (resp. c−
p

c < θ ≤ 0), for all p ≥ 1, n2/3(eλn
n−p+1−2σ) (resp. n2/3(eλn

p−2σ))
converges in law to the pth Tracy Widom law.

If the perturbation has rank more than one and for all i, θi /∈ {c+
p

c, c−
p

c}, the extreme eigenvalues
of fXn are at distance less than n−1+ε for any ε > 0 to the extreme eigenvalues of Xn, which have
Tracy-Widom fluctuations.

Before getting into the proof, let us make a remark. The Proposition above generalizes some results
first appeared in [9, 19]. In these papers, the authors consider models with multiplicative perturba-
tions (in the sense that the population covariance Σ matrix is assumed to be a perturbation of the
identity). Here, we consider additive perturbations but the two models are in fact similar, since a
Wishart matrix can be written as a sum of rank one matrices

∑m
i=1σiYiY

∗
i , with σi the eigenvalues

of Σ and Yi n-dimensional vectors with i.i.d. entries. So, adding our perturbation
∑r

i=1 θiUiU
∗
i boils

down to change m into m+ r (the limit of m/n is not changed) and to extend Σ with some new
eigenvalues θ1, . . . ,θr .

Proof. Again, it suffices to verify that the hypotheses hold in probability for (Xn)n≥1.

It is known, [32], that the spectral measure of Xn converges to the so-called Marčenko-Pastur distri-
bution

dµX (x) :=
1

2πcx

p

(b− x)(x − a)1[a,b](x)dx ,

where a = (1−
p

c)2 and b = (1+
p

c)2. It is known, [4, Th. 5.11], that the extreme eigenvalues
converge to the bounds of this support. The formula

GµX
(z) =

z+ c− 1− sgn(z− a)
p

(z− c− 1)2− 4c

2cz
(z ∈R\[a, b])
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allows to compute ρθ and cα. Moreover, by [3, Th. 1.1] or [4, Th. 9.10], we also know that a
central limit theorem holds for the linear statistics of Wishart matrices, giving Hypothesis 3.1 as in
the Wigner case.

For Hypothesis 4.1, the proof is similar to the Wigner case. The convergence to the Tracy-Widom law
of the non-perturbed matrix is due to S. Péché [37] (see [33] and [20] for the Gaussian case). The
approximation of the eigenvalues by the quantiles of the limiting law can be found in [17, Theorem
9.1] whereas the absolute continuity property needed to prove Lemma 5.5 is derived in [17, Lemma
8.1]. This allows to prove Hypothesis 4.1 in this setting as in the Wigner case, we omit the details.�

5.4 Non-white ensembles

In the case of non-white matrices, we can only study the fluctuations away from the bulk (since we
do not have the appropriate information about the top eigenvalues to prove Hypothesis 4.1). We
illustrate this generalisation in a few cases, but it is rather clear that Theorem 3.2 applies in a much
wider generality.

5.4.1 Non-white Wishart matrices

The first statement of Proposition 5.8 can be generalised to matrices Xn of the type Xn =
1
m

T1/2
n GnG∗nT1/2

n or 1
m

GnTnG∗n, where Gnis an n × m real (or complex) matrix with i.i.d. centred

entries with law µ such that
∫

zdµ(z) = 0,
∫

|z|2dµ(z) = 1 and
∫

|z|4dµ(z)<∞ and Tn is a positive
non random Hermitian n×n matrix with bounded operator norm, with a converging empirical spec-
tral law and with no eigenvalues outside any neighborhood of the support of the limiting measure
for sufficiently large n. Indeed, in this case, everything, in the proof, stays true (use [2, Th.1.1] and
[4, Th. 5.11]). However, when the limiting empirical distribution of Tn is not a Dirac mass, the
computation of the ρθ ’s and the cα’s is not easy.

5.4.2 Non-white Wigner matrices

There are less results in the literature about the central limit theorem for band matrices (with
centring with respect to the limit) and the convergence of the spectrum. We therefore concentrate
on a special case, namely a Hermitian matrix Xn with independent Gaussian centred entries so that
E[|X i j|2] = n−1σ(i/n, j/n) with a stepwise constant function

σ(x , y) =
k
∑

i, j=1

1 i−1
k ≤x< i

k
i−1

k ≤y< i
k

σi, j .

In [31], matrices of the form Sn =
∑k(k+1)

j=1 a j ⊗ X (n)j with some independent matrices X (n)j from the
GUE and self-adjoint matrices a j were studied. Taking a j = (εp,`+ε`,p)σp,` or i(εp,`−ε`,p)σp,` with
εp,` the matrix with null entries except at (p,`) and 1 ≤ p ≤ ` ≤ k, we find that Xn = Sn. Then it
was proved [31, (3.8)] that there exists α,ε,γ > 0 so that for z with imaginary part greater than
n−γ for some γ > 0,

�

�

�

�

E
�

1

n
Tr(z− Xn)

−1
�

− G(z)

�

�

�

�

≤ (ℑz)−αn−1−ε (44)

1653



which entails the convergence of the spectrum of Xn towards the support of the limiting measure
[31, Proposition 11] with exponential speed by [31, Proof of Lemma 14]. Thus Xn satisfies Hypoth-
esis 1.1. Hypothesis 3.1 can be checked by modifying slightly the proof of (44) which is based on an
integration by parts to be able to take z on the real line but away from the limiting support. Indeed,
as in [23, Section 3.3], we can add a smooth cut-off function in the expectation which vanishes
outside of the event An that Xn has all its eigenvalues within a small neighborhood of the limiting
support. This additional cut-off will only give a small error in the integration by parts due to the
previous point. Then, (44), but with an expectation restricted to this event, is proved exactly in the
same way, except that ℑz can be replaced by the distance of z to the neighborhood of the limiting
support where the eigenvalues of Xn lives. Finally, concentration inequalities, in the local version
[22, Lemma 5.9 and Part II], insure that on An,

1

n
Tr(z− Xn)

−1− E
�

1An

1

n
Tr(z− Xn)

−1
�

is at most of order n−1+ε with overwhelming probability. This completes the proof of Hypothesis
3.1.

5.5 Some models for which our hypothesis are not satisfied

We gather hereafter a few remarks about some models for which the hypothesis we made on Xn are
not satisfied. For sake of simplicity, we present hereafter only the case of i.i.d. perturbations (1).

5.5.1 I.i.d. eigenvalues with compact support

We assume that Xn is diagonal with i.i.d. entries which law µ is compactly supported. As in the core
of the paper, we denote by a (resp. b) the left (resp. right) edge of the support of µ. We also denote
by Fµ its cumulative distribution function and assume that there is κ > 0 such that for all c > 0,

lim
x→0+

1− Fµ(b− cx)

1− Fµ(b− x)
= cκ (45)

In this situation, it is easy to check that Hypothesis 1.1 holds in probability with µX = µ. But
Hypothesis 3.1 is not satisfied. Indeed, by classical CLT, we have, for ρα /∈ [a, b],

W n
α =
p

n(Gµn
(ρα)− Gµ(ρα))

converges in law, as n goes to infinity to a Gaussian variable Wα with variance −G′µ(ρα)− Gµ(ρα)2.
Moreover,

E[WαWα′] =

∫

1

(ρα−λ)(ρα′ −λ)
dµ(λ)− Gµ(ρα)Gµ(ρα′).

Nevertheless, Theorem 3.2 holds for this model. Indeed, the whole proof of this theorem goes
through in this context, except the proof of Lemma 3.5, where we have to make the following
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decomposition M n
s,t(i, x) = M n,1

s,t (i, x) + M n,2
s,t (i, x) + M n,3

s,t (i, x) with the difference that this time

M n,3
s,t does not go to zero but converges towards Wαi

. Hence, the eigenvalues fluctuate according to
the distribution of the eigenvalues of (c j M j +Wα j

Ik j
)1≤ j≤q, with c j and M j as in the statement of

Theorem 3.2 and Ik j
denotes the k j × k j identity matrix.

Let us now consider the fluctuations near the bulk. We first detail the fluctuations of the extreme
eigenvalues of Xn. According to [26], the fluctuations of the largest eigenvalues of Xn are determined

by the parameter κ defined in (45), that is, if vn = Fµ(b − 1/n), then the law of
b−λn

n
b−vn

converges

weakly to the law with density proportional to e−xκ on R+. Otherwise stated, the fluctuations of λn
n

are of order n−1/κ with asymptotic distribution the Gumbel distribution of type 2. One can check
that if κ≤ 1, then θ = 0.
One can show that, for any fixed p, for Hypothesis 4.1[p,α] to hold, we need α > 1

κ
− 1

2
and we then

obtain that the distance of the extreme eigenvalues of the deformed matrix is at distance less that
n−1+α′ for any α′ > α. Therefore if κ > 4/3, this theorem allows us to deduce that the fluctuations of
the extreme eigenvalues of the deformed matrix are the same as those of the non-deformed matrix.

5.5.2 Coulomb gases with non-convex potentials

In [35], Pastur showed that for a Coulomb gas law (42) with a potential V so that the equilibrium
measure has a disconnected support, the central limit theorem does not hold in the sense that
the variance may have different limits according to subsequences (see [35, (3.4)]. Moreover the
asymptotics of

p
n(Tr(Xn)−µ(x)) can be computed sometimes and do not lead to a Gaussian limit.

We might expect then that also
p

n(Gµn
(x)−Gµ(x)) converges to a non-Gaussian limit, which would

then result with non-Gaussian fluctuations for the eigenvalues outside of the bulk.

6 Appendix

6.1 Determinant formula

We here state formula (1), which can be deduced from the well known formula det

�

A B
C D

�

=

det(D)det(A− BD−1C).

Lemma 6.1. Let z ∈ C\{λn
1, . . . ,λn

n} and θ1, . . . ,θr 6= 0. Set D = diag(θ1, . . . ,θr) and let V be any
n× r matrix. Then

det
�

z− Xn− V DV ∗
�

= det(z− Xn)det(D)det
�

D−1− V ∗(z− Xn)
−1V

�

6.2 Concentration estimates

Proposition 6.2. Under Assumption 1.2, there exists a constant c > 0 so that for any matrix A :=
(a jk)1≤ j,k≤n with complex entries, for any δ > 0, for any g = (g1, . . . , gn)T with i.i.d. entries (gi)1≤i≤n
with law ν ,

P
�

|〈g, Ag〉 −E[〈g, Ag〉]|> δ
�

≤ 4e−c min{ δC , δ
2

C2 }
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if C2 = Tr(AA∗) and if g̃ is an independent copy of g, for any δ,κ > 0,

P

�

|〈g, Ag̃〉|> δ
q

Tr(AA∗) + κ
p

Tr((AA∗)2)

�

≤ 4e−cδ2
+ 4e−c min{κ,κ2}.

Proof. The first point is due to Hanson-Wright Theorem [24], see also [15, Proposition 4.5]. For
the second, we use concentration inequalities, see e.g. [1, Lemma 2.3.3], based on the remark that
for any fixed g̃, g → 〈g, Ag̃〉 is Lipschitz with constant

p

〈 g̃, AA∗ g̃〉 and therefore, conditionally to g̃,
for any δ > 0,

P
�

|〈g, Ag̃〉|> δ
p

〈 g̃, AA∗ g̃〉
�

≤ 4e−cδ2

On the other hand, the previous estimate shows that

P
�

|〈 g̃, AA∗ g̃〉 − Tr(AA∗)|> κ
p

Tr(AA∗)2
�

≤ 4e−c min{κ,κ2} .

As a consequence, we deduce the second point of the proposition. �
Let Gn =

�

gn
1 · · · g

n
r

�

be an n× r matrix which columns gn
1 , . . . , gn

r , are independent copies of an
n× 1 matrix with i.i.d. entries with law ν and define

V n
i, j =

1

n
〈gn

i , gn
j 〉, 1≤ i, j ≤ r,

and, for j ≤ i− 1, if det[V n
k,l]

i−1
k,l=1 6= 0,

W n
i, j =

det[γn, j
k,l ]

i−1
k,l=1

det[V n
k,l]

i−1
k,l=1

, with γn, j
k,l =

¨

V n
k,l , if l 6= j,
−V n

k,i , if l = j.

On det[V n
k,l]

i−1
k,l=1 = 0, we give to W n

i, j an arbitrary value, say one. Putting W n
ii = 1 and W n

i j = 0 for
j ≥ i+ 1, it is a standard linear algebra exercise to check that the column vectors

vn
i =

r
∑

j=1

W n
i, j g

n
j = ith column of Gn(W n)T

are orthogonal in Cn. Let us introduce, for M an r × r matrix, ‖M‖∞ = sup1≤i, j≤r |Mi, j|. We next
prove

Proposition 6.3. For any γ > 0, there exists finite positive constants c, C (depending on r) so that for
Zn = V n or W n,

P
�

‖Zn− I‖∞ ≥ n−
1
2γ
�

≤ C
h

e−4−1cγ2
+ e−c

p
n
i

.

Moreover, with ‖v||22 =
∑n

i=1 |vi|2, for any γ ∈ (0,
p

n(2−r − ε) for some ε > 0,

P






max
1≤i≤r

�

�

�

�

�

�

1

n
‖

r
∑

j=1

Zn
i j g

n
j ‖

2
2− 1

�

�

�

�

�

�

≥ n−
1
2γ






≤ C

h

e−4−1c2−rγ2
+ 4e−c

p
n
i

.
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Proof. We first consider the case Zn = V n. The maximum of |V n
i j −δi j| is controlled by the previous

proposition with A = n−1 I , and the result follows from TrAA∗ = n−1 and Tr((AA∗)2) = n−3, and
choosing δ = γ/

p
2, κ=

p
n. The result for W n follows as on ‖V n− I‖∞ ≤ γn−

1
2 ≤ 1

|det[Vk,l]
i−1
k,l=1− 1| ≤ 2rγn−

1
2 ,

whereas
|det[γn, j

k,l ]
i−1
k,l=1| ≤ 2rγn−

1
2 .

For the last point, we just notice that since 1
n
‖
∑r

j=1 Zn
i, j g

n
j ‖

2
2 = (ZV Z∗)i,i , we have

max
1≤i≤r

�

�

�

�

�

�

1

n
‖

r
∑

j=1

Zn
i j g

n
j ‖

2
2− 1

�

�

�

�

�

�

≤ C(r) max
Zn=V n or W n

‖Zn‖2∞ max
Zn=V n or W n

‖Zn− I‖∞

for a finite constant C(r) which only depends on r. Thus the result follows from the previous point.
�

6.3 Central Limit Theorem for quadratic forms

Theorem 6.4. Let us fix r ≥ 1 and let, for each n, An(s, t) (1≤ s, t ≤ r) be a family of n×n real (resp.
complex) matrices such that for all s, t, An(t, s) = An(s, t)∗ and such that for all s, t = 1, . . . , r,

• in the i.i.d. model,

1

n
Tr[An(s, t)An(s, t)∗] −→

n→∞
σ2

s,t ,
1

n

n
∑

i=1

|An(s, s)i,i|2 −→n→∞
ωs, (46)

• in the orthonormalised model,

1

n
Tr[|An(s, t)−

1

n
Tr An(s, t)|2] −→

n→∞
σ2

s,t ,
1

n

n
∑

i=1

�

�

�

�

An(s, s)i,i −
1

n
Tr An(s, t)

�

�

�

�

2

−→
n→∞

ωs. (47)

for some finite numbers σs,t ,ωs (in the case where κ4(ν) = 0, the part of the hypothesis related to ωs
can be removed). For each n, let us define the r × r random matrix

Gn :=
�

p
n
�

〈un
s , An(s, t)un

t 〉 −1s=t
1

n
Tr(An(s, s))

��r

s,t=1
.

Then the distribution of Gn converges weakly to the distribution of a real symmetric (resp. Hermitian)
random matrix G = [gs,t]rs,t=1 such that the random variables

{gs,t ; 1≤ s ≤ t ≤ r}
(resp. {gs,s ; 1≤ s ≤ r} ∪ {ℜ(gs,t) ; 1≤ s < t ≤ r} ∪ {ℑ(gs,t) ; 1≤ s < t ≤ r})

are independent and for all s, gs,s ∼ N (0,2σ2
s,s + κ4(ν)ωs) (resp. gs,s ∼ N (0,σ2

s,s + κ4(ν)ωs)) and
for all s 6= t, gs,t ∼N (0,σ2

s,t) (resp. ℜ(gs,t),ℑ(gs,t)∼N (0,σ2
s,t/2)).
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Remark 6.5. Note that if the matrices An(s, t) depend on a real parameter x in such a way that for all
s, t, for all x , x ′ ∈R,

1

n
Tr(An(s, t)(x)− An(s, t)(x ′))2 −→

n→∞
0,

then it follows directly from Theorem 6.4 and from a second moment computation that each finite
dimensional marginal of the process

�

p
n
�

〈un
s , An(s, t)(xs,t)u

n
t 〉 −1s=t

1

n
Tr(An(s, s)(xs,s))

��

1≤s,t≤r , xs,t∈R , xs,t=x t,s

converges weakly to the law of a limit process [gs,t]1≤s,t≤r , xs,t∈R , xs,t=x t,s
where there is no dependence

in the variables xs,t (1≤ s, t ≤ r).

Proof. • Let us first consider the model where the (
p

nun
s )1≤s≤r are i.i.d. vectors with i.i.d. en-

tries with law ν satisfying Assumption 1.2. Note that for all s, t = 1, . . . , r, by (46), the sequence
1
n

∑n
i, j=1 An(s, t)2i, j is bounded. Hence up to the extraction of a subsequence, one can suppose that it

converges to a limit τs,t ∈ C. Since the conclusion of the theorem does not depend on the numbers
τs,t and the weak convergence is metrisable, one can ignore the fact that these convergences are
only along a subsequence. In the case where κ4(ν) = 0, we can in the same way add the part of the
hypothesis related to ωs.

We have to prove that for any real symmetric (resp. Hermitian) matrix B := [bs,t]rs,t=1, the distribu-
tion of Tr(BGn) converges weakly to the distribution of Tr(BG). Note that

Tr(BGn) =
1
p

n
(U∗nCnUn− Tr Cn),

where Cn is the rn× rn matrix and Un is the rn× 1 random vector defined by

Cn =









b1,1An(1,1) · · · b1,rA
n(1, r)

...
...

br,1An(r, 1) · · · br,rA
n(r, r)









, Un =
p

n









un
1
...

un
r









.

In the real (resp. complex) case, let us now apply Theorem 7.1 of [7] in the case K = 1. It follows
that the distribution of

Tr(BGn) =
r
∑

s=1

bs,sGn,s,s +
∑

1≤s<t≤r

2ℜ(bs,t)ℜ(Gn,s,t) + 2ℑ(bs,t)ℑ(Gn,s,t)

converges weakly to a centred real Gaussian law with variance






∑r
s=1 b2

s,s(2σ
2
s,s +κ4(ν)ωs) +

∑

1≤s<t≤r(2bs,t)2σ2
s,t in the real case,

∑r
s=1 b2

s,s(σ
2
s,s +κ4(ν)ωs) +

∑

1≤s<t≤r(2ℜ(bs,t))2
σ2

s,t

2
+ (2ℑ(bs,t))2

σ2
s,t

2
in the complex case.

It completes the proof in the i.i.d. model.
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• In the orthonormalised model, we can write un
s =

1
‖
∑s

i=1 W n
si gi‖2

∑s
j=1 W n

s j g j , where the matrix W n is

the one introduced in this section. It follows that, with

Bn(s, t) = An(s, t)−
1

n
Tr(An(s, t)),

by orthonormalization of the un
s ’s

p
n
�

〈un
s , An(s, t)un

t 〉 −
1s=t

n
Tr(An(s, t))

�

=
p

n〈un
s , Bn(s, t)un

t 〉

=
n

‖
∑s

i=1 W n
si gi‖2‖

∑t
i=1 W n

ti gi‖2

r
∑

j,i=1

W n
si W̄

n
t j

1
p

n
〈gi , Bn(s, t)g j〉.

But, by the previous result, if i 6= j,
1
p

n
〈gi , B(s, t)g j〉

converges in distribution to a Gaussian law, whereas if i = j,

1
p

n
〈gi , B(s, t)gi〉

=
1
p

n

�

〈gi , A(s, t)gi〉 −E[〈gi , A(s, t)gi〉]
�

+
Tr(A(s, t))
p

n

�

〈gi , gi〉 −E[〈gi , gi〉]
�

where both terms converge to a Gaussian. Thus this term is also bounded as n goes to infinity.

Hence, by Proposition 6.3, we may and shall replace W n by the identity (since the error term would
be of order at most n−

1
2
+ε), which yields

p
n〈un

s , Bn(s, t)un
t 〉 ≈

p
n−1〈gs, B(s, t)gt〉

so that we are back to the previous setting with B instead of A. �
Acknowledgments: We are very grateful to B. Schlein for communicating us Lemma 5.5. We also
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