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Abstract

To understand the effect of assortative mating on the genetic evolution of a population, we con-

sider a finite population in which each individual has a type, determined by a sequence of n

diallelic loci. We assume that the population evolves according to a Moran model with weak

assortative mating, strong recombination and low mutation rates. With an appropriate rescaling

of time, we obtain that the evolution of the genotypic frequencies in a large population can be

approximated by the evolution of the product of the allelic frequencies at each locus, and the

vector of the allelic frequencies is approximately governed by a diffusion. The same diffusion

limit can be obtained for a multilocus model of a diploid population subject to selection. We

present some features of the limiting diffusions (in particular their boundary behaviour and con-

ditions under which the allelic frequencies at different loci evolve independently). If mutation

rates are strictly positive then the limiting diffusion is reversible and, under some assumptions,

the critical points of the stationary density can be characterised .
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1 Introduction

There is now a huge mathematical literature devoted to modelling the evolution of frequencies

of different genetic types in large biological populations. In a range of situations one can show

that over suitable timescales (determined by the population size), the genotypic frequencies can be

approximated by a diffusion process. The power of this approximation procedure is that it is ‘robust’

in that many different discrete ‘individual-based’ models for the way that the composition of the

population changes with time lead to the same diffusion limit. In this way the diffusion captures key

features of the dynamics of the population while remaining insensitive to detailed local mechanisms.

Moreover, whereas most discrete models are mathematically intractable, often quantities of interest

can be computed for the diffusion. Our aim in this paper is to identify and analyse the diffusion

approximation for a population in which mating preferences are influenced by genetic type. The

multi-dimensional diffusion that we obtain can also be used to approximate the genetic makeup of

a (diploid) population subject to a certain form of viability selection.

The diffusion approach can be traced to the work of Kimura in the 1950s who used it to explore

the effects of ‘genetic drift’, that is the randomness due to reproduction in a finite population. In

the ‘neutral’ setting, all individuals are assumed to be equally likely to reproduce and all experience

identical conditions. In the simplest case, we assume that the population is haploid (meaning that

each cell has one copy of each chromosome) and genotype is identified with the type (allele) car-

ried at a single genetic locus. In order to derive a diffusion limit, one typically adopts one of two

individual-based models. The first, the Wright-Fisher model, assumes that the population evolves in

discrete generations and each offspring selects its parent uniformly at random (with replacement)

from the previous generation. The second, the Moran model, evolves in continuous time and gen-

erations overlap. More precisely, reproduction events occur at the points of a homogeneous Poisson

process. During such an event a pair of individuals is chosen uniformly at random from the cur-

rent population, one dies and the other reproduces. The Wright-Fisher model is more popular with

biologists, but, from the mathematical perspective, the fact that under the Moran model allele fre-

quencies follow a birth-death process is a considerable advantage. For either model, it is elementary

to show that (on appropriate timescales), as the population size tends to infinity, the allele frequen-

cies are determined by the Wright-Fisher diffusion. We refer to Ewens (2004) and Etheridge (2011)

for introductions to mathematical models in population genetics.

In the half century since Kimura’s pioneering work, diffusion models have been adapted and ex-

tended to take account of many more realistic biological scenarios. In particular, the assumption of

purely random reproduction in the neutral model can be replaced by one in which not all individu-

als have the same chance of reproductive success. For example, suppose that carrying a particular
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allele increases the fitness (measured by the number of offspring that survive to maturity) of an

individual. Provided this selective advantage is not too great, one can approximate allele frequencies

using a simple diffusion model of genic selection. For diploid populations such as our own, in which

chromosomes are carried in pairs and each individual has two parents, it may be the combination of

alleles carried on the two chromosomes that determines fitness. This form of selection in a diploid

population is often recast as frequency dependent selection in a haploid population, in which an al-

lele’s selective advantage depends in a nonlinear way upon its current frequency in the population

(c.f. Remark 3.1 and §4.4). Equally, fitness can depend upon the combination of alleles carried at

multiple genetic loci. Although an individual inherits one chromosome from each of its parents,

because of recombination each of its chromosomes is a ‘mosaïc’ of the two chromosomes carried by

the corresponding parent. As a result fitness can be a complicated function of the parental geno-

types (see, for example, Muirhead & Wakeley 2009 for discussion of modelling multiallelic selection

on diploid genotypes). Diffusion approximations for different selection-mutation models have been

studied extensively in the one-locus case (see, for example, Ethier & Kurtz 1986, Chapter 10). Ethier

& Nagylaki (1989) study two-locus Wright-Fisher models for a panmictic1, monoecious2, diploid

population of constant size under various assumptions on selection and recombination. Depending

on the strength of the linkage (that is the probability of recombination) between the two loci, they

obtain different types of diffusion approximation: limiting diffusions for gametic3 frequencies if the

recombination fraction multiplied by the population size tends to a constant as the size tends to +∞

(so-called tight linkage) and limiting diffusions for allelic frequencies if the recombination fraction

multiplied by the population size tends to +∞ (so-called loose linkage), in which case gametic fre-

quencies are determined by the product of the corresponding allele frequencies, a situation we see

mirrored in our work here.

Implicit in most of the work described above is that mates are chosen uniformly at random from the

population and natural selection then acts by moderating their reproductive success. However, in

many natural populations, mate choice is not purely random. Our aim in this paper is to understand

the effect on the genetic evolution of a large population of assortative mating, in which mate choice

is influenced by a character which is controlled by several genetic loci. More precisely, we construct

and analyse a diffusion approximation for a diallelic multilocus reproduction model with assortative

mating, recombination and mutation.

To our knowledge, the body of work described above has not been extended to more general multi-

1Every individual is equally likely to mate with every other.
2Every individual has both male and female sexual organs.
3Gametes are produced during reproduction. A gamete contains a single copy of each chromosome, composed of

segments of the two chromosomes in the corresponding parent. Two gametes, one from each parent, fuse to produce an

offspring.
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locus models with recombination and assortative mating. Nevertheless, there is a large body of work

on multilocus genetic systems. Most theoretical investigations assume that the size of the population

is infinite, so that the random genetic drift can be ignored; the evolution of genotypic frequencies

is then described by recursive equations or by differential equations (see Christiansen 2000 and ref-

erences within). A comparison between infinite and finite population models with random mating

is presented in Baake & Herms (2008). A review of several simulation studies can be found in the

introduction of Devaux & Lande (2008). Among these, the ‘species formation model’, introduced

by Higgs & Derrida (1992), inspired our work. In their model, mating is only possible between

individuals with sufficiently similar genotypes, so that from the point of view of reproduction the

population is split into isolated subgroups. Their simulations display a succession of divisions and

extinctions of subgroups. In this paper we generalise their assortative mating criterion and provide

a general theoretical treatment.

Our starting point is a variant of the Moran model. We suppose that the population is monoecious,

haploid and of constant size N . This will be an overlapping generation model, but, in contrast to the

usual Moran framework, we suppose that reproduction takes place at discrete times 1, 2, . . . . In each

time step, a mating event occurs between two individuals I1 and I2; I1 is replaced by an offspring,

so that the size of the population is kept constant. The genotype of the offspring is obtained from

those of I1 and I2 through a process of recombination followed by mutation which we make precise

in §2. In the classical Moran model, the two individuals I1 and I2 are chosen at random from the

population. Here, to study the effects of assortative mating, we assume that the first individual, I1,

is still chosen at random, but the second individual, I2, is sampled with a probability that depends

on its genotype and on the genotype of the first selected individual. The genotype of an individual is

composed of a finite number, n, of loci with two alleles per locus denoted by 0 and 1. To characterise

the assortative mating, we introduce a real parameter si, j for every pair of genotypes (i, j). If I1 has

genotype i, then, in the draw of I2, an individual with genotype j has a probability proportional to

1+ 1
N

si, j of being selected.

Before presenting an overview of our results, we make some important remarks about our model.

Remark 1.1 (Dioecious populations). In Ethier & Nagylaki (1980), the authors established diffusion

approximations for several one-locus models with mutation and selection. They studied both non-

overlapping and overlapping generation models for monoecious and dioecious diploid populations

of finite size and concluded:

Results for a monoecious population obtained from a diffusion approximation can be

applied at once to the dioecious cases by using the appropriate effective population size and

averaging allelic frequencies, selection intensities, and mutation rates, weighting each sex
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by the number of genes carried by an individual at the locus under consideration.

It turns out that the same conclusion holds if we modify our assortative mating model to a dioecious

population. More precisely, suppose that we have a haploid population, of total size N , which is

subdivided into N1 males and N2 females. At each successive timestep one individual, I1, chosen

at random, dies and is replaced by a new individual of the same sex. The new individual is an

offspring of I1 and of an individual I2 of the opposite sex: if I1 is of genotype i then each individual

of the opposite sex with genotype j has a probability proportional to (1 +
si, j

Ne
) of being selected

as I2. The genotype of the offspring is the result of recombination followed by mutation as in the

monoecious model. In a dioecious population, the effective size is Ne =
2N1N2

N
. Provided that N1

and N2 converge to +∞ in such a way that N1

N
converges to a constant p1 ∈ [0, 1], and mutation

rates scale with Ne, then under the same assumptions on recombination and assortment parameters

as we take below for the monoecious model (c.f. §2), measuring time in units of NNe, we arrive at

the same diffusion approximation as for the monoecious model. (We omit details of this calculation

which will be presented elsewhere.)

Remark 1.2 (Assortative mating or viability selection). Since particular pairs of genotypes will

mate preferentially with one another, it is natural to try to recast assortative mating in a haploid

population as a form of natural selection in a diploid4 population. Had we taken a Wright-Fisher

formulation of our model, this would be straightforward (c.f. Remark 3.1 and §4.4), but its current

form does not lend itself to such an interpretation. However, suppose we modify our model in a

Moran model for diploid selection as follows: in each time step, a pair of haploids is chosen so

that their genotypes have a probability proportional to (1+
si, j

N
) of being (i, j). They produce an

offspring (through recombination followed by mutation) which displaces a randomly chosen haploid

in the population. If the parameters si, j , the recombination distribution and mutation probabilities

satisfy the same conditions as those in our assortative mating model (c.f. §2), then under the same

rescaling of time we will arrive at the same diffusion approximation. This is most easily checked by

mimicking the calculations of infinitesimal drift and variance of §7.1.

Remark 1.3 (Other models). As we already remarked, diffusion approximations are generally in-

sensitive to the detailed dynamics of the underlying individual-based model. Thus we would expect

to obtain the diffusion of Theorem 4.1 as an approximation to allele frequencies under Wright-Fisher

or other Moran variants of our model. Moreover, as illustrated by Remark 1.2, one can obtain the

same diffusion approximation for a model with a quite different biological interpretation. This is

not a new phenomenon. Denniston & Crow (1990) show that under a Wright-Fisher reproduction

4A diploid population of size M is identified with a haploid population of size 2M in which diploids are formed by

fusing the haploids into pairs at random.
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model, for any set of one- or two-locus genotypic fitnesses there are alternative sets, often with quite

different biological meanings, that give rise to the same equation for change of allelic or gametic

frequencies.

Rather than stating our results in their full generality at this point, we now provide an overview by

considering a particular pattern of assortative mating. Let us assume that the frequency of matings

between two individuals of genotypes i and j depends only on the number of loci at which their

allelic types differ (and not on the positions of those loci along the genome). We then have a model

with n+1 assortment parameters, denoted by s0, . . . , sn, obtained by setting si, j = sk if the genotypes

i, j are different at exactly k loci (regardless of their positions). This mating criterion will be called

the Hamming criterion in what follows. A decreasing sequence s0 ≥ s1 ≥ . . . ≥ sn will describe a

positive assortative mating (individuals mate preferentially with individuals that are similar). An

increasing sequence s0 ≤ s1 ≤ . . . ≤ sn will describe a negative assortative mating (individuals mate

preferentially with individuals that are dissimilar).

We establish a weak convergence of the Markov chain describing the genetic evolution of the

population as its size tends to +∞, under a hypothesis on the recombination distribution that

corresponds to loose linkage (during each reproduction event, recombination between any pair of

loci occurs with a positive probability) and under the assumption that mutations occur indepen-

dently at each locus with the same rates (at each locus, the rate of mutation of a type 0 allele to

a type 1 allele is µ0

N
and the rate of mutation of a type 1 to a type 0 is µ1

N
). In particular, while

mutation and assortment parameters are rescaled with population size, recombination is not. As a

result, we see a separation of timescales. Due to recombination, the genotypic frequencies rapidly

converge to a product distribution which is characterised by its marginals, that is by the 0-allelic

frequencies at each locus. We show that, at a slower rate, the allelic frequencies converge to a

multidimensional diffusion, whose components are coupled only through an infinitesimal drift term

(in the mathematical sense) arising from the assortative mating.

Let us describe some features of the limiting diffusion. If s1 − s0 = s2 − s1 = . . . = sn − sn−1 then the

frequencies of the 0-allele at each locus evolve according to independent Wright-Fisher diffusions

with mutation rates µ0 and µ1 and symmetric balancing selection with strength 1
2
(s1 − s0); that is

they solve the following stochastic differential equation:

d x t =
p

x t(1− x t)dWt +
�

µ1(1 − x t) − µ0 x t + (s1 − s0)(1/2 − x t)x t(1 − x t)
�

d t,

where (Wt)t≥0 is a standard Brownian motion. In all other cases, the allelic frequencies at different

loci no longer evolve independently. Instead the vector of 0-allelic frequencies (x t(1), . . . , x t(n)) is
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governed by the stochastic differential equation:

d x t(i) =
p

x t(i)(1− x t(i))dWt(i)

+
�

µ1(1− x t(i))−µ0 x t(i) + (1/2− x t(i))x t(i)(1− x t(i))Pi,s(x t)
�

d t, (1.1)

where (Wt(1))t≥0,. . . , (Wt(n))t≥0 denote n independent standard Brownian motions and Pi,s is the

symmetric polynomial function of the n− 1 variables x( j)(1− x( j)), j ∈ {1, . . . , n} \ {i} given by

Pi,s(x) =
n−1
∑

`=0

(s`+1− s`)
∑

A⊂{1,...,n}\{i},|A|=`







∏

j∈A

(2x j(1− x j))
∏

k∈{1,...,n}\{A∪{i}}

(1− 2xk(1− xk))






.

(in the formula |A| denotes the number of elements of a set A).

For instance in the two-locus case,

P1,s(x) = s1− s0+ 2(s2− 2s1+ s0)x2(1− x2) and P2,s(x) = s1− s0+ 2(s2− 2s1+ s0)x1(1− x1).

When the mutation rates µ0 and µ1 are strictly positive, the limiting diffusion has a reversible

stationary measure, the density of which is explicit. When the two mutation rates are equal to

µ > 0, we describe the properties of the critical points of the density of the stationary measure.

In particular, we find sufficient conditions on µ and s1 − s0, . . . , sn − sn−1 for the state where the

frequencies of the two alleles are equal to 1/2 at each locus to be a global maximum and for the

stationary measure to have 2n modes. These sufficient conditions generalise the independent case.

For example, when µ > 1/2 they imply the following results:

1. if s` − s`−1 ≥ −(8µ− 4) for every ` ∈ {1, . . . , n}, then (1/2, . . . , 1/2) is the only mode of the

stationary measure;

2. if sn− sn−1 ≤ . . .≤ s1− s0 <−(8µ− 4) then the stationary measure has 2n modes.

These results can be extended to other patterns of assortative mating. In fact, we need only

make the following assumption on the parameters si, j : the value of the assortment parameter si, j

between two genotypes i and j is assumed to be the same as the value of s j ,i and to depend only

on the loci at which i and j differ. In particular this implies that the value of si,i is the same for

every genotype i. This generalises the Hamming criterion and allows us to consider more realistic

situations in which the influence on mating choice differs between loci (see §2.3). It transpires that,

under these assumptions, the limiting diffusion does not depend on the whole family of assortment

parameters, but only on one coefficient per subgroup of loci L. We denote this coefficient mL(s). It

is the mean of the assortment parameters for pairs of genotypes that carry different alleles on each

locus in L and identical alleles on all other loci. The stochastic differential equation followed by the
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limiting diffusion can still be described by equation (1.1) if the symmetric polynomial term P( x̂ (i))

in the drift of the i-th coordinate is replaced by a non-symmetric polynomial term Pi( x̂ (i)) in the

coefficients of which the quantities mL∪{i}(s)−mL(s) for L ⊂ {1, . . . , n} replace s1− s0,. . . , sn− sn−1.

The rest of the paper is organized as follows. In §2, we present our multilocus Moran model. In §3,

we describe the diffusion approximation for the one-locus model and compare it with a diffusion

approximation for a population undergoing mutation and ‘balancing selection’. We recall some

well-known properties of this diffusion, in particular the boundary behaviour and the form of the

stationary measure, for later comparison with the multilocus case. In §4, we state our main result

concerning convergence to a diffusion approximation in the multilocus case (Theorem 4.1) and give

two equivalent expressions for the limiting diffusion. We then compare with the two-locus diffusion

approximation obtained in Ethier & Nagylaki (1989). The proof of Theorem 4.1 is postponed until

§7. In §5, we derive some general properties of the limiting diffusion. §6 is devoted to the study

of the density of the stationary measure. An appendix collects some technical results used in the

description of the limiting diffusion.

Acknowledgement. We should like to thank two anonymous referees and the associate editor for

their careful reading of the original version of this manuscript.

2 The discrete model

This section is devoted to a detailed presentation of the individual based model. The assumptions

on assortative mating, recombination and mutation that we will require to establish a diffusion

approximation for the allelic frequencies are discussed at the end of the section.

2.1 Description of the model

We consider a monoecious and haploid population of size N where the type of each individual is

described by a sequence of n diallelic loci. For the sake of brevity, let the set of loci be identified

with the set of integers ¹1 ; nº := {1, . . . , n} and let the two alleles at each locus be labelled 0 and 1.

The type of an individual is then identified by an n-tuple k := (k1, ..., kn) ∈ {0, 1}n. LetA = {0, 1}n

be the set of possible types. The proportion of individuals of type k at time t ∈ IN will be denoted by

Z (N)t (k) so that the composition of the population is described by the set Z (N)t = {Z (N)t (k), k ∈A}.

At each unit of time the population evolves under the effect of assortative mating, recombination

and mutation as follows.
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Assortative mating: at each time t, two individuals are sampled from the population in such a

way that:

1. the first individual has probability Z (N)t (i) of being of type i;

2. given that the first individual chosen is of type i, the probability that the second individual is

of type j is
�

1+ s(N)i, j

�

Z (N)t ( j)
∑

k∈A
�

1+ s(N)i,k

�

Z (N)t (k)
,

where the assortment parameters {s(N)i, j , i, j ∈A} are fixed nonnegative real numbers5.

The population at time t + 1 is obtained by replacing the first chosen individual with an offspring

whose type is the result of the following process of recombination followed by mutation.

Recombination: for each subset L of ¹1 ; nº, let rL denote the probability that the offspring in-

herits the genes of the first chosen parent at loci ` ∈ L and the genes of the second parent at loci

` 6∈ L. The family of parameters {rL , L ⊂ ¹1 ; nº} defines a probability distribution, called the

recombination distribution, on the power set P (¹1 ; nº) (it was first introduced in this manner by

Geiringer (1944) to describe the recombination-segregation of gametes in a diploid population). It

is natural to assume that the two parents contribute symmetrically to the offspring genotype, that

is:

Assumption H1: for each subset L of ¹1 ; nº, rL = r L̄ where L̄ denotes the complementary set of loci,

¹1 ; nº \ L.

With this notation, the probability that, before mutation, the offspring of a pair of individuals of

types (i, j) is of type k is

q((i, j); k) =
∑

L⊂¹1;nº

rL 1I{k=(i |L , j | L̄)} .

Let us express some classical examples of recombination distributions in this notation:

Examples 2.1.

1. r; = r
¹1;nº =

1
2

(no recombination, also called absolute linkage)

2. rI = 2−n for each I ∈ P (¹1 ; nº) (free recombination)

3. r
¹1;xº = r

¹x+1;nº =
r

2(n−1) for 1 ≤ x ≤ n− 1 and r; = r
¹1;nº = 1/2(1− r) where r denotes

an element of ]0,1] (at most one exchange between the sequence of loci which occurs with

equal probability at each position).
5We are allowing a small chance of self-fertilisation.
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Finally we superpose mutation.

Mutation: we assume that mutations occur independently and at the same rate at each locus: µ(N)1

will denote the probability that an allele 1 at a given locus of the offspring changes into allele 0 and

µ
(N)
0 the probability of the reverse mutation. The probability that the mutation process changes a

type k into a type ` is:

µ(N)(k,`) :=
n
∏

i=1

(µ(N)ki
)|`i−ki |(1−µ(N)ki

)1−|`i−ki |.

2.2 Expression for the transition probabilities

It is now elementary to write down an expression for the transition probabilities of our model. In

the notation above, if z = {z(k), k ∈ A} describes the proportion of individuals of each type in the

population at a given time, then the probability that, in the next time step, the number of individuals

of type j increases by one and the number of individuals of type i 6= j decreases by one is

fN (z, i, j) :=
∑

k,`∈A
z(i)z(k)w(N)(z, i, k)q((i, k);`)µ(N)(`, j)

where

w(N)(z, i, k) =
1+ s(N)i,k

∑

`∈A (1+ s(N)i,` )z(`)
.

2.3 Assumptions on assortative mating, recombination and mutation

In order to obtain a diffusion approximation for a large population, we assume that mutation and

assortment parameters are both O(N−1), so we set

Assumption H2: µ(N)ε = µε
N

for ε ∈ {0,1} and s(N)i, j =
si, j

N
for i, j ∈A .

Just as in the two-locus case studied by Ethier & Nagylaki (1989), we can expect diffusion approx-

imations to exist under two quite different assumptions on recombination, corresponding to tight

and loose linkage. Here we focus on loose linkage. More precisely, we assume that the recombina-

tion distribution does not depend on the size of the population and that recombination can occur

between any pair of loci:

Assumption H3: For every I ∈ P (¹1 ; nº), rI does not depend on N and for any distinct integers

h, k ∈ ¹1 ; nº, there exists a subset I ∈ P (¹1 ; nº) such that h ∈ I , k 6∈ I and rI > 0.

This assumption is satisfied for the last two examples of recombination distribution presented in

Example 2.1, but not in the absolute linkage case. In infinite population size multilocus models with
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random mating, and without selection, this condition is known to ensure that in time the geno-

type frequencies will converge to linkage equilibrium, where they are products of their respective

marginal allelic frequencies (see Geiringer 1944 and Nagylaki 1993 for a study of the evolution of

multilocus linkage disequilibria under weak selection).

In order that the generator of the limiting diffusion has a tractable form, we shall make two further

assumptions on the family of assortment coefficients s = {si, j , (i, j) ∈A 2}:

Assumption H4: for every (i, j) ∈A 2,

1. si, j = s j ,i

2. the value of si, j depends only on the set of loci k at which ik = 0 and jk = 1 and on the set of loci

` at which i` = 1 and j` = 0.

These conditions mean that the probability of mating between two individuals at a fixed time de-

pends only on the difference between their types. In particular, two individuals of the same type

will have a probability of mating that does not depend on their common type: si,i = s j , j for every

i, j ∈A . In the one-locus case, this assumption means that the model distinguishes only two classes

of pairs of individuals since s0,1 = s1,0 and s0,0 = s1,1.

In the two-locus case, this assumption leads to a model with five assortment parameters:

• one parameter, s00,00 = s11,11 = s10,10 = s01,01, for pairs of individuals having the same geno-

type,

• one parameter s00,10 = s10,00 = s11,01 = s01,11 for pairs of individuals whose genotypes only

differ on the first locus,

• one parameter, s00,01 = s01,00 = s11,10 = s10,11, for pairs of individuals whose genotypes only

differ on the second locus,

• two parameters s01,10 = s10,01 and s00,11 = s11,00 for pairs of individuals whose genotypes differ

on the two loci.

To describe positive or negative assortative mating we have to choose how to quantify similari-

ties between two types. Let us present two criteria that provide assortment parameters for which

assumption H4 is fulfilled:

1. Hamming Criterion. One simple measure to quantify similarities between two types is the

number of loci with distinct alleles: si, j will be defined as nonnegative reals depending only
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on the Hamming distance between i and j denoted by dh(i, j) :=
n
∑

`=1

|i`− j`|. A positive

assortative mating will be described by a sequence of n+1 nonnegative reals s0 ≥ s1 ≥ . . .≥ sn

by setting si, j = sdh(i, j) for every i, j ∈A . This criterion will be called Hamming criterion.

2. Additive Criterion. If we assume that the assortment is based on a phenotypic

trait which is determined by the n genes whose effects are similar and additive,

then a convenient measure of the difference between individuals of type i and j is

da(i, j) := |
n
∑

`=1

(i`− j`)|. A positive assortative mating will be described by a sequence of

n+ 1 nonnegative reals s0 ≥ s1 ≥ . . . ≥ sn by setting si, j = sda(i, j) for every i, j ∈ A . This

criterion will be called additive criterion.

The assortative mating in the species formation model of Higgs & Derrida (1992) is a special case of

the Hamming criterion. The additive criterion is widely used in models in which assortative mating

is determined by an additive genetic trait. For example, Devaux & Lande (2008) use it to investigate

speciation in flowering plants due to assortative mating determined by flowering time. Flowers can

only be pollinated by other flowers that are open at the same time. Modelling flowering time as an

additive trait, they observe an effect that is qualitatively similar to that observed in the simulations

of Higgs & Derrida (1992) for the Hamming criterion, namely continuous creation of reproductively

isolated subgroups.

With the Hamming and additive criteria, every locus is assumed to have an identical positive or

negative influence on the assortment. As we have defined a general family of assortment parameters,

it is possible to consider more complex situations. For instance, we can take into account that some

loci have a greater influence on the mating choice than others by dividing the set of loci into two

disjoint subgroups G1 and G2; we introduce two sets of assortment parameters s(1) and s(2) that

satisfy assumption H4 for the subgroups of loci G1 and G2 respectively. If we assume that the effects

of the two subgroups are additive we set si, j = s(1)i |G1
, j |G1
+ s(2)i |G2

, j |G2
for every i, j ∈ A . This defines

a set of assortment parameters that satisfies assumption H4. More generally, any set of assortment

parameters defined as a function of s(1) and s(2) satisfies assumption H4.

3 The one-locus diffusion approximation

Before studying the multilocus case, for later comparison, in this section we record some properties

of the one-locus model.
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3.1 The generator of the one-locus diffusion

In the case of one locus (n= 1), under assumption H2, the frequency of 0-alleles satisfies:

IEz[Z
(N)
1 (0)− z] =

1

N2

�

(1− z)µ1− zµ0

+
1

2
z(1− z)((s1,0− s1,1)(1− z)− (s0,1− s0,0)z)

�

+O(1/N3)

IEz[(Z
(N)
1 (0)− z)2] =

1

N2 z(1− z) +O(1/N3)

IEz[(Z
(N)
1 (0)− z)4] = O(1/N4)

uniformly in z.

Therefore the distribution of the frequency of 0-alleles at time [N2 t] is approximately governed,

when N is large, by a diffusion with generator:

G1,s =
1

2
x(1− x)

d2

d x2 +
�

(1− x)µ1− xµ0

+ 1/2x(1− x)((s1,0− s1,1)(1− x)− (s0,1− s0,0)x)
� d

d x
. (3.1)

More precisely, if Z (N)0 converges in distribution in [0, 1] as N tends to +∞, then (Z (N)
[N2 t]
)t≥0

converges in distribution in the Skorohod space of càdlàg functions D[0,1]([0,+∞)) to a diffusion

with generator G1,s (see, for example, Ethier & Kurtz 1986, Chapter 10).

If we assume that s satisfies assumption H4, that is s0,0 = s1,1 and s0,1 = s1,0, and if we denote their

common values by s0 and s1 respectively, then the drift has a simpler form and we obtain

G1,s =
1

2
x(1− x)

d2

d x2 +
�

(1− x)µ1− xµ0+ (s1− s0)(1/2− x)x(1− x)
� d

d x
.

Remark 3.1. This diffusion can also be obtained as an approximation of a diploid model with

random mating, mutation and weak selection in favour of homozygosity6 (when s0 − s1 > 0) or in

favour of heterozygosity (when s0−s1 < 0). For example, let us consider a Wright-Fisher model with

viability selection and mutation. (We follow the presentation of Ethier & Kurtz (1986), Chapter 10.)

The population is identified with a haploid population of size 2N in which haploids are formed by

fusing the haploids into pairs at random. Each individual in the current population contributes to

an infinite pool of potential gametes. Let wi, j = w j,i = (1+
1

4N
si, j) denote the viability of a union of

two gametes with types i, j ∈ {0, 1}, that is the relative likelihood that a union of two gametes i and

6A diploid individual is homozygous at a gene locus when its cells contain two identical alleles at the locus.
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j will survive to maturity. If y denotes the 0-allele frequency in the current population, after taking

into account the viability selection, the 0-allele frequency in the pool of gametes is assumed to be

y∗ =
w0,0 y2+ 2w0,1 y(1− y)

w0,0 y2+ 2w0,1 y(1− y) +w1,1(1− y)2
.

Finally, after mutation, the 0-allele frequency is assumed to be y∗∗ = (1−µ0)y∗ +µ1(1− y∗). The

next generation is obtained by choosing 2N gametes uniformly at random with replacement from

the pool of gametes after the steps of selection and mutation. Therefore the evolution of the 0-allele

frequency is described by a Markov chain (Y (N)t )t∈IN which satisfies:

P(Y (N)t+1 =
i

2N
| Y (N)t = y) =

�

2N

i

�

(y∗∗)i(1− y∗∗)2N−i ∀i ∈ {0, . . . , 2N}.

If Y (N)0 converges in distribution in [0, 1] as N tends to +∞, then (Y (N)[2N t])t≥0 converges in distribu-

tion in D[0,1]([0,+∞)) to a diffusion with generator G1,s.

3.2 Properties of the one-locus diffusion

Stationary measure. If µ0 and µ1 are strictly positive, this diffusion has a reversible stationary

measure. Its density with respect to Lebesgue measure on [0,1] is given by Wright’s formula:

gµ,s(x) = Cµ,s x2µ1−1(1− x)2µ0−1 exp
�

− 1/2((s1,0− s1,1)(1− x)2+ (s0,1− s0,0)x
2)
�

where the constant Cµ,s is chosen so that

∫ 1

0

gµ,s(x)d x = 1. This is plotted, for various parameter

values, in Fig. 1 under the assumptions µ1 = µ0 = µ, s0,0 = s1,1 = s0 and s0,1 = s1,0 = s1.

Boundary behaviour. According to the Feller boundary classification for one-dimensional diffu-

sions (see e.g. Ethier & Kurtz 1986):

(i) if µ1 = 0 then 0 is an absorbing state and the diffusion exits from ]0,1[ in a finite time almost

surely;

(ii) if µ1 ≥ 1/2 then 0 is an entrance boundary (started from a point in ]0,1[ the diffusion will

not reach 0 in finite time, but the process started from 0 is well-defined);

(iii) if 0 < µ1 < 1/2 then 0 is a regular boundary (starting from a point z0 ∈]0, 1[ the diffusion

has a positive probability of reaching 0 before any point b ∈]z0, 1] in a finite time and the

diffusion started from 0 is well-defined);

with the obvious symmetric definitions at 1.
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Figure 1: Representation of the invariant density gµ,s for the one-locus diffusion when the two

mutations rates µ1 = µ0 = µ, s0,0 = s1,1 = s0 and s0,1 = s1,0 = s1. In the figure on the left, µ > 1/2

and matings between individuals of the same allelic type are favoured. The density is bimodal if and

only if s0 − s1 > 8µ− 4. In the figure on the right, 0 < µ < 1/2 and matings between individuals

of different allelic types are favoured. The density tends to +∞ at the boundaries and has a global

minimum at 1/2 if and only if s1− s0 ≤ 4− 8µ.

4 Convergence to a diffusion in the multilocus case

In the case of several loci, under assumptions H2 and H3, a Taylor expansion shows that the drift

IE[Z (N)t+1(i)− Z (N)t (i) | Z
(N)
t = z] is of order 1

N2 only inside the set of product distributions on {0, 1}n.

This set is often called the Wright manifold or the linkage-equilibrium manifold and denoted by Wn

(a population is said to be in linkage equilibrium if the genotype distribution z is in Wn, that is if

z(i) = z1(i1) · · · zn(in) ∀i = (i1, . . . , in) ∈ A where z j(x) =
∑

k∈{0,1}n−1 z(k1, . . . , k j−1, x , k j+1, . . . , kn)

denotes the frequency of individuals having the allele x at the j-th locus).

Outside this manifold, the drift pushes the process towards the Wright manifold at an exponential

speed. Therefore to extend the diffusion approximation to the n-locus case, we introduce a change

of variables composed of the n 0-allelic frequencies and of 2n − n− 1 processes that measure the

deviation from the linkage equilibrium.

For a nonempty subset L of {1, . . . , n},

• let X (N)t (L) =
∑

j∈A , j |L≡0 Z (N)t ( j) denote the proportion of individuals having the allele 0 on

all loci in L at time t;

• let Y (N)t (L) =
∏

i∈L X (N)t ({i})−X (N)t (L) for |L| ≥ 2 describe the linkage disequilibrium between

the loci in L at time t. (This is just one of many ways to measure the linkage disequilibrium,

see for example Bürger (2000), Chapter V.4.2, for other measures.)
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The vector of 0-allelic frequencies at time t is X (N)t :=
�

X (N)t ({1}), ..., X (N)t ({n})
�

.

The process Y (N) defined by Y (N)t :=
�

Y (N)t (L), L ⊂ ¹1 ; nº such that |L| ≥ 2
	

for t ≥ 0 vanishes on

the Wright manifold.

We shall show that if tN tends to +∞ faster than N then Y (N)[tN ]
converges to 0 while if time is sped

up by N2 then X (N) converges to a diffusion as N tends to +∞.

Before giving a precise statement of the convergence result for the two processes X (N) and Y (N)

(Theorem 4.1), let us introduce some notation in which to express the parameters of the limiting

diffusion.

4.1 Mean assortment parameters

For a subset L of loci, consider the set of pairs of genotypes that differ at each locus ` ∈ L and are

equal at each locus ` /∈ L:

FL =
¦

(i, j) ∈A 2 : iu = 1− ju ∀u ∈ L and iu = ju ∀u ∈ L̄
©

.

Let mL(s) denote the mean value of the assortment parameters for all pairs in this set FL:

mL(s) = 2−n
∑

(i, j)∈FL

si, j .

Examples 4.1.

1. In the two-locus case,

m;(s) =
1

4
(s00,00+ s01,01+ s10,10+ s11,11),

m{1}(s) =
1

4
(s00,10+ s10,00+ s01,11+ s11,01),

m{2}(s) =
1

4
(s00,01+ s01,00+ s11,10+ s10,11).

In each of these expressions the four coefficients are equal by assumption H4.

m{1,2}(s) =
1

4
(s00,11+ s11,00+ s01,10+ s10,01).

In this expression the first (resp. last) two coefficients are equal by H4.

2. With the Hamming criterion, mL(s) = s|L| for every L ⊂ ¹1 ; nº, where |L| denotes the number

of loci in L.

3. With the additive criterion, m;(s) = s0, m{`}(s) = s1 ∀` ∈ ¹1 ; nº and more generally mL(s) =

2−|L|
∑|L|

k=0

�|L|
k

�

s|2k−|L|| for every L ⊂ ¹1 ; nº.
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4.2 Convergence to a diffusion

The following theorem provides convergence results for the two processes X (N) and Y (N) as the

population size N tends to +∞. The proof, based on Theorem 3.3 of Ethier & Nagylaki (1980), is

postponed to §7.

Theorem 4.1. Assume that hypotheses H1, H2, H3 and H4 hold.

(a) For i ∈ ¹1 ; nº let Pi,s(x) denote a polynomial function in the n − 1 variables xk(1 − xk) for

k ∈ ¹1 ; nº \ {i}. Then, the operator

Gn,s =
1

2

n
∑

i=1

x i(1− x i)
∂ 2

∂x i
∂x i

+
n
∑

i=1

�

(1− x i)µ1− x iµ0+ (1/2− x i)x i(1− x i)Pi,s(x)
� ∂

∂x i

(4.1)

with domain D(Gn,s) = C2([0,1]n) is closable in C([0,1]n) and its closure is the generator of a

strongly continuous semigroup of contractions.

(b) If X (N)0 converges in distribution in [0,1]n, then (X (N)
[N2 t]
)t converges in distribution in the Skoro-

hod space of càdlàg functions D[0,1]n([0,∞)) to a diffusion process X with generator Gn,s where

the polynomial function Pi,s(x) has the following expression:

Pi,s(x) =
∑

A∈P (¹1;nº\{i})

�

mA∪{i}(s)−mA(s)
�

∏

k∈A

(2xk(1− xk))
∏

`∈¹1;nº\{A∪{i}}

(1− 2x`(1− x`)). (4.2)

(c) For every positive sequence (tN )N that converges to +∞, Y (N)[N tN ]
converges in distribution to 0.

Remark 4.1.

1. The recombination distribution (rI)I⊂¹1;nº does not appear in the expression for the limiting

diffusion. Nevertheless, the proof of Theorem 4.1 will show that it has an influence on the

speed of convergence of the linkage disequilibrium to 0.

2. The limiting diffusion depends on the assortment parameters only via the quantities mA(s) for

every A⊂ ¹1 ; nº. A set of assortment parameters for which

mA∪{i}(s)−mA(s)< 0 for every i ∈ ¹1 ; nº and A⊂ ¹1 ; nº \ {i}

2139



favours homozygous mating with respect to the genotype at the i-th locus. It is therefore no

surprise that by increasing the value of mA∪{i}(s)−mA(s) for a fixed subset A, we increase the

value of the i-th coordinate of the drift at a point x for which x i < 1/2 and decrease it at a

point x for which x i > 1/2.

4.3 Another expression for the polynomial term Pi,s(x) of the drift

An expansion of the polynomial function Pi,s(x) in terms of the variables xk(1− xk), k ∈ ¹1 ; nº \ {i}

yields the following expression:

Pi,s(x) =
∑

L∈P (¹1;nº\{i})

αi,L(s)
∏

`∈L

x`(1− x`) (4.3)

with

αi,L(s) = 2|L|
∑

A⊂L

(−1)|L|−|A|(mA∪{i}(s)−mA(s)). (4.4)

The details of the proof are provided in §7.2.

The coefficients αi,L(s) can be compactly expressed using difference operators. Let us introduce

some notation: for a function f defined on the subsets of a finite set E and for an element i of E, we

denote by δi[ f ] the function on P (E) defined by

δi[ f ](A) = f (A∪ {i})− f (A), ∀A∈ P (E).

Since δi ◦δ j = δ j ◦δi for every i, j ∈ E, we can, more generally, introduce a difference operator δB

for each subset B ∈ P (E) by setting δ; = Id, and δB = δb1
◦ · · · ◦δbr

if B = {b1, . . . , br}. A proof by

induction on |B| provides the following formula for δB:

δB[ f ](A) =
∑

J⊂B

(−1)|B|−|J | f (A∪ J) ∀A⊂ E. (4.5)

Let m(s) denote the function A 7→ mA(s) defined on the subsets of ¹1 ; nº. In this notation, for every

A⊂ ¹1 ; nº \ {i},

mA∪{i}(s)−mA(s) = δi[m(s)](A) and αi,A(s) = 2|A|δA∪{i}[m(s)](;). (4.6)

If, for each subset A of loci, the coefficient mA(s) depends only on the number of loci in A, then

it follows from expression (4.3) that Pi,s(x) is a symmetric polynomial function, the coefficients of

which do not depend on i. This is the case for instance with the Hamming and additive criteria (see

Example 4.1 for the corresponding expressions for mA(s)). Let us give the expanded form of Pi,s(x)

for the Hamming criterion:

Pi,s(x) =
n−1
∑

`=0

α̃`

∑

L⊂¹1;nº\{i}, |L|=`

∏

`∈L

x`(1− x`). (4.7)
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where α̃k(s) = 2k
∑k
`=0(−1)`

�k
`

�

(sk−`+1− sk−`).

As in the general case, the coefficient α̃k(s) has a compact expression in terms of difference opera-

tors. Let δ(1) denote the forward difference operators: δ(1)[s](i) = si+1−si for every i ∈ ¹0 ; n− 1º.

The forward difference operators of higher orders are defined iteratively: δ(k+1)[s] = δ(k) ◦ δ(1)[s]

for k ∈ IN∗. With this notation, α̃k(s) = 2kδ(k+1)[s](0) for k ∈ ¹0 ; n− 1º.

4.4 Comparison with the two-locus Wright-Fisher diffusion

Ethier & Nagylaki (1989) established convergence results for a general multiallelic two-locus Wright-

Fisher model of a panmictic, monoecious, diploid population of N individuals (identified with 2N

haploids) undergoing mutation and selection. In their model, a gamete is described by a pair i =

(i1, i2) ∈ ¹1 ; r1º×¹1 ; r2º where r1 is the number of alleles in the first locus and r2 is the number

of alleles in the second locus. The parameters of their model are:

1. the viability of a pair of gametes (i, j) denoted by wN ,i, j = 1 − σN ,i, j with the assumption

σN ,i, j = σN , j ,i and σN ,i,i = 0 for every i, j ∈ ¹1 ; r1º× ¹1 ; r2º (after viability selection the

proportion of a pair of gametes (i, j) is assumed to be P∗i, j =
wN ,i, j Pi Pj

∑

k,`wN ,k,`Pk P`
if Pk denotes

the frequency of gametes k in the population ∀k ∈ ¹1 ; r1º×¹1 ; r2º);

2. the recombination fraction cN ;

3. the probability (2N)−1ν
(i)
j,k that the j-th allele in the i-th locus mutates to the k-th allele.

The population at the generation t + 1 is obtained by choosing 2N gametes uniformly at random

with replacement from the pool of gametes of the generation t after the steps of viability selection,

recombination and mutation.

They studied the diffusion approximation under several assumptions on selection and recombination

coefficients. In the case of weak selection (2NσN ,i, j converges to a real number denoted by σi, j for

every i, j) and loose linkage (cN converges to a finite limit and NcN tends to +∞) they obtained a

limiting diffusion for the allelic frequencies (p1, . . . , pr1−1, q1, . . . , qr2−1) of the alleles 1, . . . , r1−1 in

the first locus and the alleles 1, . . . , r2−1 in the second locus. In the case of two alleles at each locus

(r1 = r2 = 2), the generator of the limiting diffusion is

L =
1

2
p1(1− p1)∂

2
p1,p1
+

1

2
q1(1− q1)∂

2
q1,q1
+ b1(p1, q1)∂p1

+ b2(p1, q1)∂q1
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with

b1(p1, q1) =ν
(1)
2,1(1− p1)− ν

(1)
1,2 p1

− p1(1− p1)(1− 2p1)
�

(σ12,21+σ11,22)q1(1− q1) +σ11,21q2
1 +σ12,22(1− q1)

2
�

− 2p1(1− p1)q1(1− q1)
�

σ11,12p1−σ21,22(1− p1)
�

.

b2(p1, q1) =ν
(2)
2,1(1− q1)− ν

(2)
1,2q1

− q1(1− q1)(1− 2q1)
�

(σ12,21+σ11,22)p1(1− p1) +σ11,12p2
1 +σ21,22(1− p1)

2
�

− 2q1(1− q1)p1(1− p1)
�

σ11,21q1−σ12,22(1− q1)
�

.

Accordingly, the generator L coincides with G2,s if we assume

(a) that the mutation rates ν (i)j,k do not depend on the locus i and set ν (i)1,2 = µ0 and ν (i)2,1 = µ1,

(b) that the coefficients of selection satisfy σ11,21 = σ12,22 and σ11,12 = σ21,22 (second condition

of assumption H4)

and set σi, j =−
1
2
si−1, j−1, for every i, j ∈ {1, 2}2 (with the notation 1= (1, . . . , 1)).

This comparison suggests that the effect of assortative mating on the genotype evolution of a large

population in our model is similar to the effect of weak viability selection in a diploid Wright-Fisher

model with mutation.

5 Description of the limiting diffusion

This section collects some properties that can be deduced from the form of the generator, Gn,s, of

the limiting diffusion.

5.1 The set of generators arising from the model

Lemma 5.1. Any generator on C2([0, 1]n) of the form

1

2

n
∑

i=1

x i(1− x i)
∂ 2

∂x i
∂x i

+

n
∑

i=1

�

(1− x i)µ1− x iµ0+ (1/2− x i)x i(1− x i)
∑

L∈P (¹1;nº\{i})

αL∪{i}

∏

k∈L

xk(1− xk)
� ∂

∂x i

,

where {αA, A⊂ ¹1 ; nº, A 6= ;} is a family of real numbers, can be interpreted as the generator of the

diffusion approximation of an n-locus Moran model as defined in §2.
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Proof. We may, for instance, take the following set of assortment parameters {si, j , i, j ∈A}:

• si,i = 0 for every i ∈A .

• si, j =
∑

B⊂L, |B|≥1 2−|B|+1αB for every (i, j) ∈ FL and for every nonempty subset L of ¹1 ; nº.

Let us check that this family satisfies 2|L|−1δL[m(s)](;) = αL for every nonempty subset L of ¹1 ; nº.

First, mL(s) =
∑

B⊂L, |B|≥1 2−|B|+1αB. For every i ∈ ¹1 ; nº and L ⊂ ¹1 ; nº \ {i}

δL∪{i}[m(s)](;) =
∑

A⊂L

(−1)|L|−|A|(mA∪{i}(s)−mA(s)) =
∑

A⊂L

(−1)|L|−|A|
∑

B⊂A

2−|B|αB∪{i}.

We invert the double sum and use the formula
∑

A⊂L, s. t. B⊂A

(−1)|L|−|A| = 1I{L=B} to obtain:

δL∪{i}[m(s)](;) =
∑

B⊂L

2−|B|αB∪{i} 1I{L=B} = 2−|L|αL∪{i}.

In particular, the n-locus Moran model with assortative mating based on the Hamming criterion

allows us to obtain, through diffusion approximation, any generator on C2([0,1]n) of the form:

1

2

n
∑

i=1

x i(1− x i)
∂ 2

∂x i
∂x i

+

n
∑

i=1

�

(1− x i)µ1− x iµ0+ (1/2− x i)x i(1− x i)
n−1
∑

`=0

α`

∑

L⊂¹1;nº\{i}
s.t.|L|=`

∏

k∈L

xk(1− xk)
� ∂

∂x i

.

To see this, given any sequence α0, . . . ,αn−1 of n reals, we have to find n+ 1 real numbers s0, . . . , sn

such that α` = 2`δ(`+1)[s](0). These are given by the inversion formula (A.3) in the Appendix, from

which we see that we may set s0 = 0 and sk =
∑k
`=1 21−`�k

`

�

α`−1 for k ∈ ¹1 ; nº.

5.2 The generator for two groups of loci

Let us consider a partition of the set of loci into two subgroups, G1 = ¹1 ; kº and

G2 = ¹k+ 1 ; nº, say. We introduce two sets of assortment parameters s(1) and s(2) depending on

subgroups of loci from G1 and from G2 respectively and satisfying assumption H4. If we assume

that the assortment parameter between two individuals of type i and j is si, j = s(1)i |G1
, j |G1
+ s(2)i |G2

, j |G2
for

every i, j ∈ A , then mL(s) = mL∩G1
(s(1)) +mL∩G2

(s(2)) for every subset L of ¹1 ; nº. This implies

that the first k coordinates of diffusion limit evolve independently of the last n− k coordinates and

that the generator of the diffusion limit is:

Gn,s = Gk,s1
⊗Gn−k,s2

.
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Therefore, with these choices we can reduce our study to subgroups of loci having the same influence

on assortment.

5.3 Conditions for independent coordinates

For some patterns of assortment, the allelic frequencies at each locus in a large population evolve

approximately as independent diffusions:

Proposition 5.1. Assume that the assortment parameters s = {si, j , i, j ∈ A} satisfy the assumption

H4.

1. The n coordinates of the diffusion associated with the generator Gn,s are independent if and only

if the following condition holds:

(H5) for every i ∈ ¹1 ; nº, mL∪{i}(s)−mL(s) does not depend on the choice of the subset L of

¹1 ; nº \ {i}.

2. If condition (H5) holds, the i-th coordinate behaves as the one-locus diffusion with assortment

coefficients s0 = s1,1 and s1 = sui ,1 where ui = (0{i},1¹1;nº\{i}) denotes the genotype which differs

from the genotype 1 only on the locus i; its generator is

1

2
x(1− x)

d2

d x2 +
�

(1− x)µ1− xµ0+ (sui ,1− s1,1)(1/2− x)x(1− x)
� d

d x
.

3. In particular,

(a) with the Hamming criterion, Gn,s is the generator of n independent one-dimensional diffu-

sions if and only if the value of s`+1− s` does not depend on `;

(b) with the additive criterion, Gn,s is the generator of n independent one-dimensional diffusions

if and only if there exists a constant c such that s`+1−s` = c(2`+1) for every ` ∈ ¹0 ; n− 1º.

Proof. First note that Gn,s is the generator of n independent diffusions if and only if the polynomial

term Pi,s(x) is a constant function for every i ∈ ¹1 ; nº.

1. According to the formula (4.2), the polynomial term Pi,s(x) is a constant function for every

i ∈ ¹1 ; nº whenever condition H5 holds. Conversely, assume that the polynomial term Pi,s(x)

is a constant function for every i ∈ ¹1 ; nº. By formulae (4.3) and (4.6), δL[m(s)](;) = 0 for

every subset L of ¹1 ; nº having at least two elements. We derive, from the inversion formula

(A.2) stated in the Appendix, that for every subset A∈ P (¹1 ; nº),

δi[m(s)](A) =
∑

B⊂A

δB∪{i}[m(s)](;) = δi[m(s)](;).
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Therefore, condition H5 is satisfied.

2. With the Hamming criterion, mA(s) = s|A| and condition H5 is equivalent to

sk+1− sk = s1− s0 for every k ∈ ¹1 ; n− 1º.

3. With the additive criterion, for a subset L with ` elements mL(s) = 2−`
∑`

j=0

�`

j

�

s|2 j−`|. After

some computation, we obtain for i 6∈ L,

mL∪{i}(s)−mL(s) = 2−`
∑̀

j=0

�

`

j

�

(s|2 j−`+1|− s|2 j−`|)

=



















2−`
`+1

2
∑

j=1

� `
`+1

2
− j

�

δ(2)[s](2 j− 2) if ` is odd,

2−`
�

`
2
∑

j=1

� `
`
2
− j

�

δ(2)[s](2 j− 1) +
�`
`
2

�

δ(1)[s](0)
�

if ` is even.

(5.1)

It follows from (5.1) that for every c ∈ IR, the system defined by

mL∪{i}(s)−mL(s) = c for every i ∈ ¹1 ; nº and L ⊂ ¹1 ; nº \ {i}

has a unique solution which is δ(1)[s](k) = c(2k+ 1) for every k ∈ ¹0 ; n− 1º.

5.4 Behaviour at the boundaries

In this section the trajectories of the coordinates of the limiting diffusion are compared with those of

one-dimensional diffusions in order to investigate whether an allele can be (instantaneously) fixed

at one of the loci.

Consider the stochastic differential equations associated with the generator Gn,s:

d x t(i) =
p

x t(i)(1− x t(i))dWt(i) + bi(x t)d t ∀i ∈ ¹1 ; nº, (5.2)

where (Wt(1))t≥0,. . . , (Wt(n))t≥0 denote n independent standard Brownian motions, and

bi(x) = µ1(1− x(i))−µ0 x(i) + (1/2− x(i))x(i)(1− x(i))Pi,s(x) for i ∈ ¹1 ; nº.

Theorem 1 of Yamada & Watanabe (1971) ensures pathwise uniqueness for the stochastic differen-

tial equation (5.2), since the drift is Lipschitz and the diffusion matrix is a diagonal matrix of the

form

σ(x) = diag(σ1(x(1)), . . . ,σn(x(n))),
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where the functions σi are 1/2-Hölder continuous functions.

The following proposition shows that, just as for the one-locus case, the boundary behaviour of the

solution to (5.2) depends only on the values of the mutation rates µ0 and µ1.

Proposition 5.2. Let (x t)t≥0 denote a solution of the stochastic differential equation (5.2) starting

from a point x0 ∈]0, 1[n.

(i) If µ1 = µ0 = 0 then the diffusion process (x t)t exits from ]0, 1[n in a finite time almost surely.

(ii) If µ1 = 0 and µ0 > 0 then each coordinate of (x t)t reaches the point 0 in a finite time almost

surely.

(iii) If 0< µ1 < 1/2 then 0 is attainable for each coordinate of the diffusion process:

IP[∃t > 0, x t(i) = 0]> 0 ∀i ∈ ¹1 ; nº.

(iv) If µ1 ≥ 1/2 then 0 is inaccessible for each coordinate of the diffusion process:

IP[∃t > 0, x t(i) = 0] = 0 and IP[ lim
t→+∞

x t(i) = 0] = 0 for every i ∈ ¹1 ; nº.

Similar statements to (ii), (iii) and (iv) hold for the point 1 on exchanging the rôles of µ1 and µ0.

Proof. Let i ∈ ¹1 ; nº. On [0,1]n the polynomial function Pi,s is bounded above by

M+i =
∑

A⊂¹1;nº\{i}

2−|A|max
�

mA∪{i}(s)−mA(s), 0
	

and is bounded below by

M−i =−
∑

A⊂¹1;nº\{i}

2−|A|max
�

− (mA∪{i}(s)−mA(s)), 0
	

.

Let b+i and b−i denote the functions defined on [0, 1] by

b+i (u) = µ1(1− u)−µ0u+ (1/2− u)u(1− u)(M+i 1I{u<1/2}+M−i 1I{u>1/2}),

b−i (u) = µ1(1− u)−µ0u+ (1/2− u)u(1− u)(M+i 1I{u>1/2}+M−i 1I{u<1/2}),

for every u ∈ [0,1]. For every i ∈ ¹1 ; nº, pathwise uniqueness holds for the following two stochastic

differential equations:

dut =
p

ut(1− ut)dWt(i) + b+i (ut)d t (5.3)

and

dut =
p

ut(1− ut)dWt(i) + b−i (ut)d t. (5.4)
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Let ξ+t (i) and ξ−t (i) be the solution starting from x0(i) of the stochastic differential equations (5.3)

and (5.4) respectively. As the i-th coordinate of the drift is bounded above by b+i and is bounded

below by b−i , the comparison theorem of Ikeda & Watanabe (1977) ensures that the following

inequalities hold with probability one:

ξ−t (i)≤ x t(i)≤ ξ+t (i) ∀t ≥ 0, ∀i ∈ ¹1 ; nº. (5.5)

The nature of the points 0 and 1 as described by the Feller classification is the same for (ξ−t (i))t and

(ξ+t (i))t and depends only on µ1 and µ0. To describe their behaviours near 0, let τ±,i
z (a, b) denote

the first time the process (ξ±t (i))t , starting from z, exits (a, b) for 0≤ a < z < b ≤ 1.

1. If µ1 = µ0 = 0 then 0 and 1 are absorbing points; (ξ±t (i))t reaches 0 or 1 in a finite time with

probability one and

IP

�

lim
t→τ±,i

z (0,1)
ξ±t (i) = 0

�

=

∫ 1

z
exp
�

−
∫ x

1/2

2b±i (u)
u(1−u)du

�

d x
∫ 1

0
exp
�

−
∫ x

1/2

2b±i (u)
u(1−u)du

�

d x
.

2. If µ1 = 0 and µ0 > 0 then 0 is the only absorbing point and (ξ±t (i))t reaches 0 in a finite time

with probability one.

3. If 0< µ1 < 1/2 and µ0 > 0 then 0 is attainable: for every 0< z < b < 1,

IP
h

τ±,i
z (0, b)<+∞ and lim

t→τ±,i
z (0,b)

ξ±t (i) = 0
i

> 0.

4. If µ1 ≥ 1/2 and µ0 > 0 then 0 is inaccessible: for every 0< z < 1,

IPz[∃t > 0, ξ±t (i) = 0] = 0 and IPz
�

lim
t→+∞

ξ±t (i) = 0
�

= 0.

Similar properties hold for the behaviour near the point 1.

The proofs of the properties 1 and 2 are detailed in proposition 10.2.8 of Ethier & Kurtz (1986) for

a Wright-Fisher diffusion with mutation and selection which is solution of the following stochastic

differential equation:

d x t =
p

x t(1− x t)dWt +
�

(1− x t)µ1−µ0 x t + x t(1− x t)h(x t)
�

d t (5.6)

where h is a function defined on [0,1] by h(x) = σ0 x − σ1(1− x) for two constants σ0 and σ1.

The proof still holds for any continuous function h on [0,1]. The properties 3 and 4 are obtained

by applying the Feller classification (see Appendix A.2 for more details).
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The properties stated in 1.-4. are sufficient to prove the boundary behaviour claimed for (x t)t . Since

x t(i)≤ ξ+t (i) for every t ≥ 0, if (ξ+t (i))t reaches 0 in a finite time then so must (x t(i))t . Similarly, if

0 is attainable for (ξ+t (i))t then 0 is also attainable for (x t(i))t . In the same way, since x t(i)≥ ξ−t (i)

for every t ≥ 0, if 0 is inaccessible for (ξ−t (i))t then 0 is also inaccessible for (x t(i))t .

It remains to prove that (x t)t exits from ]0, 1[ in a finite time with probability one if µ1 = µ0 = 0.

Let ε > 0 be small enough that x0 ∈ [ε, 1− ε]n. The diffusion x t exits from the compact [ε, 1− ε]n

in a finite time with probability one. Let xε be a point on the boundary of [ε, 1− ε]n. There exists

i ∈ ¹1 ; nº such that xε(i) ∈ {ε, 1 − ε}. For z ∈]0,1[, set φ±i (z) := IPz[limt→τ±,i(0,1) ξ
±
t (i) = 0].

By the comparison theorem applied to the solutions of the stochastic differential equations (5.2),

(5.3) and (5.4) starting from xε, the probability that the solution of (5.2) starting at xε reaches the

boundary of [0,1]n in a finite time is greater than φ+i (ε) if xεi = ε and is greater than 1−φ−i (1−ε)

if xεi = 1− ε. By the strong Markov property, the probability that (x t) reaches the boundary in a

finite time is greater than min{min(φ+i (ε), 1−φ−i (1− ε)), i ∈ ¹1 ; nº} for every ε > 0. Therefore

(x t)t reaches the boundary in a finite time with probability one.

6 The stationary measure of the limiting diffusion

6.1 Existence of a stationary distribution and an expression for its density

As in the one-locus case, when the mutation rates are strictly positive, the diffusion has a reversible

stationary distribution:

Proposition 6.1. Assume that the hypothesis H4 holds and that the mutation rates µ0 and µ1 are

strictly positive. Set s̃i, j = si, j − s1,1 for every pair of types i, j ∈ A . The diffusion with generator

Gn,s has a unique reversible stationary distribution which has the following density with respect to the

Lebesgue measure on [0, 1]n:

gn,µ,s(x) = Cn,µ,s

n
∏

i=1

x2µ1−1
i (1− x i)

2µ0−1 exp(Hn,s(x))

where

• Hn,s(x) =
1

2

∑

L⊂¹1;nº, |L|≥1

mL(s̃)
∏

`∈L

(2x`(1− x`))
∏

k∈¹1;nº\L

(1− 2xk(1− xk));

• Cn,µ,s is chosen so that

∫

[0,1]n
gn,µ,s(x1, . . . , xn)d x1 · · · d xn = 1.
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Remark 6.1. An expansion of the polynomial function Hn,s yields:

Hn,s(x) =
∑

L⊂¹1;nº, |L|≥1

2|L|−1δL[m(s)](;)
∏

`∈L

x`(1− x`).

Proof of Proposition 6.1. Let Gn,0 denote the generator of the limiting diffusion in the random mating

case (si, j = 0 for every i, j ∈ A ). The diffusion associated with this generator is ergodic and

has a reversible stationary distribution mµ,0 which is the product of Beta distributions: mµ,0 :=

(Beta(2µ0, 2µ1))⊗n. In the general case, the generator Gn,s can be decomposed as

Gn,s = Gn,0+
1

2

n
∑

i=1

x i(1− x i)∂ih(x)∂i

where

h(x) =
∑

L⊂¹1;nº, |L|≥1

2|L|−1δL[m(s)](;)
∏

`∈L

x`(1− x`).

Therefore, as explained in Ethier & Nagylaki (1989), we can apply a result of Fukushima & Stroock

(1986) to deduce that the diffusion associated with Gn,s has a unique reversible stationary distribu-

tion mµ,s given by

mµ,s(d x) = C exp(h(x))mµ,0(d x),

where C is chosen so that mµ,s is a probability distribution.

6.2 Description of the density of the stationary measure

We analyse the density of the stationary measure under two supplementary assumptions:

Assumption H6: The two mutation rates µ0 and µ1 are assumed to be equal to a strictly positive real

number µ.

Assumption H7: For every L ∈ P (¹1 ; nº), mL(s) depends only on |L|. We write m(`) for the

common value of mL(s) for L ∈ P (¹1 ; nº) such that |L|= `.

Assumption H7 holds if the assortment parameters satisfy the Hamming criterion or the additive

criterion.

Under the hypotheses H1, H2, H3, H4, H6 and H7, the density of the invariant measure can be

written as gn,µ,s(x) = C exp(hn,µ,s(x)) with

hn,µ,s(x) = (2µ− 1)
n
∑

i=1

ln(ρ(x i)) +
n−1
∑

`=0

α`

∑

L⊂¹1;nº, |L|=`+1

∏

k∈L

ρ(xk),

where ρ(x i) = x i(1− x i) and α` = 2`δ(`+1)[m](0).
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The study of the invariant measure in the one-locus case already provides a precise image of the

graph of gn,µ,s when the n coordinates of the diffusion are independent, that is when the assortment

coefficients are chosen so that

for every ` ∈ {0, . . . , n− 1}, m(`+ 1)−m(`) = m(1)−m(0).

There are then at least four different types of graph depending on the respective contributions to

allelic diversity of mutations (µ > 1/2 or 0 < µ < 1/2) and assortment parameters (m(1)−m(0)

smaller than |8µ− 4| or not) as shown in Fig. 1.

Proposition 6.2 gives conditions on the assortment parameters under which (1/2, . . . , 1/2) is the

only critical point of the density, as in the random mating case. Proposition 6.3 deals with situations

far from the random mating case (the proofs are postponed to §6.4).

Proposition 6.2. We assume that the hypotheses H1, H2, H3, H4, H6 and H7 hold. Set Vn = 2µ−1+

2−(n+1)
∑n−1

k=0

�n−1
k

�

δ(1)[m](k).

1. If Vn > 0, then (1/2, . . . , 1/2) is a local maximum of gn,µ,s.

2. If Vn < 0, then (1/2, . . . , 1/2) is a local minimum of gn,µ,s.

3. If µ > 1/2 and if δ(1)[m](`) ≥ −(8µ − 4) ∀` ∈ ¹0 ; n− 1º, then (1/2, . . . , 1/2) is a global

maximum and is the only critical point of gn,µ,s.

4. If 0 < µ < 1/2 and if δ(1)[m](`) ≤ −(8µ− 4) ∀` ∈ ¹0 ; n− 1º, then (1/2, . . . , 1/2) is a global

minimum and is the only critical point of gn,µ,s.

Example 6.1. Let us consider the additive criterion with the assortment sequence s` = b` for

` ∈ ¹0 ; nº. Then δ(1)[m](`) = 2−`
� `

`/2

�

b 1I{` is even}. As 2−`
� `

`/2

�

is a strictly decreasing sequence

smaller than 1, b < 0 implies Vn > 2µ − 1 + 1
8

b. Thus, it follows from Proposition 6.2 that if

µ > 1/2 and b ≥−8(2µ− 1), the point (1/2, . . . , 1/2) is a local maximum of gn,s,µ. Let us note that

if we consider the same sequence s` = b` but with the Hamming criterion, then for µ > 1/2 and

b <−4(2µ− 1), (1/2, . . . , 1/2) is a local minimum of gn,s,µ.

Remark 6.2. The statement of Proposition 6.2 can be easily extended to a family of assortment

parameters for which H7 does not hold: Vn must be replaced by

Vn,i = 2µ− 1+ 2−(n+1)
∑

B⊂¹1;nº\{i}

δi[m(s)](B)

for every i ∈ ¹1 ; nº and the conditions on δ[m](`) in assertions 3 and 4 are replaced by a condition

on δi[m(s)](A) for every i ∈ ¹1 ; nº and A∈ P (¹1 ; nº \ {i}).
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The following proposition describes the properties of the critical points of the density in two cases,

(1) µ > 1/2 and a condition on the assortment parameters which strongly favours mating between

individuals carrying similar types:

δ(1)[m](n− 1)≤ δ(1)[m](n− 2)≤ . . .≤ δ(1)[m](0)≤ 0 and δ(1)[m](n− 2)< 0,

and (2) 0 < µ < 1/2 and a condition on the assortment parameters which strongly favours mating

between individuals with dissimilar types:

δ(1)[m](n− 1)≥ δ(1)[m](n− 2)≥ . . .≥ δ(1)[m](0)≥ 0 and δ(1)[m](n− 2)> 0.

To simplify the statement, the description is limited to the hypercube [0,1/2]n. The description

on the whole space [0, 1]n can be deduced from this since gn,µ,s(x) is invariant if we replace any

coordinate x i with 1− x i .

Proposition 6.3. Assume that conditions H1, H2, H3, H4, H6 and H7 hold. Set

Vn = 2µ− 1+ 2−(n+1)
n−1
∑

k=0

�

n− 1

k

�

δ(1)[m](k).

1. Case µ > 1/2. Assume furthermore that:

δ(1)[m](n− 1)≤ δ(1)[m](n− 2)≤ . . .≤ δ(1)[m](0)≤ 0 and δ(1)[m](n− 2)< 0.

(a) If Vn > 0 then (1/2, . . . , 1/2) is a global maximum and is the only critical point of the

density gn,µ,s.

(b) If Vn < 0 then

i. gn,µ,s has a local minimum at (1/2, . . . , 1/2).

ii. In [0, 1/2]n, gn,µ,s takes its maximum value at a unique point of the form (ξ0, . . . ,ξ0).

iii. The other critical points of gn,µ,s in [0,1/2]n are saddle points: for every

` ∈ ¹1 ; n− 1º, gn,µ,s has
�n
`

�

saddle points of index n − ` in [0,1/2]n. The saddle

points of index n− ` have ` coordinates equal to 1/2 and the other coordinates have

the same value denoted by ξ`.

iv. The relative positions of the coordinates of the critical points in [0, 1/2]n satisfy 0 <

ξn−1 < · · ·< ξ0 < 1/2.

v. The value of gn,µ,s is the same at any saddle point of index n− ` and decreases as `

increases.

2. Case 0< µ < 1/2. Assume furthermore that:

δ(1)[m](n− 1)≥ δ(1)[m](n− 2)≥ . . .≥ δ(1)[m](0)≥ 0 and δ(1)[m](n− 2)> 0.
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(a) If Vn < 0 then (1/2, . . . , 1/2) is a global minimum and is the only critical point of the

density gn,µ,s.

(b) If Vn > 0 then

i. gn,µ,s has a local maximum at (1/2, . . . , 1/2).

ii. In [0,1/2]n, gn,µ,s takes its minimum value at a unique point of the form

(ξ0, . . . ,ξ0).

iii. The other critical points of gn,µ,s in [0,1/2]n are saddle points: for every

` ∈ ¹1 ; n− 1º, gn,µ,s has
�n
`

�

saddle points of index ` in [0, 1/2]n. The saddle points

of index ` have ` coordinates equal to 1/2 and the other coordinates have the same

value denoted by ξ`.

iv. The relative positions of the coordinates of the critical points in [0, 1/2]n satisfy 0 <

ξn−1 < · · ·< ξ0 < 1/2.

v. The value of gn,µ,s is the same at any saddle point of index n− ` and increases as `

increases.

Remark 6.3.

1. ξ0 = 1/2− 1/2
p

1− 4λ0 where λ0 is the unique solution in ]0,1/4[ of the equation:

2µ− 1+ x
n−1
∑

i=0

δ(1)[m](i)
�

n− 1

i

�

(2x)i(1− 2x)n−1−i = 0 (E0)

More generally, for every ` ∈ ¹0 ; n− 1º, ξ` = 1/2− 1/2
p

1− 4λ` where λ` is the unique

solution in ]0,1/4[ of the equation:

2µ− 1+ x
n−1
∑

i=0

Bn−1,`,i(2x)δ(1)[m](i) = 0 (E`)

and Bn,`,i(x) = 2−`
min(i,`)
∑

j=max(0,i−n+`)

�

`

j

��

n− `
i− j

�

x i− j(1− x)n−`−(i− j).

Let us note that (Bn,`,i(x))i=0,...,n are positive on ]0,1[ and their sum is equal to 1.

2. The assumption that δ(1)[m](i) is a decreasing function of i cannot be removed since one can

find examples of assortment parameters satisfying δ(1)[m](i)< 0 for every i ∈ ¹0 ; n− 1º and

such that:

(a) µ > 1/2, Vn > 0, but (1/2, . . . , 1/2) is not the only local maximum,

(b) Vn < 0 and gn,µ,s has more than 2n local maxima.
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3. If x i is the proportion of the population with allele 0 at the i-th locus, 2x i(1 − x i) is the

probability that two individuals sampled at random from the population carry different alleles

at the ith locus. The density function of the reversible measure takes its maximum value at a

point x such that for each i ∈ ¹1 ; nº, x i(1− x i) = λ0.

Example 6.2. Let us consider a quadratic sequence of parameters s` = s0 − (b`+ c`2) ∀` ∈ ¹0 ; nº

and let us define the assortment with this sequence by means of the Hamming criterion. If c > 0,

b+ c ≥ 0 and µ > 1/2 then gn,µ,s has 3n critical points if and only if b+ nc > 8µ− 4. In this case,

λ0 = n−1/2
q

2µ−1
4c
+ O(n−1). If hn,k denotes the value of the function hn,µ,s at a critical point of

index n− k then hn,0 − hn,n ∼
n→+∞

c
8
n2 and hn,0 − hn,1 ∼

n→+∞
n1/21/2

p

c(2µ− 1) (see Appendix A.3

for more details).

6.3 Graphs of the density and simulations of trajectories in the two and three locus

cases

Figures 2 to 4 show graphs of the density of the reversible stationary measure in the two-locus case

for µ = 0.6 and for several values of s1− s0 and s2− s1, the assortative mating being defined by the

Hamming distance. Figures 2 and 3 illustrate the two situations considered in Proposition 6.3 when

µ > 1/2. When s1 − s0 = 0, the density may have a continuum of critical points as in Fig. 4; this

corresponds to a case in which the assumption δ(1)[m](n−2)< 0 of Proposition 6.3 is not satisfied.

To illustrate the evolution of the 0-allelic frequency when µ > 1/2 and the assortative mating

strongly favours pairing between similar types, simulations were run in a population of size N = 103

with the two-locus model (Fig. 5) and with the three-locus model (Fig. 6). For these simulations,

every individual initially carries the allele 0 at every locus, recombination occurs independently at

each locus and the assortative mating is defined by the Hamming criterion. The trajectory is plotted

at intervals of size N between the iterations N2 and 33N2. To help to visualize the evolution,

the colour of the plot changes every 1
2
N2 iterations. The form of the density of the stationary

measure here is highly reminiscent of that of the fitness landscapes studied in the adaptive evolution

literature in modelling additive traits under frequency dependent intraspecific competition, see e.g.

Schneider (2007) and references therein. In the deterministic setting the existence of multiple ‘long

term equilibria’ renders the behaviour of the system very sensitive to assumptions about the initial

conditions. In our setting, the presence of genetic drift is sufficient for the population to (eventually)

explore the neighbourhoods of all the maxima, irrespective of its starting point. The time spent by

the population in the neighbourhood of a maximum depends on the assortment parameters (Fig. 6a

and 6b).
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Figure 2: Graph of g2,µ,s when µ = 0.6,

s1 − s0 = −0.4 and s2 − s1 = −0.6 so that

the point (1/2, 1/2) is the only critical point

of the density g2,s,µ.
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Figure 3: Graph of g2,µ,s when µ = 0.6, s1 −

s0 =−2 and s2−s1 =−6 so that λ0 ' 0.0766.

A black dot marks the position of each ex-

tremum and a cross is plotted at each saddle

point.
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Figure 4: Graph of g2,µ,s when µ = 0.6, s1 −

s0 = 0 and s2−s1 =−12; there is a continuum

of critical points.
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Figure 5: Simulation of the evolution of the 0-

allelic frequency in the two-locus model. The

population size is N = 103, µ = 1, s1 − s0 =

−15, s2 − s1 = −210. A black dot marks the

position of each extremum and a cross is plot-

ted at each saddle point. In this example,

λ0 ' 0.034 and λ1 ' 0.008.
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(a)

Assortment parameters: s1 − s0 = −20, s2 −

s1 =−40 and s3− s2 =−60.

Characteristics of the stationary density:

λ0 ' 0.043, λ1 ' 0.031 and λ2 ' 0.025.

h0 − h1 = 7.9, h0 − h2 ' 24.3 and

h0− h3 ' 49.8.
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(b)

Assortment parameters: s1 − s0 = −30, s2 −

s1 =−60 and s3− s2 =−90.

Characteristics of the stationary density:

λ0 ' 0.030, λ1 ' 0.021 and λ2 ' 0.017.

h0 − h1 = 12.6, h0 − h2 ' 38.6 and

h0− h3 ' 78.7.

Figure 6: Simulations of the evolution of the 0-allelic frequency with the three-locus model for

two different sets of assortment parameters. The assortative mating favours more strongly pairing

between similar types in Fig. 6b. The size of the population is N = 103 and the mutation rate is

µ= 1. A black dot marks the position of each global maximum of the stationary density, a cross the

position of each saddle point of index 2 and a diamond the position of each saddle point of index

1. Some numerical characteristics of the stationary density are presented to the right of each figure:

for i ∈ {1,2, 3}, the value of λi = ξi(1−ξi) provides the position of the critical points of index 3− i

(see Proposition 6.3) and hi is the value of the log-density hn,µ,s at a critical point of index 3− i.
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6.4 Proofs of Propositions 6.2 and 6.3

Proof of Proposition 6.2 Let us introduce some notation in order to shorten the expressions. We

set ν = 2µ− 1, ρ(u) = u(1− u) for u ∈ [0, 1], ρ(x) = (ρ(x1), . . . ,ρ(xn)),

h̄(x) = ν
n
∑

i=1

log(x i) +
1

2

n
∑

`=1

(m(`)−m(0))
∑

L⊂¹1;nº, |L|=`

∏

j∈L

(2x j)
∏

k∈¹1;nº\L

(1− 2xk)

and h(x) = h̄(ρ(x)) for x = (x1, . . . , xn) ∈]0, 1[n. With this notation, gn,µ,s(x) = Cn,µ,s exp(h(x)).

1. For every x ∈]0,1[n and i ∈ ¹1 ; nº, ∂ih(x) = (1− 2x i)∂i h̄(ρ(x)) where

∂i h̄(x) =
ν

x i
+

n−1
∑

`=0

δ(1)[m](`)
∑

L⊂¹1;nº\{i},|L|=`

∏

j∈L

(2x j)
∏

k∈¹1;nº\(L∪{i})

(1− 2xk).

First, the point un = (1/2, . . . , 1/2) is a critical point of hn,µ,s and the Hessian matrix at this

point is the diagonal matrix −2∆In where

∆= 4ν + 2−(n−1)
n−1
∑

i=0

�

n− 1

i

�

δ(1)[m](i) = 4Vn.

This proves the first two assertions of the proposition.

2. The last two assertions follow from the fact that ∂i h̄(x) and ∆ are increasing functions

of δ(1)[m](`) for every `. Let us prove assertion 3 to illustrate the method. First, if

δ(1)[m(s)](`) = −(8µ− 4) for every ` ∈ ¹0 ; n− 1º then the n coordinates of the diffusion

are independent. In this case, ∆ = 0 and the stationary density has only one critical point at

(1/2, . . . , 1/2) which is a maximum. If {si, j , (i, j) ∈A 2} is a family of assortment parameters

such that ∂i h̄(x) is nonnegative for every x ∈]0,1/4]n and the density gn,s,µ has a unique

critical point at (1/2, . . . , 1/2) which is a maximum, then the same is true for any family of

assortment parameters {ŝi, j , (i, j) ∈ A 2} such that δ(1)[m(ŝ)](`) ≥ δ(1)[m(s)](`) for every

` ∈ ¹0 ; n− 1º.

Proof of Proposition 6.3 We retain the notation introduced in the proof of Proposition 6.2. For

k ∈ ¹1 ; nº, we set αk = 2kδ(k+1)[m](0) and denote by en,k the elementary symmetric polynomial

function in n variables of degree k:

en,0(x) = 1 and en,k(x) =
∑

L⊂¹1;nº,
|L|=k

∏

`∈L

x` for k ∈ ¹1 ; nº.
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For instance, en,1(x) = x1+ . . .+ xn, en,2(x) =
∑

1≤i< j≤n x i x j .

With this notation

h̄(x) = ν
n
∑

i=1

ln(x i) +
n−1
∑

`=0

α`en,`+1(x).

In the proof we shall use (several times) the following identity for elementary symmetric polynomial

functions:

Lemma 6.1. Let n be an integer greater than 1 and let k ∈ ¹0 ; n− 2º. For every x ∈ IRn, set

x̂ (i) = (x1, . . . , x i−1, x i+1, . . . , xn) for i ∈ ¹1 ; nº and

x̂ (i, j) = x̂ ( j,i) = (x1, . . . , x i−1, x i+1, . . . , x j−1, x j+1, . . . , xn) for i, j ∈ ¹1 ; nº such that i < j.

Then,

x ien−1,k( x̂
(i))− x jen−1,k( x̂

( j)) = (x i − x j)en−2,k( x̂
(i, j)).

We shall also use the following alternative expression for symmetric polynomial functions that are

similar to the polynomial term in h:

Lemma 6.2. Let n ∈ IN∗ and let a0, . . . , an be real numbers. Then for every x ∈ IRn,
n
∑

k=0

2kδ(k)[a](0)en,k(x) =
n
∑

i=0

ai

∑

I⊂¹1;nº, |I |=i

∏

i∈I

2x i

∏

j 6∈I

(1− 2x j).

In particular, for every y ∈ IR and ` ∈ ¹0 ; nº,
n
∑

k=0

2kδ(k)[a](0)en,k((1/4)
⊗`, y⊗(n−`)) =

n
∑

i=0

aiBn,`,i(2y)

where Bn,`,i(y) = 2−`
min(i,`)
∑

j=max(0,i−n+`)

�

`

j

��

n− `
i− j

�

y i− j(1− y)n−`−(i− j).

Proof. See Corollary A.2.

1. Let us assume that x = (x1, . . . , xn) is a critical point of gn,µ,s different from un. Let ` denote

the number of coordinates equal to 1/2 (` ∈ ¹0 ; n− 1º). Every coordinate x i different from

1/2 has to satisfy: ∂ihn,µ,s(ρ(x)) = 0, that is

ν +ρ(x i)
n−1
∑

k=0

αken−1,k(Öρ(x)
(i)
) = 0.

In particular, it follows from Lemma 6.1 that if x i and x j are two coordinates of the critical

point x not equal to 1/2 then

ρ(x i) = ρ(x j) or
n−2
∑

k=0

αken−2,k(Öρ(x)
(i, j)
) = 0.
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By Lemma 6.2,
n−2
∑

k=0

αken−2,k(x) =
n−2
∑

`=0

δ(1)[a](`)Q`(x),

where Q` denotes a polynomial function which is positive on x ∈]0,1/4[n−2 for every

` ∈ ¹0 ; n− 2º. Thus this sum cannot vanish in ]0, 1/4[n−2 under the assumption that all

coefficients δ(1)[m](i) have the same sign and that for at least one i ≤ n− 2, δ(1)[m](i) is

non-zero. Therefore, such a critical point exists only if there exists a solution in the interval

]0, 1/4[ of

ν + y
n−1
∑

k=0

αken−1,k

�

(
1

4
)⊗`, y⊗(n−`−1)

�

= 0. (E
′

`)

In order to study the solutions of (E
′

`), let φ`(y) denote the left-hand side of (E
′

`):

φ`(y) = ν + y
n−1
∑

k=0

αken−1,k((
1

4
)⊗`, y⊗(n−`−1)) (6.1)

By Lemma 6.2,

φ`(y) = ν + y
n−1
∑

i=0

Bn−1,`,i(2y)δ(1)[m](i). (6.2)

Therefore, (E
′

`) coincides with (E`) of Remark 6.3. The derivative of φ` is equal to:

φ
′

`(y) =
n−1
∑

i=0

Bn−1,`,i(2y)δ(1)[m](i)

+ 2y(n− 1− `)
n−2
∑

i=0

Bn−2,`,i(2y)(δ(1)[m](i+ 1)−δ(1)[m](i)).

If δ(1)[m](n−1)≤ · · · ≤ δ(1)[m](0)≤ 0 (respectively δ(1)[m](n−1)≥ · · · ≥ δ(1)[m](0)≥ 0),

φ` is a decreasing function on the interval [0,1/2] (resp. an increasing function on the

interval [0, 1/2]). The value of φ` at 0 is ν and the value at 1/4 is Vn. Therefore, under the

assumptions of 1 or 2 of the proposition, for every ` ∈ {0, . . . , n− 1} (E
′

`) has no solution in

]0,1/4[ if Vn and ν have the same sign and has exactly one solution in ]0, 1/4[ denoted by λ`
if Vn and ν have opposite signs. This proves assertions 1.(a) and 2.(a).

For every pair of disjoint subsets I and J of ¹1 ; nº, let us introduce the following point:

uI ,J = (x1, . . . , xn) with

x i =















1/2 if i ∈ I ,

1/2+ 1/2
p

1− 4λ|I | if i ∈ J ,

1/2− 1/2
p

1− 4λ|I | if i ∈ ¹1 ; nº \ (I ∪ J).
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We have shown that if Vn and ν have opposite signs, then every point uI ,J is a critical point

and any critical point is one of these points uI ,J .

So that we may use our conclusions above, from now on, we assume that the hypotheses stated in

point 1 of the proposition are satisfied. However, the computations that follow do not depend on

these hypotheses, and so our proof is easily modified to the setting of point 2.

2. Let us study the Hessian matrix of hn,µ,s at a critical point uI ,J such that |I | ≤ n− 1. For that,

set `= |I |, `+ = |J | and `− = n− `− `+ and let us introduce the following notations:

a` = ∂1h̄((
1

4
)⊗`, (λ`)

⊗(n−`)), b` =−(1− 4λ`)
ν

λ2
`

,

c` = (1− 4λ`)∂
2
n,n−1h̄((

1

4
)⊗`, (λ`)

⊗(n−`)).

The Hessian matrix of hn,µ,s at uI ,J is permutation-similar to the following block matrix:

HI ,J =











A` 0 0

0 B`,`+ C `
0 C ` B`,`−











where

• A` denotes the scalar matrix −2a` I` with a` = ∂1h̄((1
4
)⊗`, (λ`)⊗(n−`)),

• B`,k denotes the following k-by-k matrix : B`,k =

















b` c` · · · c`

c`
. . . . . .

...
...

. . . . . . c`
c` · · · c` b`

















,

• C ` denotes the `+-by-`− matrix all the elements of which are equal to −c`.

By assumption on µ, b` < 0. To complete the proof of assertions (i) and (ii) of 1-(b), we shall

prove that a` < 0 and that b` < c` < 0. That will imply that the submatrix





B`,`+ C `
C ` B`,`−



 is

negative definite (for more details, see Lemma A.3) hence that the Hessian matrix of hn,µ,s at

a point uI ,J has |I | positive eigenvalues and n− |I | negative eigenvalues.

First, let us study the sign of a` = 4ν +
∑n−1

i=0 αien−1,i((
1
4
)⊗(`−1),λ⊗(n−`)

`
). As φ`(λ`) = 0, an

application of Lemma 6.1 yields:

a` = (1− 4λ`)
n−2
∑

i=0

αien−2,i((
1

4
)⊗(`−1),λ⊗(n−1−`)

`
).
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The right-hand side can be rewritten using Lemma 6.2:

a` = (1− 4λ`)
n−2
∑

i=0

δ(1)[m](i)Bn−2,`−1,i(2λ`).

The conditions on δ(1)[m](i) imply that a` is negative.

Let us now study the coefficients b̃` = (1− 4λ`)−1 b` and c̃` = (1− 4λ`)−1c`. As in the study

of a` we use that φ`(λ`) = 0 and Lemma 6.2 to write b̃` and c̃` in terms of the coefficients

δ(1)[m](s)(i):

b̃` =
1

λ`

n−1
∑

i=0

δ(1)[m](i)Bn−1,`,i(2λ`),

c̃` = 2
n−2
∑

i=0

(δ(1)[m](i+ 1)−δ(1)[m](i))Bn−2,`,i(2λ`).

As δ(1)[m(s)](i) is assumed to be a decreasing sequence, c̃` < 0. After some computations,

we obtain:

λ`(c̃`− b̃`) =−
n−2
∑

i=0

δ(1)[m](i)Bn−2,`,i(2λ`).

The conditions on δ(1)[m](i) imply that c̃` > b̃`.

3. Let us prove that 0 < λn−1 < · · · < λ0 < 1/4 , which gives the relative positions of the

coordinates of the critical points.

Let ` ∈ ¹0 ; n− 2º. If we return to the expression (6.1) of φ`, use Lemma 6.1 and then

Lemma 6.2, we obtain:

φ`+1(y)−φ`(y) = y(1/4− y)
n−2
∑

i=0

αi+1en−2,i((1/4)
⊗`, y⊗(n−2−`))

= 2y(1/4− y)
n−2
∑

i=0

δ(2)[m](i)Bn−2,`,i(2y).

By assumption, δ(2)[m](i) ≤ 0 for every i ∈ ¹0 ; n− 2º hence φ`+1(y) ≤ φ`(y) for every

y ∈ [0, 1/4]. As the functions φ` are decreasing on [0,1/4], we deduce that λ`+1 ≤ λ` for

every ` ∈ ¹0 ; n− 2º. As the two critical points u
¹1;`º,; and u

¹1;`+1º,; have not the same

properties, they cannot coincide and thus λ`+1 < λ` for every ` ∈ ¹0 ; n− 2º.

4. Proof of assertion 1.(b).v: let h` denote the value of hn,µ,s at a saddle point of index n− `:

p` = ((1/2)⊗`, (ξ`)⊗(n−`)). To prove that h` > h`+1 for every ` ∈ ¹0 ; n− 2º, we shall use the

properties of the gradient dynamical system d x(t)
d t
= −∇h̃(x) with h̃ = −hn,µ,s. Fix a positive

value M large enough so that UM = h̃−1([−M , M]) contains all critical points of h (such an
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M exists since h̃(x) tends to infinity as x tends to the boundary of [0, 1]n). The function h̃

decreases along trajectories and a trajectory of a point x ∈ M converges to a critical point of

h̃ as t tends towards +∞, since h̃ has only isolated critical points. For k ∈ {0, . . . , n− 1}, let

U (k)M denote the subset:

U (k)M = {x ∈ UM , x1 = · · ·= xk = 1/2 and x i < 1/2 ∀i > k}.

Every subset U (k)M contains exactly one critical point, the saddle point pk. As ∂i h̃(x) = 0

at points x such that x i = 1/2, the subset U (k)M is positively invariant by the gradient flow.

Therefore, to prove that hk > hk+1, it is enough to show that there exists 0 < y0 < 1/2 such

that for y ∈]y0, 1/2[, h̃((1/2)⊗k, y,ξ⊗n−k−1
k+1 )< h̃(pk+1).

As h̃((1/2)⊗k, y,ξ⊗n−k−1
k+1 ) = −h̄n,µ,s((1/4)⊗k, y(1 − y),λ⊗n−k−1

k+1 ), it is enough to show that

∂k+1h̄n,µ,s((1/4)⊗(k+1),λ⊗(n−k−1)
k+1 ) < 0. Using that λk+1 is solution of the equation (Ek+1), we

obtain

∂k+1h̄n,µ,s((1/4)
⊗(k+1),λ⊗(n−k−1)

k+1 ) = (1− 4λk+1)
n−2
∑

i=0

δ(1)[m](i)Bn−2,k,i(2y)< 0.

7 Proof of convergence to the diffusion

In this section, we prove convergence to the diffusion approximation in the n-locus case (Theo-

rem 4.1). We also establish the two simple expressions for the drift presented in §4.

First, the properties of the generator Gn,s stated in assertion (a) of Theorem 4.1 can be obtained by

applying the following theorem established by Cerrai and Clément:

Theorem 7.1 (Cerrai & Clément 2004). Let S +(IRn) be the space of symmetric, non-negative definite,

n × n matrices. Let A : [0, 1]n → S +(IRn) and b : [0, 1]n → IRn be mappings of class C2. For

i ∈ {1, . . . , n} and ε ∈ {0,1}, let ν i
ε denote the unit inward normal vector of the hypercube C i

ε = {x ∈

[0, 1]n, x i = ε}. Let us assume the following two conditions:

• for every i ∈ {1, . . . , n}, ε ∈ {0,1} and x ∈ C i
ε, A(x)ν i

ε(x) = 0 and 〈b(x),ν i
ε(x)〉 ≥ 0;

• for every i, j ∈ {1, . . . , n}, Ai, j(x) depends only on x i and x j .

Then the operator

L =
1

2

n
∑

i=1

n
∑

j=1

Ai, j(x)
∂ 2

∂x i
∂x j

+
n
∑

i=1

bi(x)
∂ 2

∂x i

is closable in C([0,1]n) and its closure is the generator of a strongly continuous semigroup of contrac-

tions.

2161



To prove the convergence result, we use the following theorem, due to Ethier and Nagylaki, on

diffusion approximations for Markov chains with two time scales.

Theorem 7.2 (Ethier & Nagylaki 1980, Theorem 3.3). For N ∈ IN∗, let {ZN
k , k ∈ IN} be a homo-

geneous Markov chain in a metric space EN with Feller transition function. Let F1 and F2 be compact

convex subsets of IRn and IRm respectively, having non-empty interiors. Assume further that 0 ∈
◦
F2. Let

ΦN : EN → F1 and ΨN : EN → F2 be continuous functions. Define X N
k = ΦN (ZN

k ) and Y N
k = ΨN (ZN

k )

for each k ∈ IN. Let (εN )N and (δN )N be two positive sequences such that δN → 0 and εN/δN → 0.

Assume that there exist continuous functions a : F1 × IRm → IRn⊗ IRn, b : F1 × IRm → IRn and

c : F1 × IRm → IRm such that for i, j ∈ ¹1 ; nº and ` ∈ ¹1 ; mº the following properties (a)-(e)

hold as N →+∞ uniformly in z ∈ EN where x = ΦN (z) and y =ΨN (z):

(a) ε−1
N IEz[X N

1 (i)− x(i)] = bi(x , y) + o(1),

(b) ε−1
N IEz

�

(X N
1 (i)− x(i))(X N

1 ( j)− x( j))
�

= ai, j(x , y) + o(1),

(c) ε−1
N IEz[(X N

1 (i)− x(i))4] = o(1),

(d) δ−1
N IEz[Y N

1 (`)− y(`)] = c`(x , y) + o(1),

(e) δ−1
N IEz[(Y N

1 (`)− y(`))2] = o(1).

Assume further that

(f) c is of class C2, c(x , 0) = 0 for all x ∈ IRm and the solution of the differential equation

d

d t
u(t, x , y) = c(x , u(t, x , y)), u(0, x , y) = y.

exists for all (t, x , y) ∈ [0,+∞[×F1× F2 and satisfies

lim
t→+∞

sup
(x ,y)∈F1×F2

|u(t, x , y)|= 0.

(g) The closure of the following operator

L =
1

2

n
∑

i, j=1

ai, j(x , 0)
∂ 2

∂x i
∂x j

+
n
∑

i=1

bi(x , 0)
∂

∂x i

, D(L ) = C2(F1),

generates a strongly continuous semigroup on C(F1) corresponding to a diffusion process X in F1.

Then the following conclusions in which the symbol⇒ denotes convergence in distribution, hold:

(i) If X N
0 ⇒ X (0) then {X N

[t/εN ]
, t ≥ 0} ⇒ X (·) in DF1

([0,+∞[) (where DF1
([0,+∞[) is the space

of càdlàg paths ω : [0,∞)→ F1 with the Skorohod topology),
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(ii) For every positive sequence (tN )N that converges to +∞, Y N
[tN/δN ]

⇒ 0.

Remark 7.1. We have only stated the part of Ethier and Nagylaki’s theorem that we need. The full

statement also gives a convergence result when the sequence (δN )N converges to a positive real

number.

To apply this theorem, we consider the two sequences εN = N−2 and δN = N−1, we set EN = {z ∈

(N−1 IN)A ,
∑

i∈A z(i) = 1}, and we define by (ΦN ,ΨN ) a change of coordinates such that Ψ−1
N ({0})

is the linkage equilibrium manifold:

ΦN : EN → [0, 1]n and ΨN : EN → [−1,1]2
n−n−1

z 7→ (u1, . . . , un) z 7→ (uI , I ⊂ ¹1 ; nº s. t. |I | ≥ 2)

where ui =
∑

`,`i=0 z(`) for i ∈ ¹1 ; nº and uI =
∏

i∈I ui −
∑

`,`|I≡0 z(`) for each I ⊂ ¹1 ; nº having

at least two elements.

First (in §7.1), we shall check that X (N)1 = ΦN (Z
(N)
1 ) and Y (N)1 = ΨN (Z

(N)
1 ) satisfy the conditions

(a)-(f) of Ethier and Nagylaki’s theorem with the following expressions for the functions ai, j(x , 0)

and bi(x , 0):

ai, j(x , 0) = x(i)(1− x(i))1I{i= j}, (7.1)

bi(x , 0) = (1− x(i))µ1− x(i)µ0+ (1/2− x(i))x(i)(1− x(i))Pi,s(x), (7.2)

where

Pi,s(x) =
∑

J⊂¹1;nº\{i}

∑

H⊂¹1;nº\{i}

(sJ∪{i},H − sJ ,H)

∏

j∈J

x( j)
∏

h∈H

x(h)
∏

j∈¹1;nº,
j 6∈J∪{i}

(1− x( j))
∏

h∈¹1;nº,
h6∈H∪{i}

(1− x(h)),

and, for two subsets I and J of ¹1 ; nº, sI ,J denotes the assortment parameter si, j for the types

i = (0I ,1 Ī) and j = (0J ,1J̄ ).

In §7.2 we shall show that Pi,s has the following two equivalent expressions:

Pi,s(x) =
∑

A⊂¹1;nº\{i}

2|A|δA∪{i}[m(s)](;)
∏

`∈A

x(`)(1− x(`))

=
∑

A⊂¹1;nº\{i}

δi[m(s)](A)
∏

k∈A

2x(k)(1− x(k))
∏

6̀∈A∪{i}

�

1− 2x(`)(1− x(`))
�

.

2163



7.1 Verification of the conditions (a)-(f) of Ethier and Nagylaki’s theorem

As the proportion of individuals of a given type i can only change by ±1/N in one step:

• If r ∈ IN∗ and i ∈A , then

IEz
�

(Z (N)1 (i)− z(i))r
�

= N−r
∑

j∈A\{i}

�

fN (z, j , i) + (−1)r fN (z, i, j)
�

(7.3)

• if r, u ∈ IN∗, i, j ∈A so that i 6= j , then

IEz
�

(Z (N)1 (i)− z(i))r(Z (N)1 ( j)− z( j))u
�

= N−(r+u)
�

(−1)r fN (z, i, j) + (−1)u fN (z, j , i)
�

(7.4)

• if r ≥ 3 and i(1),. . . ,i(r) ∈A so that at least three of them are distinct, then

IEz

h
r
∏

u=1

�

Z (N)1 (i(u))− z(i(u))
�

i

= 0. (7.5)

Condition (a). To show that condition (a) of Theorem 7.2 holds, we first examine the drift of Z (N).

A Taylor expansion of the transition probabilities of the Markov chain (Z (N)t )t∈IN using assumption

H2 yields the following formula:

Lemma 7.1. For every i ∈A ,

N2 IEz[Z
(N)
1 (i)− z(i)] = NB(0)i (z) + B(1)i (z) +O(N−1), uniformly on z ∈ EN ,

where

B(0)i (z) =
∑

k∈A

∑

j∈A
z( j)z(k)q(( j , k); i)− z(i)

B(1)i (z) =
∑

k∈A

∑

j∈A
z( j)z(k)

�
n
∑

u=1

q(( j , k); (1− iu, i
¹1;nº\{u}))µ1−iu − q(( j , k); i)

n
∑

u=1

µiu

�

+
∑

k∈A

∑

j∈A
s j ,kz( j)z(k)q(( j , k); i)− z(i)

∑

k∈A
si,kz(k)

−
∑

k∈A

∑

j∈A

∑

h∈A
s j ,hz( j)z(h)z(k)q(( j , k); i) + z(i)

∑

h∈A

∑

k∈A
si,hz(k)z(h)

Proof. By assumption H2, for two different types i, j ∈A

fN (z, i, j) :=
∑

k,`∈A
z(i)z(k)w(N)(z, i, k)q((i, k);`)µ(N)(`, j).
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where w(N)(z, i, k) = 1+ 1
N

�

si,k −
∑

h∈A si,hz(h)
�

+O(N−2) and

µ(N)(`, j) =







1− 1
N

∑n
u=1µ ju +O(N−2) if dh(`, j) = 0

1
N
µ1− ji +O(N−2) if dh(`, j) = 1 and `i = 1− ji

O(N−2) if dh(`, j)≥ 2

To prove Lemma 7.1, it suffices to use these expansions in

IEz
�

Z (N)1 (i)− z(i)
�

= N−1
∑

j 6=i

�

fN (z, j , i)− fN (z, i, j)
�

and to simplify.

Let u ∈ ¹1 ; nº. To establish an expression for the drift of X (N)(u), we must compute
∑

i∈A ,iu=0 B(0)i (z) and
∑

i∈A ,iu=0 B(1)i (z). Direct computations yield:

Lemma 7.2. For every u ∈ ¹1 ; nº and z ∈ EN ,
∑

i∈A , iu=0

B(0)i (z) = 0, (7.6)

∑

i∈A , iu=0

B(1)i (z) = (1− x(u))µ1− x(u)µ0+
1

2
Gu(z), (7.7)

where

x(u) =
∑

i∈A , iu=0

z(i) and Gu(z) =
∑

j∈A

∑

h∈A
z( j)z(h)s j ,h(1I{ ju=0}−x(u)).

Proof. For ε ∈ {0,1} and i ∈ A , let σ(ε)u (i) denote the type i modified by setting the allele ε at the

locus u. We shall use the following formula several times:

∑

i∈A , iu=0

q(( j , k);σ(ε)u (i)) = 1I{ ju=ε}+r̄(u)(1I{ku=ε}−1I{ ju=ε}) (7.8)

with r̄(u) =
∑

I⊂¹1;nº\{u} rI =
1
2

by assumption H1.

First, formula (7.8) with ε= 0 provides

∑

i∈A , iu=0

B(0)i (z) =
∑

j∈A , ju=0

z( j) + r̄(u)
∑

j∈A

∑

k∈A
(1I{ku=ε}−1I{ ju=ε})−

∑

i∈A , iu=0

z(i) = 0.

Let B(1, j)
i (z) denote the j-th line of the expression of B(1)i (z) for j ∈ {1, 2,3}.

As
∑

i∈A , iu=0,ix=a
q(( j, k);σεx(i)) does not depend on the value of a if u 6= x:

∑

i∈A , iu=0

B(1,1)
i (z) =

∑

k∈A

∑

j∈A
z( j)z(k)

∑

i∈A , iu=0

�

q(( j , k);σ(1)u (i))µ1 − q(( j , k);σ(0)u (i))µ0

�

.
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Applying (7.8) again, we obtain:
∑

i∈A , iu=0

B(1,1)
i (z) = (1− x(u))µ1− x(u)µ0.

Due to the symmetry of the parameters: si, j = s j ,i for i, j ∈A , we have:
∑

i∈A , iu=0

B(1,2)
i (z) = 0.

Finally, computations using (7.8) yet again yield:

∑

i∈A , iu=0

B(1,3)
i (z) =

1

2
Gu(z).

To obtain condition (a), it remains to express Gu(z) in the new coordinates. The following lemma

describes the inverse of the change of coordinates (ΦN ,ΨN ):

Lemma 7.3. For z ∈ EN and L ⊂ ¹1 ; nº, set x(L) =
∑

i, i|L≡0 z(i) with the convention x(;) = 1 and

y(L) =
∏

`∈L x(`)− x(L) if |L| ≥ 2. Then for every J ⊂ ¹1 ; nº,

z(0J ,1J̄ ) =
∏

i∈J

x(i)
∏

i∈J̄

(1− x(i))−
∑

I⊂¹1;nº s. t. J⊂I , |I |≥2

(−1)|I |−|J | y(I). (7.9)

Proof. First, by induction on n− |J |, we show that

z(0J ,1J̄ ) =
∑

I⊂¹1;nº s. t. J⊂I

(−1)|I |−|J |x(I). (7.10)

Since z(0) = x(¹1 ; nº), the equality (7.10) holds for J = ¹1 ; nº.

Let m ∈ ¹1 ; nº. Assume that the formula (7.10) holds for every subset J of ¹1 ; nº such that

|J | ≥ m. Let K be a subset of ¹1 ; nº with m− 1 elements.

z(0K ,1K̄) = x(K)−
∑

L⊂¹1;nº s. t. K(L

z(0L ,1 L̄)

We apply the formula (7.10) to every term in the sum and we invert the double sum we have

obtained:

z(0K ,1K̄) = x(K)−
∑

H⊂¹1;nº s. t. K(H

x(H)
�

∑

L⊂¹1;nº s. t. K(L⊂H

(−1)|H|−|L|
�

.

The sum between parentheses is equal to

|H|−|K |
∑

v=1

(−1)|H|−|K |−v
�|H| − |K |

v

�

=−(−1)|H|−|K |.
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Thus the formula (7.10) is also satisfied for the subset K which completes the induction.

To complete the proof, we replace x(I) in (7.10) with
∏

i∈I x(i)− y(I) for every subset I having at

least two elements and use the following equality:

∑

I⊂¹1;nº, J⊂I

(−1)|I |−|J |
∏

i∈I

x(i) =
∏

j∈J

x( j)
�

∑

L⊂¹1;nº\J

(−1)|L|
∏

`∈L

x(`)
�

=
∏

j∈J

x( j)
∏

i∈¹1;nº\J

(1− x(i)).

To shorten the notation, set

• Λu = ¹1 ; nº \ {u} for u ∈ ¹1 ; nº

• ΠJ (v) =
∏

j∈J v( j) for v ∈ [0, 1]n and J ∈ P (¹1 ; nº) with the usual convention Π; = 1,

• sI ,J = si, j for i = (0I ,1 Ī) and j = (0J ,1J̄ ).

With this notation, for every J ⊂ Λu,

• z(0J ,1J̄ ) = (1− x(u))ΠJ (x)ΠΛu\J (1− x)− RJ (y),

• z(0J∪{u},1J∪{u}) = x(u)ΠJ (x)ΠΛu\J (1− x)− RJ∪{u}(y),

where RJ (y) and RJ∪{u}(y) denote polynomial functions that vanish at y ≡ 0. Therefore,

Gu(z) = x(u)(1− x(u))
∑

J⊂Λu

∑

H⊂Λu

ΠJ (x)ΠH(x)ΠΛu\J (1− x)ΠΛu\H(1− x)×

�

x(u)(sJ∪{u},H∪{u}− sJ ,H∪{u}) + (1− x(u))(sJ∪{u},H − sJ ,H)
�

+ Ru(x , y),

where Ru(x , y) is a polynomial function in the variables x(1), . . . , x(n) and y(I) for I ⊂ ¹1 ; nº such

that |I | ≥ 2, that vanishes in the equilibrium manifold: Ru(x , 0) = 0.

The expression for Gu(z) can be simplified by using the two assumptions H4 on the assortment

parameters, that is sJ ,H = sH,J for every J , H ⊂ ¹1 ; nº and sJ∪{u},H∪{u} = sJ ,H for every u ∈ ¹1 ; nº

and J , H ⊂ Λu:

Gu(z) = (1− 2x(u))x(u)(1− x(u))×
∑

J⊂Λu

∑

H⊂Λu

ΠJ (x)ΠH(x)ΠΛu\J (1− x)ΠΛu\H(1− x)(sJ∪{u},H − sJ ,H) + Ru(x , y).

In summary, we have established the following expansion of the drift of X (N):
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Lemma 7.4. Assume that hypotheses H1, H2, H3 and H4 hold. For every i ∈ ¹1 ; nº,

N2 IEz[X
(N)(i)− x(i)] = (1− x(i))µ1− x(i)µ0

+ (
1

2
− x(i))x(i)(1− x(i))Pi,s(x) + Ri(x , y) +O(N−1) (7.11)

uniformly on z ∈ EN where

Pi,s(x) =
∑

J⊂Λu

∑

H⊂Λu

ΠJ (x)ΠH(x)ΠΛu\J (1− x)ΠΛu\H(1− x)(sJ∪{u},H − sJ ,H)

and Ri(x , y) is a polynomial function in the variables x(1), . . . , x(n) and y(I) for I ∈ P (¹1 ; nº) with

at least two elements such that Ri(x ,0) = 0.

Condition (b). Computations similar to those used to obtain (7.6) lead to the following expansion

of the second moments of X (N)1 − x , showing that condition (b) holds:

Lemma 7.5. N2 IEz
�

(X (N)1 (i)− x(i))(X (N)1 ( j)− x( j))
�

= ai, j(x , y) +O(N−1), with






ai,i(x , y) = x(i)(1− x(i)) +O(N−1)

ai, j(x , y) =−2
�

∑

I⊂¹1;nº\{i, j}
rI

�

y({i, j}) +O(N−1) if i 6= j

uniformly on z ∈ EN .

Proof. Let i, j ∈ ¹1 ; nº and z ∈ EN . By definition of X (N),

N2 IEz
�

(X (N)1 (i)− x(i))(X (N)1 ( j)− x( j))
�

= N2
∑

k∈A , ki=0

∑

`∈A , ` j=0

IEz
�

(Z (N)1 (k)− z(k))(Z (N)1 (`)− z(`))
�

Using formulae (7.3) and (7.4) and assumption H2, we obtain

N2 IEz
�

(X (N)1 (i)− x(i))(X (N)1 ( j)− x( j))
�

=
∑

k∈A

∑

`∈A
( fN (z,`, k) + fN (z, k,`))(1I{ki=0,k j=0}−1I{ki=0,` j=0})

= T (1)i, j + T (2)i, j − T (3)i, j − T (3)j,i +O(N−1),

where

T (1)i, j =
∑

t∈A
z(t )

∑

`∈A
z(`)

∑

k∈A , ki=k j=0

q((`, t ); k),

T (2)i, j =
∑

t∈A
z(t )

∑

k∈A , ki=k j=0

z(k)
∑

`∈A
q((k, t );`),

T (3)i, j =
∑

t∈A
z(t )

∑

`∈A , ` j=0

z(`)
∑

k∈A , ki=0

q((`, t ); k).
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With the convention x({i, j}) = x(i) if i = j, we have T (2)i, j = x({i, j}) and it follows from assumption

H1 (rI = r Ī for every I ⊂ ¹1 ; nº) that

T (1)i, j = x(i)x( j) +
∑

I⊂¹1;nº

rI
�

1I{i∈I , j∈I}+1I{i 6∈I , j 6∈I}
��

x({i, j})− x(i)x( j)
�

= x(i)x( j) + 2
�

∑

I⊂¹1;nº\{i, j}

rI

��

x({i, j})− x(i)x( j)
�

,

T (3)i, j = x({i, j}) +
�

∑

I⊂¹1;nº\{i}

rI

�

�

x(i)x( j)− x({i, j})
�

=
1

2

�

x(i)x( j) + x({i, j})
�

.

Therefore, for every i, j ∈ ¹1 ; nº,

N2 IEz
�

(X (N)1 (i)− x(i))(X (N)1 ( j)− x( j))
�

= 2
�

∑

I⊂¹1;nº\{i, j}

rI

�

�

x({i, j})− x(i)x( j)
�

+O(N−1).

If i = j then x({i, j})− x(i)x( j) = x(i)(1− x(i)) and
∑

I⊂¹1;nº\{i, j}

rI =
1

2
.

Condition (d). Let I be a subset of ¹1 ; nº with at least two elements. To compute the drift of

Y (N)(I), we use the following lemma and formulae (7.3), (7.4) and (7.5) describing the moments

of Z (N)1 − z.

Lemma 7.6. Let J be a finite set. Consider two families of reals {a j , j ∈ J} and {b j , j ∈ J}. The

following identity holds:

∏

j∈J

a j −
∏

j∈J

b j =
∑

K⊂J , K 6=;

∏

k∈K

(ak − bk)
∏

`∈J\K

b`. (7.12)

Proof of Lemma 7.6. To simplify the notation, let 1, . . . , n denote the elements of J .

Set An =
∏n

i=1 ai and Bn =
∏n

i=1 bi . Equality (7.12) can be proved by induction on n using that:

An− Bn = (An−1− Bn−1)(an− bn) + (An−1− Bn−1)bn+ (an− bn)Bn−1

and applying the inductive hypothesis to An−1− Bn−1.

Computations yield:

N IEz[Y
(N)

1 (I)− y(I)] =
∑

i∈I

�
∏

`∈I\{i}

x(`)
∑

j∈A , ji=0

B(0)j (z)
�

−
∑

j∈A , j |I≡0

B(0)j (z) +O(N−1). (7.13)
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uniformly on z ∈ EN . As we have shown that
∑

j∈A , ji=0 B(0)j (z) = 0 for every i ∈ ¹1 ; nº (equation

(7.6)),

N IEz[Y
(N)

1 (I)− y(I)] =−
∑

j∈A , j |I≡0

B(0)j (z) +O(N−1) (7.14)

uniformly on z ∈ EN .

Direct computations provide the following expression of the sum on the right-hand side of (7.14)

using the variables x(L) =
∑

j∈A , j|L≡0 x( j) for L ∈ P (¹1 ; nº):

∑

j∈A , j |I≡0

B(0)j (z) =
∑

L⊂¹1;nº s. t. I∩L 6=;, I∩ L̄ 6=;

rL

�

x(I ∩ L)x(I ∩ L̄)− x(I)
�

(7.15)

To obtain an expression for IEz[Y
(N)

1 (I)− y(I)] in the new coordinates, it remains to replace each

term x(L) for |L| ≥ 2 with
∏

`∈L x(`)− y(L) in (7.15). This leads to the following lemma and shows

that condition (d) holds.

Lemma 7.7. For a subset I of ¹1 ; nº having at least two elements,

N IEz[Y
(N)

1 (I)− y(I)] = cn,I(x , y) +O(N−1) (7.16)

where

cn,I(x , y) =−
�

∑

L⊂¹1;nº,
L∩I 6=;, L̄∩I 6=;

rL

�

y(I)− 1I{|I |≥4}

∑

L⊂¹1;nº,
|I∩L|≥2,|I∩ L̄|≥2

rL y(I ∩ L)y(I ∩ L̄)

+ 1I{|I |≥3}

∑

L⊂¹1;nº,
|I∩L|≥2,|I∩ L̄|≥1

(rL + r L̄)y(L ∩ I)
∏

`∈I∩ L̄

x(`).

Condition (f). The following lemma shows that the condition (f) holds under the assumption H3:

Lemma 7.8. For two distinct loci k,`, let rk,` denote the probability that the offspring does not inherit

the genes at the loci k and ` from the same parent,

rk,` =
∑

I⊂¹1;nº, k∈I and 6̀∈I

(rI + r Ī),

and set r(n) =min(rk,h k, h ∈ ¹1 ; nº and h 6= k).

If r(n)> 0 then the following system of differential equations

(Sn,I)







dvn,I

d t
(t, x , y) = cn,I(x , vn,I(t, x , y))

vn,I(0, x , y) = y(I)
∀I ⊂ ¹1 ; nº s. t. |I | ≥ 2
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has a unique solution vn = {vn,I , I ⊂ ¹1 ; nº and |I | ≥ 2} which is of the form:

vn,I(t, x , y) = exp(−r(n)t) fn,I(t, x , y),

where fn,I is a continuous and bounded function on IR×[0, 1]n × [−1,1]2
n−n−1 so that the value of

fn,I(t, x , y) depends on x and y only via the coordinates x(i) for i ∈ I and y(J) for J ⊂ I such that

|J | ≥ 2.

Remark 7.2. For every subset I ⊂ ¹1 ; nº with two elements say k and `,

dvn,I

d t
(t, x , y) =−rk,` vn,I(t, x , y).

Therefore if r(n) = 0 then there exists a subset I of ¹1 ; nº with two elements such that

vn,I(t, x , y) = y(I). Thus the assumption r(n) > 0 is a necessary condition for the solution of

(Sn,I) to converge to 0 as t tends to +∞ for any initial values.

Proof. Let n ≥ 2 and let I ⊂ ¹1 ; nº be such that |I | ≥ 2. As cn,I(x , y) depends only on the

coordinates x(`) for ` ∈ I and y(L) for L ⊂ I such that |L| ≥ 2, we shall prove by induc-

tion on the number of elements of I that for any J ⊂ I , (Sn,J ) has a unique solution of the

form vn,J (t, x , y) = exp(−r(n)t) fn,J (t, x , y), where fn,J is a continuous and bounded function on

IR×[0,1]n× [−1,1]2
n−n−1 such that the value of fn,J (t, x , y) depends on x and y only through the

values of the coordinates x( j) for j ∈ J and y(L) for L ⊂ J such that |L| ≥ 2.

• If I has two elements say k and `, then (Sn,I) is the following differential equation:







dvn,I

d t
(t, x , y) =−rk,` vn,I(t, x , y)

vn,I(0, x , y) = y(I)

It has a unique solution vn,I(t, x , y) = y(I)e−r(2)t fn,I(t, x , y) where

fn,I(t, x , y) = e−(rk,`−r(2))t y(I).

By assumption r(k,`)≥ r(2)> 0, hence the result holds.

• Let 2≤ m< n. Assume that the inductive hypothesis holds for any subsets J with m elements.

Let I be a subset of ¹1 ; nº with m+ 1 elements. Then

dvn,I

d t
(t, x , y) =−r̄I vn,I(t, x , y) + e−t r(n)g(t, x , y)
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where r̄I =
∑

L⊂¹1;nº s. t.
L∩I 6=;, L̄∩I 6=;

rL and

g(t, x , y) =−1I{|I |≥4}

∑

L⊂¹1;nº s. t.
|I∩L|≥2,|I∩ L̄|≥2

rLe−t r(n) fn,I∩L(t, x , y) fn,I∩ L̄(t, x , y)

+ 1I{|I |≥3}

∑

L⊂¹1;nº s. t.
|I∩L|≥2,|I∩ L̄|≥1

(rL + r L̄) fn,L∩I(t, x , y)
∏

`∈I∩ L̄

x(`).

As r̄I is the probability that the offspring does not inherit all the genes at loci i ∈ I from the

same parent, r̄I ≥ r(n). Therefore the differential equation (Sn,I) has a unique solution:

vn,I(t, x , y) = y(I)e−r̄I t + e−r̄I t

∫ t

0

g(s, x , y)e(r̄I−r(n))sds.

By our assumptions on the functions fn,J for J ( I , g is a bounded continuous function on

IR+×[0, 1]n×[−1,1]2
n−n−1 such that the value of g(t, x , y) depends on x and y only through

the coordinates x(i) for i ∈ I and y(L) for L ⊂ I such that |L| ≥ 2. Therefore, the function

fn,I(t, x , y) = er(n)t vn,I(t, x , y) has the asserted properties.

Conditions (c) and (e). Condition (c) is easy to verify using formulae (7.3), (7.4), (7.5) describing

the moments of Z (N)1 − z. This leads to:

N2 IEz[(X
(N)
1 (i)− x(i))4] = O(N−2) ∀i ∈ ¹1 ; nº, uniformly on z ∈ EN .

Similarly, using Lemma 7.6, we obtain

N IEz[(Y
(N)

1 (I)− y(I))2] = O(N−1) ∀I ⊂ ¹1 ; nº, s.t. |I | ≥ 2, uniformly on z ∈ EN .

7.2 Expressions for the drift

We have shown that the i-th coordinate of the drift of the limiting diffusion is

(1− x(i))µ1− x(i)µ0+ (1/2− x(i))x(i)(1− x(i))Pi,s(x)

where

Pi,s(x) =
∑

J⊂¹1;nº\{i}

∑

H⊂¹1;nº\{i}

(sJ∪{i},H − sJ ,H)×

∏

j∈J

x( j)
∏

h∈H

x(h)
∏

j∈¹1;nº,
j 6∈J∪{i}

(1− x( j))
∏

h∈¹1;nº,
h6∈H∪{i}

(1− x(h)),
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and, for two subsets I and J of ¹1 ; nº, sI ,J denotes the assortment parameter si, j for the types

i = (0I ,1 Ī) and j = (0J ,1J̄ ). The following lemma states that Pi,s(x) is actually a polynomial

function in the variables x(i)(1− x(i)) for i ∈ ¹1 ; nº \ {u}:

Lemma 7.9. Let Λ be a finite subset of IN. Consider a family of reals β = {βI ,J , I , J ⊂ Λ} such that

βI ,J = βI\J ,J\I for every I , J ⊂ Λ. Then,

∑

J⊂Λ

∑

H⊂Λ






βJ ,H

∏

j∈J

x( j)
∏

h∈H

x(h)
∏

j∈Λ\J

(1− x( j))
∏

h∈Λ\H

(1− x(h))







=
∑

L⊂Λ
CL(β)

∏

`∈L

x(`)(1− x(`)) (7.17)

where

CL(β) =
∑

T⊂L

(−2)|T |−|L|
∑

A⊂T

βA,T\A.

Proof. Let PΛ(β) denote the polynomial function on the right-hand side. The proof is by induction

on |Λ|. First, P;(β)(x) = β;,; = C;(β).

Let n ∈ IN. Assume that the equality (7.17) holds for every subset Λ of IN with at most n elements

and every family of reals β satisfying the assumptions of the lemma.

Let Λ be a subset of IN with n+ 1 elements, let j be an element of Λ and let η = {ηI ,J , I , J ⊂ Λ}

be a family of reals such that ηI ,J = ηI\J ,J\I for every I , J ⊂ Λ. We split PΛ(η) into a sum over the

subsets of Λ containing j and a sum over the subsets of Λ \ { j} to obtain the following expression:

PΛ(η)(x) =
∑

K⊂Λ\{ j}

∑

L⊂Λ\{ j}

∏

k∈K

x(k)
∏

`∈L

x(`)
∏

k∈Λ\K

(1− x(k))
∏

h∈Λ\L

(1− x(h))×

�

x( j)2ηK∪{ j},L∪{ j}+ (1− x( j))2ηK ,L + x( j)(1− x( j))(ηK∪{ j},L +ηK ,L∪{ j})
�

.

This expression can be simplified by using that ηK∪{ j},L∪{ j} = ηK ,L:

PΛ(η)(x) = PΛ\{ j}(η
(0))(x)

+ x( j)(1− x( j))
�

PΛ\{ j}(η
(1))(x) + PΛ\{ j}(η

(2))(x)− 2PΛ\{ j}(η
(0))(x)

�

,

where η(0), η(1) and η(2) are the following three families of reals indexed by the pairs of subsets of

Λ \ { j}:

η
(0)
A,B = ηA,B, η

(1)
A,B = ηA∪{ j},B and η(2)A,B = ηA,B∪{ j} for every A, B ⊂ Λ \ { j}.

The inductive hypothesis applies to Λ \ { j} and the three families of reals η(0), η(1) and η(2):

PΛ(η)(x) =
∑

L⊂Λ\{ j}

CL(η)
∏

`∈L

x(`)(1− x(`)) +
∑

L⊂Λ, j∈L

C̃L

∏

`∈L

x(`)(1− x(`)),
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where

C̃L =
∑

T⊂L\{ j}

(−2)|L|−1−|T |
∑

A⊂T

(ηA∪{ j},T\A+ηA,(T∪{ j})\A− 2ηA,T\A).

The double sum of the terms ηA∪{ j},T\A+ηA,(T∪{ j})\A is equal to:
∑

T⊂L, j∈T

(−2)|L|−|T |
∑

A⊂T

ηA,T\A.

Therefore, C̃L = CL(η) and PΛ(η)(x) =
∑

L⊂Λ CL(η)
∏

`∈L x(`)(1− x(`)) which completes the proof

by induction.

By Lemma 7.9, the expanded form of Pi,s as a polynomial function of the n− 1 variables x( j)(1−

x( j)), j 6= i is:

Pi,s(x) =
∑

L⊂¹1;nº\{i}

αi,L(s)
∏

`∈L

x(`)(1− x(`)) (7.18)

where

αi,L(s) =
∑

T⊂L

(−2)|L|−|T |
∑

A⊂T

(sA∪{i},T\A− sA,T\A).

The coefficient αi,L(s) can be rewritten in terms of the mean values of the assortment parameters

mT (s) for T ⊂ L:

αi,L(s) = 2|L|
∑

T⊂L

(−1)|L|−|T |(mT∪{i}(s)−mT (s)) = 2|L|
∑

T⊂L

(−1)|L|−|T |δi[m(s)](T ).

Indeed, it follows from the assumption H4 that for every i ∈ ¹1 ; nº and T ⊂ ¹1 ; nº \ {i},

mT (s) = 2−|T |
∑

A⊂T

sA,T\A and mT∪{i}(s) = 2−|T |
∑

A⊂T

sA∪{i},T\A.

Using formula (4.5), we obtain αi,L(s) = 2|L|δL∪{i}[m(s)](;).

The following factorised form of the polynomial function Pi,s can be derived from a general identity

stated in Lemma A.1:

Pi,s(x) =
∑

A⊂¹1;nº\{i}

δi[m(s)](A)
∏

k∈A

2x(k)(1− x(k))
∏

6̀∈A∪{i}

�

1− 2x(`)(1− x(`))
�

.

A Appendix

A.1 Combinatorial formulae for difference operators

This section collects some combinatorial formulae used to study the limiting diffusion. Let E be a

finite set and t be a real. For a function f defined on P (E), we set

St( f )(A) =
∑

B⊂A

t |A|−|B| f (B) for every A∈ P (E)
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(with the usual convention a0 = 1 for every a ∈ IR). Most of the combinatorial formulae used in the

paper can be deduced from this general identity:

Lemma A.1. Let U be a subset of E and let {xu, u ∈ U} be a family of reals.

∑

A⊂U

St( f )(A)
∏

i∈A

x i =
∑

B⊂U

f (B)
∏

i∈B

x i

∏

j∈U\B

(1+ t x j). (A.1)

Proof. One way to derive this equality is to interchange the sum on the right-hand side of the

equation with the sum that appears in the definition of St( f )(A), to use the new summation index

C = A\ B and to recognize the following expansion of the product of the terms 1+ t x i:
∏

i∈U\B

(1+ t x i) =
∑

C⊂U\B

t |C |
∏

i∈C

x i .

As S−1( f )(A) is nothing other than δA[ f ](;) by (4.5), if we apply Lemma A.1 with t = −1, f (A) =

δi[m(s)](A) and the family of reals {2x( j)(1 − x( j)), j ∈ ¹1 ; nº \ {i}}, we obtain the following

equality

∑

A⊂¹1;nº\{i}

2|A|δA∪{i}[m(s)](;)
∏

`∈A

x(`)(1− x(`))

=
∑

A⊂¹1;nº\{i}

δi[m(s)](A)
∏

k∈A

2x(k)(1− x(k))
∏

6̀∈A∪{i}

�

1− 2x(`)(1− x(`))
�

.

This shows the equality between the expanded form (4.3) and factorised form (4.1) of the polyno-

mial term Pi,s(x) appearing in the drift of the limiting diffusion.

By taking x i = −1/t for every i ∈ U in Lemma A.1, we can deduce the inverse of the operator St .

This gives a useful formula for inverting a relation between two sequences indexed by the subsets

of a finite set.

Corollary A.1. The inverse of the operator St is S−t , that is

f (A) =
∑

B⊂A

(−t)|A|−|B|St( f )(B) for every A⊂ E.

From Corollary A.1 we can deduce the following identity for the finite difference operator:

f (A) =
∑

B⊂A

δB[ f ](;) for every A∈ P (E). (A.2)

By considering the operator St for a function f which is constant on subsets having the same number

of elements, we can rewrite the previous relations to obtain useful formulae relating two sequences

indexed by the integers 0,1, . . . , n.

2175



Corollary A.2. Let t be a real number. Let n ∈ IN∗. For a function f defined on ¹0 ; nº, let st( f ) be

the function defined by:

st( f )(k) =
k
∑

`=0

�

k

`

�

tk−` f (`) for every k ∈ ¹1 ; nº.

Then,

1. For every x ∈ IRn

n
∑

j=0

st( f )( j)en, j(x) =
n
∑

`=0

f (`)
∑

L⊂¹1;nº s. t. |L|=`

∏

i∈L

x i

∏

j∈¹1;nº\L

(1+ t x j)

where en, j denotes the elementary polynomial of degree j in n variables:

en, j(x) =
∑

J⊂¹1;nº s. t. |J |= j

∏

i∈J

x i .

2. The operator s−t is the inverse of the operator st :

f (k) =
k
∑

`=0

�

k

`

�

(−t)k−`st( f )(`) for every k ∈ ¹1 ; nº.

This corollary provides identities for the forward finite difference operators of any orders since

s−1( f )(k) = δ(k)[ f ](0) for every k ∈ ¹0 ; nº. In particular, this leads to the following formula used

in the proof of Proposition 5.1:

k
∑

`=0

�

k

`

�

δ(`)[ f ](0) = f (k) for every k ∈ ¹1 ; nº (A.3)

and Lemma 6.2 used in the proof of Proposition 6.3.

A.2 On the boundary classification of a one-dimensional diffusion

In §3 and in §5.4, we described the boundary behaviour of a Wright-Fisher diffu-

sion solving the stochastic differential equation dzt =
p

zt(1− zt)dWt + b(zt)d t, where

b(z) = µ1(1− z)−µ0z+ z(1− z)h(z) for two types of function h:

• h(z) = 1/2
�

(s1,0− s1,1)(1− z)− (s0,1− s0,0)z
�

in §3,

• h(z) = (1/2− z)(M1 1I{z<1/2}+M2 1I{z>1/2}) in §5.4.
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In this appendix we recall Feller’s boundary classification and apply it to describe the boundary

behaviour of such a diffusion when h is only assumed to be a continuous function on [0,1]. The

case h ≡ 0 (Wright-Fisher diffusion with mutation) is detailed in Karlin & Taylor (1981), Chapter

15, for example.

Lemma A.2. Let h be a continuous function on [0,1] and let (zt)t be a solution of

dzt =
p

zt(1− zt)dWt +
�

µ1(1− z)−µ0z+ z(1− z)h(z)
�

d t (A.4)

starting from a point z0 ∈]0,1[. The Feller boundary classification at the boundary 0 is the following:

(i) if µ1 = 0 then 0 is an absorbing state and the diffusion exits from ]0,1[ in a finite time almost

surely;

(ii) if µ1 ≥ 1/2 then 0 is an entrance boundary (started from a point in ]0,1[ the diffusion will not

reach 0 in finite time, but the process started from 0 is well-defined);

(iii) if 0 < µ1 < 1/2 then 0 is a regular boundary (starting from a point z0 ∈]0, 1[ the diffusion has

a positive probability of reaching 0 before any point b ∈]z0, 1] in a finite time and the diffusion

started from 0 is well-defined);

Proof. Let b denote the drift of (A.4) and let ψ denote the following scale density of the diffusion:

ψ(x) = exp
�

−
∫ x

1/2

2b(u)
u(1− u)

du
�

= C x−2µ1(1− x)−2µ0 exp
�

− 2

∫ x

1/2

h(u)du
�

for x ∈ [0, 1]

where C = 22µ0+2µ1 . Let ν denote the speed density:

ν(x) = (x(1− x)ψ(x))−1 = C−1 x2µ1−1(1− x)2µ0−1 exp
�

2

∫ x

1/2

h(u)du
�

for x ∈ [0, 1].

The Feller classification of the boundary x0 ∈ {0,1} depends on whether the following two integrals

are finite or infinite:

I(x0) =

∫ 1/2

x0

�

∫ 1/2

y

ν(z)dz
�

ψ(y)d y and J(x0) =

∫ 1/2

x0

�

∫ 1/2

y

ψ(z)dz
�

ν(y)d y

(see, for example, Ethier & Kurtz (1986), Chapter 8 or Karlin & Taylor (1981), Chapter 15). The

boundary x0 is said to be

• attainable if I(x0) is finite,

• regular if I(x0) and J(x0) are finite,
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• exit if I(x0) is finite and J(x0) is infinite,

• entrance if I(x0) is infinite and J(x0) is finite,

• natural if I(x0) and J(x0) are infinite.

When h ≡ 0, I(0) is finite if and only if µ1 < 1/2 and J(0) is finite if and only if µ1 > 0. In the

general case, the only modification of the scale and speed densities introduced by the function h is

a multiplication by a positive bounded function on [0,1]. Accordingly the classification does not

depend on h: for every continuous function h on [0,1], I(0) is finite if and only if µ1 < 1/2 and

J(0) is finite if and only if µ1 > 0.

A.3 Example 6.2

Under the hypotheses of the assertion 1-(b) of Proposition 6.3, the logarithm of the stationary

density hn,s,µ takes its maximum value in [0, 1/2]n at a unique point (ξ0, . . . ,ξ0) such that λ0 =

ξ0(1− ξ0) is the unique solution in ]0, 1/4[ of the equation E
′

0:

2µ− 1+
n−1
∑

k=0

2kδ(k+1)[m](0)
�

n− 1

k

�

yk+1 = 0.

In [0,1/2]n the saddle points of index n−1 has one coordinate equal to 1/2 and (n−1) coordinates

equal to ξ1 where λ1 = ξ1(1− ξ1) is the unique solution in ]0,1/4[ of the equation E
′

1:

2µ− 1+
n−2
∑

k=0

�

n− 2

k

�

�

2k−1δ(k+2)[m](0) + 2kδ(k+1)[m](0)
�

yk+1 = 0.

If we denote by hn,i the value of hn,s,µ at a critical point of index n− i then

hn,0− hn,n =(2µ+ 1)n ln(4λ0) +
n−1
∑

k=0

2kδ(k+1)[m](0)
�

n

k+ 1

�

(λk+1
0 − (1/4)k+1),

hn,0− hn,1 =(2µ+ 1)
�

n ln(
λ0

λ1
) + ln(4λ1)

�

+
n−1
∑

k=0

2kδk+1[m](0)
��

n− 1

k+ 1

�

(λk+1
0 −λk+1

1 )1I{k≤n−2}+
�

n− 1

k

�

(λk+1
0 −

1

4
λk

1)
�

.

If we define the assortment by means of the Hamming criterion with the quadratic sequence of

parameters: sk = s0− (bk+ ck2) ∀k ∈ ¹0 ; nº with c > 0 and b+ c > 0, then

δ(1)[m](k) =−(b+ c+ 2kc) ∀k ∈ ¹0 ; n− 1º, δ(2)[m](0) =−2c and δ(r)[m](0) = 0 ∀r ≥ 3.

In this case, λ0 and λ1 are solutions of quadratic functions: 2µ−1−(b+ c)λ0−4c(n−1)λ2
0 = 0 and

2µ− 1− (b+ 2c)λ1 − 4c(n− 2)λ2
1 = 0. After some computations, we obtain: hn,0 − hn,n ∼

n→+∞
c
8
n2

and hn,0− hn,1 ∼
n→+∞

n1/21/2
p

c(2µ− 1).
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A.4 Property of a symmetric matrix

The following lemma is used to determine the nature of the critical points of the density of the

invariant measure (Proposition 6.3).

Lemma A.3. For a real a and two integers k and n so that n ≥ 1 and 0 ≤ k ≤ n, let Mn,k(a) denote

the following symmetric matrix:

Mn,k =





Ak Bk,n−k

Bn−k,k An−k





where

• Ak denotes the following k-by-k matrix: Ak =

















1 a · · · a

a
.. . . . .

...
...

. . . . . . a

a · · · a 1

















• Bk1,k2
denotes the k1-by-k2 matrix all the elements of which are equal to −a.

If 0≤ a < 1 then Mn,k(a) is positive definite.

Proof. Let Qn,k,a denote the quadratic form with matrix Mn,k(a) in the canonical basis. For every

x ∈ IRn, Qn,k,a(x) =
∑n

i=1 x2
i + 2a

∑

1≤i< j≤n εiε j x i x j , where ε1 = . . . = εk = 1 and εk+1 = . . . =

εn =−1. This lemma can be established by induction on n by using the following decomposition of

Qn,k,a(x):

Qn,k,a(x) = (xn+ aεn

n−1
∑

i=1

εi x i)
2+ (1− a2)

�
n−1
∑

i=1

x2
i + 2b

∑

1≤i< j≤n−1

εiε j x i x j

�

.

where b = a
1+a
∈ [0,1[.
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