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Abstract

We study an infinite system of independent symmetric random walks on a hierarchical group,
in particular, the c-random walks. Such walks are used, e.g., in mathematical physics and pop-
ulation biology. The number variance problem consists in investigating if the variance of the
number of “particles” Nn(L) lying in the ball of radius L at a given step n remains bounded, or
even better, converges to a finite limit, as L →∞. We give a necessary and sufficient condition
and discuss its relationship to transience/recurrence property of the walk. Next we consider
normalized fluctuations of Nn(L) around the mean as n→∞ and L is increased in an appropri-
ate way. We prove convergence of finite dimensional distributions to a Gaussian process whose
properties are discussed. As the c-random walks mimic symmetric stable processes on R, we
compare our results with those obtained by Hambly and Jones (2007, 2009), who studied the
number variance problem for an infinite system of independent symmetric stable processes on
R. Since the hierarchical group is an ultrametric space, corresponding results for symmetric
stable processes and hierarchical random walks may be analogous or quite different, as has been
observed in other contexts. An example of a difference in the present context is that for the
stable processes a fluctuation limit process is a Gaussian process which is not Markovian and has
long range dependent stationary increments, but the counterpart for hierarchical random walks
is Markovian, and in a special case it has independent increments .
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1 Introduction

Stochastic models on the d-dimensional Euclidean lattice Zd play a fundamental role in mathemat-
ical physics and population biology. Many of the basic questions of interest in these fields lead to
mathematical challenges, many of which remain open. The class of hierarchical models first intro-
duced by Dyson [16] in 1969 have played an important role for gaining insight into these problems.
One reason for this is that the models can be parametrized in the hierarchical lattice in such a way
as to provide a “caricature” for the Euclidean lattice of dimension d of interest (e.g. d = 4 and
dimensions “infinitesimally close” to 4 in the study of ferromagnetic models, see e.g. [5]). The
other reason is that the structure of these models is such that it has been possible to carry out the
renormalization group analysis in a rigorous way in the hierarchical lattice. For example, this has
been achieved in [5] for the study of ferromagnetism. It has also been used in the study of self-
avoiding random walks (e.g. [4]), and Anderson localization in disordered media (e.g. [2, 28]). In
population models it has been used to study mutually catalytic branching (e.g. [6, 15]), and inter-
acting diffusions (e.g. [13, 14]). Random walks on hierarchical lattices, called hierarchical random
walks, play a key role in the analysis of these systems. For example, they arise in the analysis of
the moment structures, and the associated hierarchical Laplacian plays the role of the Euclidean
Laplacian in the study of the Anderson model. For this reason a deeper study of hierarchical random
walks is of interest per se, as is the case for random walks on the Euclidean lattice. Recurrence and
transience of hierarchical random walks have been studied in [10] (and references therein). Lévy
processes on totally disconnected groups have been studied from an abstract point of view in [17],
and scaling limits of hierarchical random walks are examples of such Lévy processes, which play a
key role in [15].

Some other references where stochastic models based on hierarchical structures have been studied
are [20, 21, 26] (interacting diffusions and population models), [9, 12] (branching systems), [1]
(contact processes), [7, 8, 27] (percolation), [24, 25] (search algorithms). Other references are
found in [11].

The hierarchical random walks we will consider in this paper are of a type first introduced by Spitzer
[30] (p.93) in a special case, and more generally by Sawyer and Felsenstein [29] in the context
of population genetics. We will focus on “number variance” properties and related fluctuations for
these random walks. The number variance problem, which is explained below, has been investigated
by Hambly and Jones [22, 23] for α-stable processes on R, and we will compare our results with
theirs, in particular regarding properties that are qualitatively different.

The state space for our random walks is a hierarchical group. For an integer M ≥ 2, the hierarchical
group of order M (called hierarchical lattice in Physics) is defined by

ΩM = {x = (x1, x2, . . .) : x i ∈ {0, 1, . . . , M − 1},Σi x i <∞},

with addition componentwise mod M . It is a countable Abelian group which is also described as the
direct sum of a countable number of copies of the cyclic group of order M . The hierarchical distance
| · | on ΩM is defined by

|x − y|=
¨

0 if x = y,
max{i : x i 6= yi} if x 6= y.

It is translation-invariant, and satisfies the strong (non-Archimedean) triangle inequality

|x − y| ≤max{|x − z|, |z− y|} for any x , y, z.

2060



This means that (ΩM , | · |) is an ultrametric space. In such a space two balls are either disjoint or one
is contained in the other, and this is the cause of some significant differences from mathematical
models based on Rd or Zd . In particular, as opposed to the Euclidean case, it is not possible to go
far by a sequence of small steps, and the only way to go far is to make jumps of ever bigger sizes. A
picture of (ΩM , | · |) is the set of leaves at the top of an infinite tree where each inner node at each
level j ≥ 1 has one predecessor at level j + 1 and M successors at level j − 1. The distance between
two individuals (leaves) at level j = 0 is the depth in the tree to their most recent common ancestor,
and it measures the degree of relatedness between the two individuals.

A random walk ξ = (ξn)n≥0 on ΩM starting at 0 is defined by ξ0 = 0,ξn = ρ1 + · · ·+ ρn, n ≥ 1,
where ρ1,ρ2, . . . are independent copies of ρ, which is a random element of ΩM with distribution
of the form

P(ρ = y) =
r|y|

M |y|−1(M − 1)
, y 6= 0, P(ρ = 0) = 0, (1.1)

where (r j) j=1,2,... is a probability law on {1,2, . . .}. That is, the jumps of ξn are taken by first choosing
distance j with probability r j , and then choosing a point with uniform probability among those at
distance j from the previous position of the walk (note that M j−1(M − 1) is the number of points
at distance j from a given point of ΩM ). These random walks are the most general symmetric
random walks on ΩM . We assume that (r j) is not restricted to a bounded set, so that the walk can
reach arbitrarily large distances (since it is not possible to go far with small steps). We refer to a
hierarchical random walk determined by (r j) as r j-rw. A particular r j-rw is the c-rw, where c is a
constant such that 0< c < M , and

r j =
�

1−
c

M

�� c

M

� j−1
, j = 1,2, . . . , (1.2)

A c-rw mimics a standard α-stable process on Rd in the sense that both have analogous behaviors.
The analogies, which refer to time and space behaviors, are mentioned in the Appendix. They are
given in terms of degrees γ, in particular, γ < 0 corresponds to recurrence and γ > 0 to transience.
The α-stable process on Rd has degree

γ=
d

α
− 1, (1.3)

and the c-rw on ΩM has degree

γ=
log c

log(M/c)
. (1.4)

Correspondences are:

recurrence: d < α↔ c < 1, d = α↔ c = 1,

transience: d > α↔ c > 1.

See also Remark 2.13(b) concerning the order of the fluctuations in (1.5) for α-stable process and
in (2.12) for c-rw.

Other r j-rw’s we will consider are defined in the Appendix and used for examples.

The number variance problem studied in [22, 23] for α-stable processes onR has a motivation from
physics (see the Introduction of [22]). The model is as follows in simplified form. An independent
copy of the standard α-stable process, representing the motion of a particle, starts at time 0 from
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each point u j = j − ε, j ∈ Z, where ε is a uniformly distributed random variable on [0, 1] (the
ε-displacement provides spatial homogeneity). Let Nt[0, L] denote the number of particles that at
time t > 0 lie in the interval [0, L], and consider its variance, VarNt[0, L]. The number variance
problem refers to the behavior of VarNt[0, L] for fixed t as L → ∞. It is shown that for α < 1
(transient case) the variance tends to∞, and for 1< α≤ 2 (recurrent case) it has a finite limit up to
an additive fluctuation bounded by 1. The latter behavior is called saturation. For α= 1 the process
is recurrent and the variance tends to infinity. The rescaled fluctuation process defined by

Zt(s) =
Nt[0, st1/α]− ENt[0, st1/α]

t1/2α
, s ≥ 0, (1.5)

is discussed, and a continuous interpolation of this process is shown to converge weakly on a space
of continuous functions, as t → ∞, to a centered Gaussian process with stationary increments,
which is not Markovian and has long range dependence. Hence this process has a resemblance to
fractional Brownian motion.

In this paper we will prove counterparts to the results of [22, 23] for a system of independent
hierarchical random walks starting from each point of ΩM . We will do this for a general class of
random walks, and we will also consider a model where at the initial time there is a Poisson number
of particles at each site. As with other models involving systems of hierarchical random walks, one
of our objectives is to exhibit analogies and differences with the results for the Euclidean model,
which can be compared due to the abovementioned correspondences.

The system of independent stable processes in [22, 23] is a very simplified model motivated by
determinantal processes arising from random matrix theory, and although the results do not neces-
sarily have a significance in connection with the motivation from physics, the formulation and the
results are interesting as a new class of stochastic models. Our work should be regarded from that
point of view as well.

Now we give a summary of our results.

We consider a system of independent r j-rw’s (particles) starting from each point of ΩM , and denote
by Nn(L) the number of particles that at step n lie in the ball {x ∈ ΩM : |x | ≤ L}, L ∈ Z+ (in
[22, 23] the interval [0, L] was considered, but essentially nothing changes if it is replaced by
[−L, L]). For general r j we give a necessary and sufficient condition for boundedness of VarNn(L)
and for existence of its limit as L→∞. It turns out that

lim
L→∞

VarNn(L) = 2n
1

M − 1
lim

L→∞
M L rL

(Theorem 2.2). In particular, for the c-rw this limit exists, and it is finite if and only if c ≤ 1, i.e.,
if the walk is recurrent. For the non-critical cases, c < 1 and c > 1, this result corresponds to the
properties of the number variance for α-stable processes mentioned above, but the correspondence
breaks down for the critical case, c = 1: the process is recurrent and the variance has a finite limit.
For general r j , boundedness of VarNn(L) and recurrence are not equivalent (see Remark 2.4(c)). For
the initial Poisson system the situation is simpler, VarNn(L) always tends to infinity. It can be shown
that the same thing happens for the α-stable process.

Next we investigate the fluctuations of Nn(L) around the mean as n → ∞, when L = L(n) is in-
creased in an appropriate way. Analogously as in (1.5), where a “time” parameter s was introduced,
we introduce a “time” parameter t, taking L(n)+R(t), where R(t) is a suitable non-decreasing func-
tion of t. Thus, L(n) and R(t) here correspond to t and s in [22, 23], respectively. The additive form,
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rather than the multiplicative one, is explained below. We assume that lim j→∞ r j+1/r j = a > 0. It
turns out that the cases a < 1 and a = 1 are significantly different (see Theorem 2.8). For a < 1,
the most appropriate L(n) has logarithmic growth and the norming is of the order nθ/2, where
θ = log M/ log 1

a
. In general the fluctuation processes may not converge, but convergent subse-

quences can be chosen (in the sense of finite dimensional distributions), and a family of processes
indexed by a parameter κ ∈ [1, 1

a
] is obtained. These processes have stepwise trajectories, they are

Gaussian with covariance of the form f (s∨ t)gκ(s∧ t), in particular they are Markovian. If a = 1, the
fluctuation process converges to a Gaussian process with independent increments. In contrast, for
the α-stable process on R the fluctuation limit is a non-Markov process with stationary increments
[22, 23]. The Markov property in our case is a consequence of the ultrametric structure of ΩM . In
Remark 2.9(c) we give an intuitive explanation for this.

We study some further properties of our limit processes and discuss a probabilistic interpretation of
the parameter θ , which is closely related to the degree γ.

Finally, for the Poisson model we show that with general r j the fluctuation limit exists and it is, up
to a constant, the same process as that obtained in the previous case for a = 1.

Due to the ultrametric structure of ΩM , the calculations involved in the proofs are quite different
from those in [22, 23].

2 Results

Fix an integer M ≥ 2 and let ΩM be the corresponding hierarchical group as defined in the Introduc-
tion. We consider a system of independent r j-rw’s on ΩM starting from each point u ∈ ΩM . Recall
that Nn(L) is the number of particles lying in the ball BL = {x ∈ ΩM : |x | ≤ L} at step n, i.e.,

Nn(L) =
∑

u∈ΩM

1BL
(u+ ξu

n), (2.1)

where {ξu}u∈ΩM
are independent copies of r j-rw’s starting at 0.

Proposition 2.1.

(a) ENn(L) = M L , n, L = 0,1, 2, . . . , (2.2)

(b) VarNn(L)∼ 2nM L P(|ρ|> L) as L→∞, (2.3)

(c) P(|ρ| ≤ L)2n−1nP(|ρ|> L)M L ≤ VarNn(L)≤ 2M L , n, L = 0, 1,2, . . . , (2.4)

(∼ means that the quotient of both sides tends to 1).

The number variance problem is solved in the following theorem.

Theorem 2.2. For any n= 1,2, . . . , limsupL→∞ VarNn(L)<∞ if and only if
limsupL→∞M L rL <∞. Moreover, limL→∞ VarNn(L) exists (finite or not) if and only if limL→∞M L rL
exists, and in this case

lim
L→∞

VarNn(L) = 2n
1

M − 1
lim

L→∞
M L rL . (2.5)

This theorem applied to the examples in the Appendix gives the following results.
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Example 2.3. (a) c-rw:

lim
L→∞

VarNn(L) =







0 if c < 1,
2n if c = 1,
∞ if c > 1.

(2.6)

(b) jβ -rw:

lim
L→∞

VarNn(L) =

¨

∞ if β > 0,
2n if β = 0.

(for β = 0 it is obviously a c-rw with c = 1)

(c) r j = D j−β ,β > 1:
lim

L→∞
VarNn(L) =∞.

Remark 2.4. (a) Let us compare the result (2.6) for the c-rw with the solution of the number
variance problem for the α-stable process in [22, 23]. With c ≤ 1 (recurrent case) we obtain “true”
limits, whereas for the α-stable process with α > 1 the variances are bounded but do not converge
due to a fluctuating term (see [23]). On the other hand, with c < 1 the limit is trivial (zero),
whereas for the α-stable process with α > 1 the variances are bounded away from 0. The only
non-trivial limit for the c-rw is obtained in the critical case c = 1, and it has no counterpart for the
α-stable process, since for α= 1 the variances tend to infinity.

(b) For the c-rw, finiteness of the variance limit is equivalent to recurrence, whereas for the α-stable
process this equivalence breaks down in the critical case α= 1.

(c) Example 2.3(b) shows that in general finiteness of the variance limit is not equivalent to recur-
rence (see the Appendix).

We now give a result for the Poisson case.

Proposition 2.5. Assume that initially at each site there is a Poisson number of particles, and these
numbers are i.i.d. Then for any system of r j-rw’s, limL→∞ VarNn(L) =∞.

Remark 2.6. (a) It can be shown that an analogous result holds for α-stable processes.

(b) We will come back to the Poisson system later on. Poisson systems seem to be the most natural
as random initial configurations. However, it can be shown that for each initial configuration deter-
mined by i.i.d. random variables {νx}x∈ΩM

(νx particles at site x) which are truly random, i.e., with
Var νx > 0, we have limL→∞ VarNn(L) =∞.

So far we have considered Nn(L) for n fixed. Now we will vary both n and L, more precisely, we
want to investigate the normalized fluctuations of Nn(L) as n→∞, simultaneously increasing L in
an appropriate way.

We make the following assumption on the random walk:

r j+1 ≤ r j for j ≥ some j0, and lim
j→∞

r j+1

r j
= a > 0. (2.7)

This assumption is satisfied for all our examples (see Example 2.3 and the Appendix).
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By Proposition 2.1(c), it is natural to take

L(n) = sup
�

L ∈Z+ : h(L)≥
1

n

�

, (2.8)

where

h(L) = P(|ρ|> L) =
∞
∑

j=L+1

r j , (2.9)

so that, by (2.4), VarNn(L(n)) has the same rate of increase as M L(n). Hence
p

M L(n) is the natural
normalization for the fluctuations of Nn(L(n)).

L(n) has the following properties.

Lemma 2.7. (a) if a < 1, then

lim
n→∞

L(n)

loga
1
n

= 1. (2.10)

(b)

1≤ nh(L(n)) and limsup
n→∞

nh(L(n))≤
1

a
. (2.11)

As in [22, 23], we want to investigate a fluctuation process introducing a new “time” parameter.
In [22, 23] this was done with a multiplicative parameter s, but in our case an additive parameter
R(t) is appropriate. This is caused by the hierarchical structure of the state space, which for a < 1
implies the logarithmic growth of the radius of the balls (Lemma 2.7(a)). This is because the volume
of a ball of radius L in R grows like L, and the volume of a ball of radius L in ΩM grows like M L

(see the beginning of the proofs). Consider any non-decreasing function R : R+ → Z such that
limt→∞ R(t) =∞. For n= 1, 2, . . . we define the fluctuation process as

Xn(t) =
Nn((L(n) + R(t))+)− ENn((L(n) + R(t))+)

p

M L(n)
, (2.12)

(see (2.2)).

In what follows ⇒ f denotes weak convergence of finite-dimensional distributions, and bxc is the
integer part of x ∈R.

For a given by (2.7), we denote

b =
M − a

M − 1
. (2.13)

Theorem 2.8. Assume (2.7).

(a) Suppose a < 1. Let (ni)i be any subsequence such that

lim
i→∞

nih(L(ni)) = κ (2.14)

for some κ ∈ [1, 1
a
]. Then Xni

⇒ f X (κ,R), where X (κ,R) is a centered Gaussian process with covariance

EX (κ,R)(s)X (κ,R)(t) = MR(s∧t)gκ(s ∨ t), (2.15)
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where

gκ(t) = 1−
�

M − 1

M

�2






∞
∑

j=0

e−κbaR(t)a j

M j







2

−
(M − 1)3

M4

∞
∑

j=0

1

M j

 

∞
∑

k=0

e−κbaR(t)a j+k+1
− e−κbaR(t)a j

M k

!2

. (2.16)

(b) If a = 1, then limn→∞ nh(L(n)) = 1 and Xn ⇒ f X (R), where X (R) is a centered Gaussian process
with covariance

EX (R)(s)X (R)(t) = (1− e−2)MR(s∧t). (2.17)

Remark 2.9. (a) Existence of a subsequence (ni)i in part (a) follows immediately from Lemma
2.7(b). For example, for c-rw we have L(n) = blogc/M

1
n
c and the condition (2.14) is satisfied for

any subsequence (ni)i such that logc/M
1
ni
− blogc/M

1
ni
c converges (to logc/M

1
κ
), and any κ ∈ [1, M

c
)

can be obtained in this way.

(b) As it will be seen in the proof, part (b) of the theorem holds under the weaker (than r j+1/r j → 1)
assumption

lim
j→∞

r j+1

h( j)
= 0. (2.18)

(c) It is well known that Gaussian processes with covariances of the form (2.15) have the Markov
property. This is in sharp contrast with the corresponding result in the Euclidean case [22, 23].
The Markov property in our case may be given a “particle picture” interpretation as follows. Due to
ultrametricity (recall that it is not possible to go far with small steps), the random walks u+ ξu

n in
(2.1) tend to stay at the same distance from the origin when they are far away from their starting
positions (this follows from [10], Proposition 3.5.2), and since the probability of making a jump
out of or into a large ball is small, the number of particles in a ball of radius L(n) + R(t) with large
n (see (2.12)) will not depend much on the past history of the numbers of particles in the ball,
conditionally on the present number.

(d) The limit process obtained in part (b) has independent increments.

(e) The function R(t) accounts for the time scaling of the limit process only. From the form of the
covariances it is seen that the most natural forms of R(t) are

R(t) =
�

loga
1

t

�

if a < 1, (2.19)

R(t) =
�

logM t
�

if a = 1. (2.20)

We then have, for a < 1,
tθ ≤ MR(t) ≤ M tθ , (2.21)

where

θ =
log M

log 1
a

, (2.22)

and
t ≤ MR(t) ≤ M t if a = 1. (2.23)
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It is also seen that the exponents in (2.16) are “close” to 1
t
, namely

1

t
≤ aR(t) <

1

at
. (2.24)

In (2.21), (2.23) and (2.24), the left-hand inequalities are equalities for t = a−n, n ∈Z.

Let us denote by X (κ) and X the limit processes corresponding to R given by (2.19) and (2.20),
respectively. Observe that in spite of the fact that such R’s are not defined at t = 0, the processes
X (κ) and X themselves are right continuous in L2 at 0 with X (κ)(0) = 0 and X (0) = 0. This follows
from (2.21), (2.23), and since the function gκ is bounded.

Remark 2.10. The process X has the representation

X t =
p

1− e−2WM j for M j ≤ t < M j+1, j ∈Z,

where W is a standard Brownian motion.

Properties of the process X (κ) are summarized in the next proposition.

Proposition 2.11. (a) X (κ) is determined by a Gaussian sequence of random variables (ζ j) j∈Z,

X (κ)t = ζ j f or a− j ≤ t < a−( j+1),

where the ζ j have the representation

ζ j = gκ(a
− j)

j
∑

i=−∞
νi

È

M i

gκ(a−i)
−

M i−1

gκ(a−(i−1))
, (2.25)

with (νi)i∈Z i.i.d. standard normal.

(b) X (κ) has a long range dependence property with exponent 1 in the sense that

0< limsup
τ→∞

τ|E(X (κ)(t)− X (κ)(s))(X (κ)(t +τ)− X κ(s+τ))|<∞. (2.26)

(c) For θ > 1 (i.e., 1> a > 1
M

), if we define

Y (κ)m (t) = am(θ−1)/2X (κ)(a−m t), t ≥ 0,

then
Y (κ)m ⇒ f C(κ)

∑

j∈Z
Y (a− j)1[a− j ,a−( j+1)) as m→∞,

where

Y (t) =

p
θ + 1

t

∫ t

0

uθ/2dWu, t ≥ 0.
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Remark 2.12. (a) Part (c) corresponds to Proposition 4.16 in [22]. In that paper the limit process
is a fractional Brownian motion, whereas in our case Y is a diffusion process satisfying the equation

dY (t) =−
1

t
Y (t)d t + (

p

θ + 1)tθ/2−1dWt .

Its covariance has the particularly simple form

EY (s)Y (t) = (s ∧ t)θ (s ∨ t)−1. (2.27)

(b) The condition θ > 1 in part (c) is required only to ensure that the process Y is well defined at
0. For θ ≤ 1 the assertion of part (c) remains true on [ε,∞), ε > 0.

(c) We think that part (a) can be given a nicer form, analogous to that of the limit of Y (κ)m in part (c),
i.e., that the process X (κ) can be “interpolated” between the time points a− j by a Gaussian diffusion
process. To derive such a representation it would suffice to prove that the function gκ defined by
(2.16), with aR(t) replaced by 1

t
, is decreasing in t. We have not been able to prove it.

Remark 2.13. (a) Part (c) of Proposition 2.11 and Remark 2.12(b) show that the behavior of X (κ)(t)
as t →∞ changes drastically depending on whether θ > 1 or θ < 1 (for θ > 1, limt→∞ VarX (κ)(t) =
∞, and for θ < 1, limt→∞ VarX (κ)(t) = 0). In fact, the parameter θ has a deeper probabilistic
interpretation which is related to the recurrence/transience properties of the underlying random
walk. These properties are in a sense characterized by the degree γ of a random walk (see the
Appendix). From (A.2) it follows that θ = γ+1. In particular, this implies that for θ > 1 the random
walk is transient, and for θ < 1 it is recurrent. In the critical case θ = 1 both situations can occur.
Moreover, by Theorem 2.2 it is not hard to check that if θ > 1, then limL→∞ VarNn(L) =∞, and if
θ < 1, then limL→∞ VarNn(L) = 0, while, as it was seen in Example 2.3, if θ = 1 the number variance
can be finite or infinite. We recall, however, that in general the condition lim supL→∞ VarNn(L)<∞
is not equivalent to recurrence of the random walk.

(b) The equality θ = γ+1 implies that for c-rw’s the parameter θ corresponds to 1
α

for the symmetric
α-stable process inR (see (1.3), and (A.2) in the Appendix). Hence for c-rw’s the rate of the norming

in (2.12),
p

M L(n) (∼ nθ/2), corresponds exactly to t1/2α, which is the norming in the fluctuation
theorem in [22] (see (1.5)).

Finally, we give the result for the Poisson system.

Theorem 2.14. Under the assumptions of Proposition 2.5, for any r j-rw, any functions L : Z+ → Z+
and R : R+ → Z, non-decreasing with limn→∞ L(n) = ∞ and limt→∞ R(t) = ∞, if Xn is defined by
(2.12), then Xn⇒ f CX (R), where X (R) is given in Theorem 2.8(b) and C is a constant.

Remark 2.15. From the proof of this theorem it will be seen that the same result is true if the
initial number of particles at site u ∈ ΩM is ηu, where (ηu)u∈ΩM

are i.i.d. random variables with
E(ηu)2+δ <∞ for some δ > 0, and Eηu = Var ηu.

3 Proofs

Let us denote

BL(u) = {x ∈ ΩM : |x − u| ≤ L}, BL = BL(0),

SL(u) = {x ∈ ΩM : |x − u|= L}, SL = SL(0),

pu
n(L) = P(u+ ξn ∈ BL).
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We write |A| for the number of points in a bounded subset A of ΩM (no confusion arises with the
hierarchical distance). Note that

|BL(u)|= M L , |SL(u)|= (M − 1)M L−1.

By ultrametricity of ΩM , if u ∈ BL , then u+ ξn ∈ BL if and only if ξn ∈ BL . On the other hand, if
|u|= L+ k, k = 1,2, . . ., then BL ⊂ SL+k(u), hence

pu
n(L) = P(u+ ξn ∈ BL ∩ SL+k(u)) = P(|ξn|= L+ k)

|BL|
|SL+k|

.

Thus we have

pu
n(L) =







P(|ξn| ≤ L) if u ∈ BL ,

P(|ξn|= L+ k)
1

(M − 1)M k−1
if |u|= L+ k, k = 1, 2, . . . .

(3.1)

Proof of Proposition 2.1 By (2.1) and (3.1),

ENn(L) =
∑

u∈BL

pu
n(L) +

∑

u/∈BL

pu
n(L) = |BL|.

This proves (a) (this formula is surely known, but we have not found a reference ).

In order to investigate VarNn(L) we study the tail of ξn. We have

P(|ξn|> L) ≤
n
∑

k=1

P(|ξ1| ≤ L, . . . , |ξk−1| ≤ L, |ξk|> L)

=
n
∑

k=1

P(|ρ| ≤ L)k−1P(|ρ|> L), (3.2)

by ultrametricity. Again by ultrametricity, the event that in the first n steps there is just one farthest
jump whose length is j and it occurs at step k has the form

Ak, j = {|ξ1|< j, . . . , |ξk−1|< j, |ξk|= j, ξk+1 ∈ B j−1(ξk), . . . ,ξn ∈ B j−1(ξk)},

hence

P(|ξn|> L) ≥
n
∑

k=1

∞
∑

j=L+1

P(Ak, j) =
n
∑

k=1

∞
∑

j=L+1

P(|ρ|< j)n−1P(|ρ|= j)

≥ nP(|ρ| ≤ L)n−1P(|ρ|> L). (3.3)

Formulas (3.2) and (3.3) imply that

P(|ξn|> L)∼ nP(|ρ|> L) as L→∞. (3.4)

Using (2.1) and (3.1) we have
VarNn(L) = I(L) + II(L),
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where

I(L) = M L P(|ξn| ≤ L)P(|ξn|> L),

II(L) = M L
∞
∑

k=1

P(|ξn|= L+ k)
�

1−
1

(M − 1)M k−1
P(|ξn|= L+ k)

�

.

Hence (b) follows immediately from (3.4).

The upper estimate in (c) is clear from the previous calculations. The lower bound is an easy
consequence of

VarNn(L)≥ II(L)≥ M L P(|ξn|> L)(1− P(|ξn|> L))

and (3.2), (3.3). �

Proof of Theorem 2.2 All the statements follow from (2.3) and the trivial formulas

M L P(|ρ|> L) = M L rL+1+M L P(|ρ|> L+ 1), M L P(|ρ|> L) =
∞
∑

j=1

r j+L M j+L

M j .

�

Proof of Proposition 2.5 If the number of particles at each site is Poisson with parameter λ, then

VarNn(L) = λ
∑

u∈ΩM

pu
n(L) = λENn(L) = λM L ,

by (2.2), hence the assertion follows. �

Proof of Lemma 2.7 (a) By (2.7) and (2.9) it is easy to see that for any 0 < ε < a ∧ (1− a) there
exist positive constants C1, C2 such that for sufficiently large n,

C1(a− ε)n ≤ h(n)≤ C2(a+ ε)
n. (3.5)

Then, for large n,

h
��

loga+ε
1

n
+ loga+ε

1

C2

�

+ 1
�

≤ C2(a+ ε)
log(a+ε) 1/nC2 =

1

n
,

which implies that

L(n)≤ loga+ε
1

n
+ loga+ε

1

C2
+ 1,

hence

lim sup
n→∞

L(n)

loga
1
n

≤
log a

log(a+ ε)
.

Analogously, using the left-hand side of (3.5) we obtain

lim inf
n→∞

L(n)

loga
1
n

≥
log a

log(a− ε)
.
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Hence (2.10) follows

(b) The lower bound in (2.11) is obvious by (2.8). The assumption (2.7) clearly implies

lim
n→∞

rn+k

rn
= ak, k = 1, 2, . . . , (3.6)

hence for a < 1 we have






∞
∑

j=0

(a+ ε) j







−1

≤ lim inf
n→∞

rn+1

h(n)
≤ limsup

n→∞

rn+1

h(n)
≤







k
∑

j=0

a j







−1

for any 0< ε < 1−a and k = 1, 2, . . .. The right-hand side inequality also holds for a = 1. Therefore,
for all 0< a ≤ 1,

lim
n→∞

rn+1

h(n)
= 1− a. (3.7)

By (2.8) and (2.9),
nh(L(n))< 1+ nrL(n)+1,

so (2.11) follows easily from (3.7). �

Proof of Theorem 2.8 (a) We will prove

lim
i→∞

Cov(Xni
(s), Xni

(t)) = MR(s∧t)gκ(s ∨ t) (3.8)

and

lim
n→∞

1

(M L(n))1+δ/2
∑

u∈ΩM

E
�

�

�1B(L(n)+R(t))+
(u+ ξu

n)− P(u+ ξu
n ≤ (L(n) + R(t))+)

�

�

�

2+δ
= 0, δ > 0.

(3.9)
Then by (2.1), (2.12) and independence of random walks the result follows from the central limit
theorem in the Lyapunov version (see e.g. [3]).

Denote
L(i, t) = (L(ni) + R(t))+. (3.10)

Fix s ≤ t. By (2.1) and independence of random walks,

Cov(Xni
(s), Xni

(t)) = M−L(ni)
∑

u∈ΩM

pu
ni
(L(i, s))

�

1− pu
ni
(L(i, t))

�

= M−L(ni) (I + II) , (3.11)

where I =
∑

u∈B(L(i,t)) . . . and II =
∑

u/∈B(L(i,t)) . . .. We have

I =
∑

u∈B(L(i,s))

. . .+
∑

u∈B(L(i,t))\B(L(i,s))

. . .

= M L(i,s)P(|ξni
| ≤ L(i, s))P(|ξni

|> L(i, t))

+
L(i,t)
∑

j=L(i,s)+1

∑

u∈S j

P(|ξni
|= j)

|BL(i,s)|
|S j|

�

1− P(|ξni
| ≤ L(i, t))

�

= M L(i,s)P(|ξni
| ≤ L(i, t))P(|ξni

|> L(i, t)), (3.12)
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by (3.1). Similarly

II =
∞
∑

j=1

∑

u∈SL(i,t)+ j

. . .

= M L(i,s)
∞
∑

j=1

P(|ξni
|= L(i, t) + j)

�

1− P(|ξni
|= L(i, t) + j)

1

(M − 1)M j−1

�

. (3.13)

By (3.10)-(3.13), for sufficiently large i, we obtain

Cov(Xni
(s), Xni

(t)) = MR(s)
�

P(|ξni
|> L(i, t))(1+ P(|ξni

| ≤ L(i, t)))

−
1

M − 1

∞
∑

j=1

P2(|ξni
|= L(i, t) + j)

M j−1

�

. (3.14)

It is known ([29], see also [10]) that

P(ξn = u) =−
f n
k

M k
+ (M − 1)

∞
∑

j=k+1

f n
j

M j , if |u|= k > 0,

where
fk = 1− h(k− 1)−

rk

M − 1
. (3.15)

Hence

P(|ξn|= k) =
M − 1

M






− f n

k + (M − 1)
∞
∑

j=1

f n
j+k

M j







=
M − 1

M

∞
∑

j=0

f n
j+k+1− f n

j+k

M j . (3.16)

This implies that

P(|ξn|> L) =
M − 1

M

∞
∑

j=0

1

M j (1− f n
L+ j+1). (3.17)

By (2.14), (3.6), (3.7) and (3.10) we have

lim
i→∞

ni

�

h(L(i, t) + j− 1) +
rL(i,t)+ j

M − 1

�

= κbaR(t)+ j−1, (3.18)

where b is defined by (2.13). Hence

lim
i→∞

f ni
L(i,t)+ j = e−κbaR(t)+ j−1

, (3.19)

by (3.15).
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Combining (3.16)-(3.19) and (3.14) (it is clear that we can pass to the limits under the sums) we
arrive at

lim
i→∞

Cov(Xni
(s), Xni

(t))

= MR(s)













M − 1

M

∞
∑

j=0

1− e−κbaR(t)a j

M j












1+

M − 1

M

∞
∑

j=0

e−κbaR(t)a j

M j







−
(M − 1)3

M4

∞
∑

j=0

1

M j







∞
∑

k=0

e−κbaR(t)a j+1+k
− e−κbaR(t)a j

M k

!2






= MR(s)gκ(t) (3.20)

(see (2.16)). This proves (3.8).

It is easy to see that the expression under the limit on the left hand side of (3.9) is estimated from
above by

C

M L(n)(1+δ/2)

∑

u∈ΩM

pu
n((L(n) + R(t))+) =

C

M L(n)(1+δ/2)
M (L(n)+R(t))+ ,

by (2.2), hence (3.9) follows.

The proof of part (a) is complete.

(b) The fact that
lim

n→∞
n(h(L(n)) = 1 (3.21)

follows immediately from (2.11). This and (3.7) imply that

lim
n→∞

n
�

h((L(n) + R(t))++ j− 1) +
r(L(n)+R(t))++ j

M − 1

�

= 1 (3.22)

(cf. (3.18)), hence
lim

n→∞
f n
(L(n)+R(t))++ j = e−1

for j = 0,1, 2, . . .. Therefore, a counterpart of (3.20) is

lim
n→∞

Cov(Xn(s), Xn(t)) = (1− e−2)MR(s∧t). (3.23)

Now, the⇒ f convergence (the Lyapunov condition (3.9)) is obtained in the same way as before.

Observe that (3.21), (3.22), and hence (3.23) as well, follow from (3.7) in this case. (Recall that
(3.7) with a = 1 implies (2.11), see the end of the proof of Lemma 2.7(b).) Therefore, as stated in
Remark 2.9 (b), assumption (2.7) can be replaced by (2.18). �

Proof of Proposition 2.11 (a) From positive-definiteness of the covariance function (2.15) it is easy
to see that M i/gκ(a−i) is increasing in i, moreover, by (2.16), limi→−∞M i/gκ(a−i) = 0. Hence the
result is obtained by a direct computation.

(b) By (2.15), for s < t < s+τ < t +τ we have

E(X (κ)(t)− X (κ)(s))(X (κ)(t +τ)− X (κ)(s+τ))

= (MR(t)−MR(s))(gκ(t +τ)− gκ(s+τ)),

2073



hence it suffices to investigate the second factor. Obviously, for large τ, the time points s+ τ, t + τ
belong either to the same interval of the form [a−k, a−(k+1)), or to two neighboring such intervals.
Since, by (2.19) and (2.16), gκ is constant on such intervals, it is enough to consider a sequence of
the form

τm = a−m− dm, s < dm ≤ t, m= 1,2, . . . .

Then, for large m we have

τm(gκ(τm+ t)− gκ(τm+ s)) = τmama−m( g̃κ(a
m)− g̃κ(a

m−1)),

where g̃κ(r) is obtained from (2.16) by putting r instead of aR(t). The mean value theorem implies
that 1

r
( g̃κ(r)− g̃κ(

r
a
)) has a finite positive limit as r → 0. This proves (2.26).

(c) Since the processes Y (κ)m are centered Gaussian, it suffices to prove convergence of covariances.
By (2.19) and (2.22),

R(a−m t) = m+ R(t), m= 1,2, . . . , (3.24)

M m = a−mθ .

This, (2.15) and (2.19) imply that for s ≤ t,

Cov(Y (κ)m (s), Y (κ)m (t)) = MR(s)a−m gκ(a
−m t).

By (3.24) we also have

lim
m→∞

1− e−κbaR(a−m t)a j

am = κbaR(t)a j .

Hence, using the form of gκ given by (3.20), and by (2.13), it is easy to see that

lim
m→∞

Cov(Y (κ)m (s), Y (κ)m (t)) = 2κMR(s)aR(t), s ≤ t.

Hence (c) follows (cf (2.27)). �

Proof of Theorem 2.14 Let ηu be the number of particles at site u at time 0. The r.v.’s (ηu)u∈ΩM
are

i.i.d. Let (ξu,k)u∈ΩM ,k∈N be independent copies of r j-rw. Then

Nn(L) =
∑

u∈ΩM

ηu
∑

k=1

1{u+ξu,k
n ∈BL}

,

and for s ≤ t, denoting L(n, t) = (L(n) + R(t))+,

Cov(Xn(s), Xn(t)) =
1

M L(n)

∑

u∈ΩM

�

EηuP(u+ ξn ∈ BL(n,s) )

+ (Varηu− Eηu)P(u+ ξn ∈ BL(n,s))P(u+ ξn ∈ BL(n,t))
�

=
Eη0

M L(n)
M L(n,s),

by (2.2). Hence
lim

n→∞
Cov(Xn(s), Xn(t) = Eη0MR(s).
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Next, using the inequality (a1+ . . .+ am)2+δ ≤ m1+δ(a2+δ
1 + . . .+ a2+δ

m ), ai ≥ 0, we easily obtain

lim
n→∞

1

M (1+δ/2)L(n)

∑

u∈ΩM

E





ηu
∑

k=1

1BL(n,t)
(u+ ξu,k

n )





2+δ

= 0.

Convergence of finite-dimensional distributions now follows from the central limit theorem (Lya-
punov criterion). �

Appendix: The degree γ

The development and applications of hierarchical random walks are outlined in [11], and their
recurrence/transience and some other properties are studied in [10] (and references therein).

In order to deal with the standard α-stable process on Rd and discrete time hierarchical random
walks in a unified way, the continuous time version of a walk with unit rate holding time was taken
in [10]. Its transition probability from 0 to y in time t > 0 is given by

pt(0, y) = e−t
∞
∑

n=0

tn

n!
p(n)(0, y),

where p(n)(0, y) is the transition probability from 0 to y in n steps. Generally, for a Lévy process on
a Polish space S (with additive group structure in the cases considered in [10]) with semigroup T t ,
the degree of the process is defined by

γ= sup{ζ >−1 : Gζ+1ϕ <∞ for all ϕ ∈B+b (S)},

whereB+b (S) is the space of bounded non-negative measurable functions with bounded support on
S, and

Gζϕ =
1

Γ(ζ)

∫ ∞

0

tζ−1Ttϕd t, ζ > 0,

is the fractional power of the potential (or Green) operator of the process. For ζ = γ it may happen
that Gγ+1ϕ < ∞ or Gγ+1ϕ = ∞,ϕ 6= 0. Recurrence corresponds to γ ∈ (−1, 0) and transience
corresponds to γ ∈ (0,∞]. The value γ= 0 is special since both cases Gϕ <∞ and Gϕ =∞, ϕ 6= 0,
can happen. The value γ=∞ occurs, for example, for a simple asymmetric random walk on Z. For
γ≥ 0, γ is also given by

γ= sup{ζ≥ 0 : ELζBR
<∞ for all R> 0},

where LBR
is the last exit time of the process (starting at 0) from an open ball BR of radius R centered

at 0. Thus, γ > 0, called degree of transience in this case [10], gives information on how fast the
process escapes to infinity. For a discrete time random walk on a discrete space, instead of Gζϕ it is
natural to consider

1

Γ(ζ)

∞
∑

n=0

nζ−1p(n)(0, 0), (A.1)
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but since
∫ ∞

0

tζpt(0, 0)d y =
∞
∑

n=0

Γ(n+ ζ+ 1)
n!

p(n)(0,0),

and
Γ(n+ ζ+ 1)

n!nζ
→ 1 as n→∞,

the degree of the random walk is the same in discrete and continuous time.

For the standard α-stable process on Rd ,γ is given by (1.3), and the range of possible values of γ for
those processes is restricted to the interval [−1

2
,∞). For the c-rw defined by (1.1),(1.2), γ is given

by (1.4), and the range of possible values of γ is (−1,∞). Hence this class of hierarchical random
walks is richer than the class of standard α-stable processes and corresponding symmetric random
walks on Zd . The c-rw’s mimic the behavior of α-stable processes because they have the same re-
currence/transience properties for equal values of their degrees (in particular, for γ = 0, Gϕ =∞
holds for both of them), and they have the same spatial asymptotic decay of powers of their potential
operators in terms of the “Euclidean radial distance” (see [10], Remark 3.2.2(b)). The correspon-
dence of degrees allows to choose c in order to study “caricatures” of α-stable processes by means of
c-rw’s, including non-integer values of the dimension d (which is one of the reasons for using hier-
archical random walks in statistical physics, see [10, 11] and references therein). But there are also
differences, for example, the distance from 0 of the c-rw has a different behavior from the α-stable
Bessel process (see [10], Remark 3.5.7). Definitions of k-weak transience and k-strong transience for
each integer k ≥ 1 were given in [9], and they were related to occupation time fluctuation limits
of branching systems with k levels of branching for k = 0, 1,2. The analogies between the results
for α-stable processes on Rd and c-rw’s on ΩM with equal values of γ for the two processes occur
because they have the same k-weak/strong transience behaviors. The correspondence between the
degrees of the α-stable process and the c-rw is also used in this paper to compare our results with
those of the α-stable process in [22, 23]. See in particular Remark 2.13(b).

The assumption r j+1/r j → a as j→∞, 0< a ≤ 1, implies that the degree of the r j-rw is given by

γ=
log M

log 1
a

− 1 for a < 1, γ=∞ for a = 1. (A.2)

This is obtained from [10] (Proposition 3.2.7). Hence

γ







< 0,
= 0, if
> 0,

a







< 1
M

, recurrent
= 1

M
,

> 1
M

, transient.

The parameter θ = γ+ 1 (see (2.22)) therefore has a meaning in terms of recurrence/transience.

Examples:

1. c-rw: 0< c < M ,

r j =
�

1−
c

M

�� c

M

� j−1
, j = 1,2, . . . , a =

c

M
, γ=

log c

log(M/c)
,

recurrent for c ≤ 1, transient for c > 1.
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2. jβ -rw: β ≥ 0,

r j = D
jβ

M j , j = 1, 2, . . . ,

where D is a normalizing constant,

a =
1

M
, γ= 0,

recurrent for β ≤ 1, transient for β > 1 (follows from the recurrence criterion in [19], see
also Example 3.2.6 in [10], which is slightly different) .

3.
r j = D j−β , j = 1,2, . . . ,

where β > 1 and D is a normalizing constant,

a = 1, γ=∞, transient.

Remark. In [10] r j is written in the form

r j = D
c j

N j/µ
, j = 1,2, . . . ,

where µ is a positive constant, (c j) is a sequence of positive numbers, and D is a normalizing
constant. The parameter µ is useful for some applications (see [11, 12]).

Acknowledgment. We are indebted to Don Dawson for introducing us to hierarchical random walks.
We thank the anonymous reviewers for comments that helped us to improve the presentation of the
paper.
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