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Abstract

The paper considers instantly coalescing, or instantly annihilating, systems of one-dimensional
Brownian particles on the real line. Under maximal entrance laws, the distribution of the parti-
cles at a fixed time is shown to be Pfaffian point processes closely related to the Pfaffian point
process describing one dimensional distribution of real eigenvalues in the real Ginibre ensemble
of random matrices. As an application, an exact large time asymptotic for the n-point density
function for coalescing particles is derived .
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1 Introduction and summary of main results

The study of single species reaction diffusion systems A+ A → A (coalescence) and A+ A → 0
(annihilation) originated in non-equilibrium statistical mechanics (see [13]), but has now a large
mathematical literature (see, for example, [1], [6], [7], [4]). In one dimension the systems exhibit
strongly non-mean field behaviour due to correlation effects. In this paper we give several examples
showing that this correlation structure can be encoded algebraically in a Pfaffian structure. Note
that the embedding of annihilating random walks as domain boundaries for a Glauber model makes
Pfaffian formulae quite reasonable due to the free fermion structure of the Glauber model (see
Felderhof [8]).

We examine the asymptotics for the n-particle density function ρ(n)t for (instantly) coalescing Brow-
nian motions on R defined by

P
�

there exist particles in d x1, . . . , d xn at time t
�

= ρ(n)t (x1, . . . , xn) d x1 . . . d xn.

In [12] we showed, for n≥ 1, t0, L > 0 and for a variety of initial conditions, the bounds

0< c1(n, L, t0)≤
ρ
(n)
t (x1, . . . , xn)

t−
n
2
− n(n−1)

4
∏

1≤i< j≤n |x i − x j|
≤ c2(n, L, t0)<∞, (1)

for t ≥ t0 and |x i| ≤ Lt1/2, where the constant c1 will depend also on the initial condition. The
non-linear factor in the power of t illustrates the non mean-field behaviour due to correlations.

In this paper we show that, under the maximal entrance law, the true asymptotic holds in (1) as
t →∞, and identify the limiting constant as the Pfaffian of a certain matrix. The maximal entrance
law corresponds intuitively to starting with every point occupied, and can be constructed as the
limit of initial Poisson distributions with increasing intensities. This initial condition is natural since,
as explained in section 2.3, started from a large class of other initial conditions the distributions at
time t become close, as t →∞, to those of the maximal entrance law.

Theorem 1. Under the maximal entrance law for coalescing Brownian motions,

sup
|x i |<<t1/2

�

�

�

�

�

�

ρ
(2n)
t (x1, . . . , x2n)

t−n− n(2n−1)
2
∏

1≤i< j≤2n |x i − x j|
− (4π)−n/2Pf (J (2n)(φ))

�

�

�

�

�

�

→ 0 as t →∞,

where |x i| << t1/2 means that we may take the supremum over any positions (x i(t)) provided that
supi |x i(t)|t−1/2→ 0 as t →∞, and where Pf (J (2n)(φ)) is the Pfaffian of the 2n× 2n anti-symmetric
matrix J (2n)(φ) with entries

J (2n)
i j (φ) = (−1) j−1 1

(i− 1)!( j− 1)!
d i+ j−2φ

d x i+ j−2 (0) for 1≤ i < j ≤ 2n,

where φ(z) = z exp(−z2/4). Under the analogous maximal entrance law for annihilating Brownian
motions, the same limit holds with (4π)−n/2 replaced by (64π)−n/2.

The presence of the Pfaffian in this asymptotic is a reflection that under the maximal entrance law
the particle positions, at a fixed time, form a Pfaffian point process (see the start of section 3 for a
definition).
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Theorem 2. Under the maximal entrance law for coalescing Brownian motions, the particle positions
at time t form a Pfaffian point process with kernel t−1/2K(x t−1/2, y t−1/2), where

K(x , y) =

�

−F ′′(y − x) −F ′(y − x)
F ′(y − x) sgn(y − x)F(|y − x |)

�

and F(x) = π−1/2
∫∞

x
e−z2/4dz. (Here sgn(z) = 1 for z > 0, sgn(z) = −1 for z < 0 and sgn(0) = 0.)

Under the analogous maximal entrance law for annihilating Brownian motions, the particle positions
at time t form a Pfaffian point process with kernel 1

2
t−1/2K(x t−1/2, y t−1/2).

The annihilating versions of Theorems 1 and 2, that is for (instantly) annihilating particles, can be
deduced from the thinning relation that connects coalescing and annihilating systems (see section
2.1).

Many probabilities for the fixed t distributions are given by formulae using Pfaffians, and there are
many places to start when proving these formulae. We choose to start by considering the following
basic fact for product moments for annihilating systems, from which we will deduce all the other
Pfaffian fromulae.

Theorem 3. Consider the product moments for annihilating Brownian motions, defined by

m(n)t (x1, . . . , xn) = EA
(x1,...,xn)







∏

i∈It

g(X i
t)






,

for bounded measurable g, where (x1, . . . , xn) lists the initial positions of the annihilating Brownian
motions on R, and (X i

t : i ∈ It) list the positions of any particles that remain at time t (and an empty

product is taken to have value 1). Then for x1 < x2 < . . . < x2n, the even moments m(2n)
t (x) are given

by

m(2n)
t (x1, . . . , x2n) = Pf

�

m(2)t (x i , x j) : 1≤ i < j ≤ 2n
�

(2)

where the right hand side is the Pfaffian of the 2n× 2n anti-symmetric matrix with entries m(2)t (x i , x j)
above the diagonal.

Note these Pfaffians are in variables that determine the initial conditions, allowing us to use p.d.e.
methods to characterize these moments. Indeed, the product moments satisfy a closed system of
heat equations (with suitable boundary conditions), and we will verify Theorem 3 by simply check-
ing that the Pfaffian uniquely satisfies this system. Markov time-reversal duality (see section 2.2)
then immediately implies that certain empty interval formulae

P
�

the intervals (a1, a2), (a3, a4),...,(a2m−1, a2m) are empty at time t
�

for coalescing systems are given by a Pfaffian, where the Pfaffian is now in the variables a1 < a2 <

. . .< a2m that determine the end points of the target intervals. This quickly leads to the identification
of the Pfaffian point process kernel K(x , y).

We concentrate on Brownian particles but, as we note later, we expect many of our Pfaffian formulae
to hold for a large variety of spatial motion processes, and the Pfaffian structure seems to arise from
two basic underlying mechanisms: linearly ordered particle motion and instantaneous reactions.
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1.1 Relation between annihilating Brownian motions and the real Ginibre ensemble
of random matrices.

The Pfaffian point process defined in Theorem 2 has been originally discovered in the context of
random matrices.1 Namely, consider real Ginibre ensemble [10] defined by the following probability
measure on the space of real N × N matrices:

µ(dM) =
1

(2π)N2/2
e−

1
2

Tr(MT M)λN×N (dM), (3)

where λN×N is Lebesgue measure on RN×N . Even though the real Ginibre ensemble is a classical
matrix model, the eigenvalue correlation functions have been computed only recently, see [5], [14],
[9], [15] and [16].

It turns out that the pfaffian point process corresponding to one-dimensional distributions of an-
nihilating Brownian motions is equivalent to the pfaffian point process describing the law of real
eigenvalues of Ginibre in the limit N → ∞. Namely, comparing the statement of Theorem 2 with
Corollary 9 of [5] we arrive at the following conclusion:

Corollary 4. The one-dimensional law of particle positions for the system of annihilating Brownian
motions on R at time t > 0 under the maximal entrance law is a Pfaffian point process with the kernel

KABM
t (x , y) =

1
p

2t
KGinibre

r r

�

x
p

2t
,

y
p

2t

�

, (4)

where KGinibre
r r is the N →∞ limit of the kernel of the Pfaffian point process characterizing the law of

real eigenvalues in the real Ginibre ensemble.

In other words, the one-dimensional law of annihilating Brownian motions under the maximal en-
trance law initial conditions is equivalent to the N = ∞ limiting law of real eigenvalues of a real
matrix with independent normal entries.

Corollary 4 suggests that real eigenvalues of real matrix-valued Brownian motion might behave
like a system of one-dimensional annihilating Brownian motions. In fact, numerical evidence we
accumulated up to date compels us to make the following conjecture.

Conjecture. Under the maximal entrance law, all finite-dimensional distributions of particle
positions for a system of annihilating Brownian motions on R coincide with N →∞ limit of multi-time
correlation functions of real eigenvalues of glR(N)-valued Brownian motion.

Here glR(N) denotes the linear space of all N × N matrices with real entries.

2 Brief review of some facts for one-dimensional coalescing and anni-
hilating Brownian motions

We consider, at first, initial conditions that have only finitely many particles. This paper describes
only the one dimensional time distributions, that is at a fixed t > 0, of any remaining particles. We

1We are grateful to the anonymous referee for bringing this fact to our attention.

2083



list the positions of the particles at time t as (X i
t : i ∈ It). The exact details of the labeling system

It will not be important for us, and indeed our results all relate only to the empirical measure Nt
defined by

Nt(A) =
∑

i∈It

χ(X i
t ∈ A) for measurable A⊆ R.

For the case of annihilating particles, if the initial number of particles is even then it remains so for
all time. To a list (x i) of an even number 2n of disjoint positions we may associate the open set

S((x i)) = ( x̂1, x̂2)∪ . . .∪ ( x̂2n−1, x̂2n)

where x̂1 < . . . < x̂2n are the ordered positions. Some of the formulae for annihilating particles are
then most easily stated in terms of the set valued process

St = S
�

(X i
t : i ∈ It)

�

.

Notation. We write PC
(x1,...,xn)

to indicate that we are considering (instantly) coalescing Brownian
motions started from initial positions x1, . . . , xn. When the particles are annihilating we change the
superscript from C to A. When the initial positions are random we change the subscript to Ξ, where
Ξ is the law of (X i

0 : i ∈ I0).

2.1 The thinning relation

The formulae about coalescing systems in the paper will always come with an analogue for anni-
hilating systems. The close link between the two systems has often been observed. For this paper
the formulae can usually be derived from the following thinning relation. For a list of positions
(x1, . . . , xn) we let Θ(x1, . . . , xn) be the random subset formed by thinning at rate 1/2, that is by
removing each position independently with probability 1/2. We may also thin a random set of po-
sitions, for example Θ(X i

t : i ∈ It), with the understanding that the randomness in the thinning is
independent of the randomness in the set of positions. We write Θ(Ξ) for the law of the thinned set
of positions that initially have law Ξ. Then the thinning relation between coalescing and annihilating
Brownian motions is the following equality in distribution:

(X i
t : i ∈ It) under PA

Θ(Ξ)
D
= Θ(X i

t : i ∈ It) under PC
Ξ . (5)

Such a thinning relation is discussed in Arratia [1] for the scaled limit of reacting random walks, and
is related to results in many later papers. There is a simple colouring proof (see ben Avraham and
Brunet [3]) that bears repetition here. After the paths of a coalescing system have been realized,
independently add random colours as follows. Initially colour each particle red or blue indepen-
dently with probability 1/2. At coalescences the colours evolve according to the rules R+ R → R,
B + B → R and R+ B → B. Then the resulting system of blue particles evolves as an annihilating
system. Moreover the colour of a particle at time t depends on whether there were a odd or even
number of ancestors at time zero that were coloured blue. Since distinct particles have disjoint sets
of ancestors, the colour of all particles at any time t > 0 remains independently red or blue with
equal probability. The thinning relation follows. This argument makes it clear that the result holds
much more widely, since the exact nature of the motion process is not relevant, nor is the mecha-
nism of reaction (for example it holds for delayed reactions, when the reactions are controlled by
the intersection local time).
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2.2 Duality formulae

We use two duality formulae. For a1 < a2 < . . .< a2m let Ik = (ak, ak+1) for k = 1, . . . , 2m−1. Then
for disjoint (x i)

PC
(x i)

�

Nt(I1) = Nt(I3) = . . .= Nt(I2m−1) = 0
�

= PA
(ai)

�

St ∩ (x i) = ;
�

. (6)

The annihilating analogue of this is, writing |A| for the cardinality of a set A,

EA
(x i)

�

(−1)Nt (I1∪I3∪...∪I2m−1)
�

= EA
(ai)

�

(−1)|St∩(x i)|
�

. (7)

There are various ways to see these formulae, but for coalescing systems a key construction is
the Brownian web and its coupling with the dual Brownian web, first considered by Arratia and
explored in Toth and Werner [20] (and subsequent papers). We need only part of the Brownian web
as follows. For a fixed t > 0, there is a system of coalescing Brownian motions starting from every
rational x and running over the time interval [0, t], and a coupled system of backwards coalescing
Brownian paths starting at time t at all x ∈ Q and running back to time zero. In fact, the Brownian
web has particles starting at all space-time points (s, x) but we will not need this, and it is enough
to establish (6) first for rational (x i) and (ai). The key property is that, almost surely, none of
the forward paths cross any of the backwards paths. (A discrete version of this coupling, that is
using simple coalescing simple random walks, is easy to construct - see the appendix in [18] - and
illustrates this non-crossing property). From this non-crossing property one sees that the event that
Nt ((a, b)) = 0 for the forward coalescing system is almost surely equal to the event that the open
interval formed by pair of backwards particles starting at a and b does not contain any of the initial
forwards particles. The coalescing duality (6) follows immediately, once one notes that St may be
replaced by its closure and that annihilating the backwards particles when they meet will not affect
this closure.

The annihilating duality (7) follows from (6) and the thinning relation. Note that thinning a set of
n≥ 1 elements produces a random subset whose size has a binomial B(n, 1/2) distribution, and also
that E[(−1)B(n,1/2)] = 0. Then thinning and (6) show that

EA
Θ(x i)

�

(−1)Nt (I1∪I3∪...∪I2m−1)
�

= PC
(x i)

�

Nt(I1) = Nt(I3) = . . .= Nt(I2m−1) = 0
�

= PA
(ai)

�

St ∩ (x i) = ;
�

= EA
(ai)

�

(−1)|St∩Θ(x i)|
�

(where on the right hand side EA
(ai)

is the expectation over the annihilating particle system and over
the independent thinning). One may then argue by induction on the number n of the initial particles
(x1, . . . , xn). When n = 1 the above identity reduces to (7) for a single particle. For general n the
identity is a mixture of copies of (7) for initial conditions that are subsets of (x i). But all but one
of the copies will involve n− 1 or less particles allowing an inductive proof. Note also that (6) also
follows from (7) - a weighted sum of (7) according to the distribution of Θ(x i) yields (6).

Remark. Other coalescing duality formulae, such as those in Xiong and Zhou [21], also follow
from the Brownian web and its dual, but their proof shows that one may also establish them using
the Markov generator duality, as explained in section 4.4 of Ethier and Kurtz, and thus bypass the
Brownian web. In particular this generator technique may be extended to show analogous dualities
for more general spatial motions, where the web construction does not (as yet) exist. Formally
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the generator proof shows that the dualities (6) and (7) will hold for instantly reacting continuous
Markovian motions, where the motion on the right hand side must be the image of the motion on
the left hand side under reflection x →−x . Furthermore the maximal entrance laws constructed in
the next section should follow once some moment control is established, which will require some
non-degeneracy of the spatial motion to ensure enough reactions take place.

2.3 Maximal entrance laws

One may start coalescing systems from infinitely many particles at time zero. A natural state space
for the empirical measure is the setMLF P(R) of locally finite point measures on R, which is a closed
subset of the space of locally finite measures under the topology of vague convergence of measures.
The reactions ensure that the point masses only have mass one, and so we consider the (measurable)
subsetM0 of those measures of the form

µ=
∑

i

δx i
where (x i) is locally finite in R and has disjoint elements.

(To obtain a process with continuous paths, which does not concern us in this paper, one can quotient
MLF P by the minimal relation that ensures µ+ 2δx ∼ µ+δx .)

There is a Feller Markov transition kernel pt(µ, dν) onM0. Moreover, there is a maximal entrance
law, intuitively starting with one particle at every site (as in the Brownian web). This can be charac-
terized by passing to the limit in (6) as (x i) increase to become dense in the real line. This entrance
law, which we denote by PC

∞, has one dimensional distributions satisfying

PC
∞
�

Nt(I1) = Nt(I3) = . . .= Nt(I2m−1) = 0
�

= PA
(ai)
[τ < t] (8)

where τ is the time for complete extinction of the annihilating system. This characterizes the one
dimensional laws onM0, and these laws are an entrance law for the Markov transition kernel de-
scribed above. By the scaling property of Brownian motions we have PA

(Tai)
[τ < T2 t] is independent

of T > 0. Using (8) this translates into a scaling for the entrance law

The law of (T−1X i
tT2 : i ∈ ItT2) is independent of T > 0 under PC

∞. (9)

Many suitably spread out and non-degenerate initial conditions are attracted to the maximal en-
trance law as t → ∞. For a large class of initial conditions (x i), the law of (T−1X i

T2 t
: i ∈ IT2 t)

under PC
(x i)

converges in distribution, onMLF P(R) as T →∞, to the law of (X i
t : i ∈ It) under PC

∞.
Indeed, using the extension of (6) to countable (x i), this follows (see the appendix) from

PC
(x i)

�

(T−1X i
T2 t : i ∈ IT2 t)∩ Ik = ; for k = 1,3, . . . , 2m− 1

�

= PC
(x i)

�

NtT2(T I1) = NtT2(T I3) = . . .= NtT2(T I2m−1) = 0
�

= PA
(Tai)

�

StT2 ∩ (x i) = ;
�

= PA
(ai)

�

St ∩ (T−1 x i) = ;
�

→ PA
(ai)
[τ < t]

= PC
∞
�

Nt(I1) = Nt(I3) = . . .= Nt(I2m−1) = 0
�

. (10)
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The third equality comes from Brownian scaling and the final equality is (8). The convergence holds
for deterministic (x i) for which (T−1 x i) become dense in any finite interval [a, b] as T → ∞. A
large class of random initial conditions will clearly also work, for example non-zero stationary and
spatially ergodic.

For annihilating systems a Markov transition kernel can also be constructed, using (7) and it’s ex-
tension to countable (x i) as a means of characterization. We can define an entrance law PA

∞ for the
annihilating system by taking the thinned copy of the entrance law for the coalescing system. This
satisfies the formula

EA
∞

�

(−1)Nt (I1∪I3∪...∪I2m−1)
�

= PA
(ai)
[τ < t] (11)

which again determines one dimensional laws onM0 that form an entrance law for the annihilating
system. The domain of attraction of this entrance law is more delicate. The example in section
3 of Bramson and Griffeath [6] suggests that different approximations to a maximal entrance law
may yield different laws at times t > 0 (their example uses varying intensities of nearby pairs at
time zero). For initial conditions that fill the lattice λ−1Z, or that are Poisson with intensity λ, the
one-dimensional time distributions converge as λ → ∞ to those of the entrance measure, or for a
fixed λ the large time distribution rescales to those of the entrance law, by the argument above.

Since we found it difficult to find a full account in the literature, we give, in the appendix, a brief
sketch of the proofs of the results in this subsection.

3 Proofs

3.1 Review of Pfaffians

We give a short summary, targeted at beginners like us, of the facts we shall use about Pfaffians
(mostly proved in [19] section 2), and of the definition of a Pfaffian point process. We write Pf (ai j :
1 ≤ i < j ≤ 2n) (or just Pf (ai j : i < j)) for the Pfaffian of the real anti-symmetric matrix whose
elements are ai j for i < j.

The determinant of an anti-symmetric matrix of odd order is zero. Suppose A is an anti-symmetric
2n × 2n matrix. Then det(A) is the square of a polynomial of degree n in the matrix elements,
called the Pfaffian of A and written as Pf (A). One can define the Pfaffian as a suitable sum over
permutations of products of matrix elements. Indeed,

Pf (A) =
∑

σ∈Σ2n

sgn(σ)ai1, j1 ai2, j2 . . . ain, jn (12)

where Σ2n is the set of permutations σ of {1, 2, . . . , 2n} given by σ(2k − 1) = ik, σ(2k) = jk for
k = 1, . . . , n for which the choices (ik), ( jk) satisfy ik < jk for all k and i1 < i2 < . . .< in. A convenient
way to calculate the sign of such a permutation is via crossings. The quadruple ik, jk, il , jl is called
crossed if ik < il < jk < jl . Then the sign of σ ∈ Σ2n equals (−1)M where M is the number of
crossings. To visualize these crossings easily one can embed the integers 1, . . . , 2n into the x-axis of
the plane and join ik to jk for each k with a loop in the upper half plane.
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It is worth recording the smallest cases:

Pf

�

0 a
−a 0

�

= a Pf











0 a b c
−a 0 d e
−b −d 0 f
−c −e − f 0











= a f − be+ cd.

The explicit 4× 4 case was used to guess many of the Pfaffian formulae in this paper.

Pfaffians have many similar properties to determinants. It follows from the definition that
Pf (λiλ jai j) = Pf (ai j)

∏

k λk. For any 2n × 2n matrix B the product BT AB is anti-symmetric and
Pf (BT AB) = det(B)Pf (A). The Pfaffian can be decomposed along a row, or column, of the matrix.
For example if A is a 2n×2n anti-symmetric matrix it satisfies the recursion, for any i ∈ {1, 2, . . . , 2n},

Pf (A) =
2n
∑

j=1, j 6=i

(−1)i+ j+1ai jPf (A(i, j)) (13)

where A(i, j) is the (2n−2)×(2n−2) submatrix formed by removing the ith and jth rows and columns.
We will also use a decomposition formula for the Pfaffian of a sum of two 2n× 2n anti-symmetric
matrices A and B, namely

Pf (A+ B) =
∑

J

(−1)|J |/2(−1)s(J)Pf (A|J )Pf (B|J c ) (14)

where: the sum is over all subsets J ⊆ {1,2, . . . , 2n} with an even number of terms; J c =
{1,2, . . . , 2n} \ J ; s(J) =

∑

j∈J j (and s(;) = 0); and where A|J means the submatrix of A formed by
the rows and columns indexed by elements of J (and the Pfaffian of the empty matrix is taken to
have value 1).

Suppose a measurable kernel

K(x , y) =

�

K11(x , y) K12(x , y)
K21(x , y) K22(x , y)

�

for x , y ∈ R

is anti-symmetric, in the sense Ki j(x , y) = −K ji(y, x) for all i, j ∈ {1,2} and x , y ∈ R. Suppose it
also acts as a kernel for a a bounded operator on L2(R)⊕ L2(R). A point process (X i : i ∈ I) with
n-point density functions ρ(n)(x1, . . . , xn) is called (see Soshnikov [17]) a Pfaffian point process with
kernel K if ρ(n)(x1, . . . , xn) is given by the Pfaffian of the 2n× 2n anti-symmetric matrix formed by
the n2 two-by-two matrix entries (K(x i , x j) : i, j = 1, . . . , n). The kernel is not uniquely determined.

A very convenient tool for manipulating Pfaffians is the Berezin integral. We provide arguments
that avoid this tool in this paper, and so do not describe the rules for manipulating these integrals.
However they were used repeatedly while exploring these results, and in the next section we show
how the Berezin integral can considerably shorten the argument. A very readable account of Berezin
integrals can be found in Itzykson and Drouffe [11]. The key property linking the Berezin integral to
Pfaffians is (compare with the normalizing determinant for multi-dimensional Gaussian integrals)

Pf
�

ai j : i < j
�

=

∫

dψ2n . . . dψ1e−
1
2

∑2n
i, j=1ψi ai jψ j . (15)
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3.2 Proof of Theorem 3, the product moment Pfaffians

We start with the product moment, defined for bounded measurable g : R→ R and disjoint (x i) by

m(n)t (x1, . . . , xn) = EA
(x1,...,xn)







∏

i∈It

g(X i
t)







where the product over an empty set, occurring when all the particles have been annihilated, is
defined to have value 1. Note that m(1)t (x) is given by the Brownian semigroup applied to g. We
also set m(0) ≡ 1. To show that m(2n) is given by a Pfaffian, we shall give a p.d.e. derivation similar
in spirit to that showing the Karlin McGregor formula for the transition density for non-intersecting
Brownian motions is given by a determinant.

Let Vn ⊆ Rn be the open cell {x : x1 < x2 < . . .< xn}. On (0,∞)×Vn the function m(n)t (x) solves the
heat equation, and we must examine the boundary conditions. For n≥ 2 and when g is bounded and
continuous, the functions m(n) are continuous on [0,∞)×Vn and extend to a continuous function in
C((0,∞)× V n). There are lots of pieces to the boundary of Vn, but the most important are the faces
Fi,n defined by x i = x i+1 and where the remaining xk are disjoint. On Fi,n the continuous extension
agrees with the lower order moment m(n−2)(x (i,i+1)), where x (i, j) ∈ Rn−2 is the (n−2)-tuple formed
by removing x i and x j from (x1, . . . , xn). This can be seen by showing that near the boundary the
hitting time between particles starting at x i and x i+1 is likely to occur before any other collision and
before time t. On other parts of the boundary the extension agrees with other lower moments.

The system of heat equations for (m(n) : n= 1, 2, . . .)






∂
∂ t

m(n)t (x) = ∆m(n)t (x) on (0,∞)× Vn,

m(n)t (x) = m(n−2)
t (x (i,i+1)) for x ∈ Fi,n and i = 1, . . . , n− 1,

m(n)0 (x) =
∏n

i=1 g(x i) for x ∈ Vn,

forms a closed system, in that each equation has boundary conditions formed by equations of lower
order. Note that, typically, the initial condition does not match the boundary conditions. Taking g
bounded and smooth, the system has unique solutions in C1,2([0,∞)× Vn) ∩ C((0,∞)× V n). It is
enough to specify boundary conditions only on each face Fi,n - the Feynman-Kac formula makes it
clear that the other parts of the boundary of Vn do not affect the value of m(n).

To establish the Pfaffian (2) stated in Theorem 3, it is enough, by an approximation argu-
ment, to treat the case where g is smooth. We shall prove (2) by showing the Pfaffian

Pf
�

m(2)t (x i , x j) : 1≤ i < j ≤ 2n
�

solves the system of heat equations above. Note that (2) holds
when t = 0 since

m(2n)
0 (x1, . . . , x2n) =

2n
∏

i=1

g(x i) = Pf
�

g(x i)g(x j) : i < j
�

.

The Pfaffian is a finite sum of product terms (see (12)) of the form

sgn(σ)m(2)t (x i1 , x j1)m
(2)
t (x i2 , x j2) . . . m(2)t (x in , x jn)

where σ is a permutation given by σ(2k − 1) = ik, σ(2k) = jk for k = 1, . . . , n. Since m(2)t (x , y)
satisfies the heat equation on [0,∞)× {x < y}, each product term lies in C1,2([0,∞)× V2n) and
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satisfies the heat equation on [0,∞)×V2n. Since m(2)t (x , y) extends continuously to (0,∞)×{(x , y) :
x ≤ y}, the Pfaffian extends continuously to (0,∞)× V 2n. By the uniqueness for the system of heat
equations, it remains to check that the Pfaffian satisfies the required boundary conditions on each
face Fi,2n which will complete the proof of Theorem 3.

We show the argument for the face F1,2n where x1 = x2 (other faces are similar). We may argue
inductively, and suppose that m(k) is given by the Pfaffian for k = 0,2, . . . , 2n−2. Our quickest proof
is using the representation (15) in terms of Berezin integrals. This gives

Pf
�

m(2)t (x i , x j) : i < j
�
�

�

�

x1=x2

=

∫

dψ2n . . . dψ1e−
1
2

∑2n
i, j=1ψi m

(2)
t (x i ,x j)ψ j

�

�

�

�

x1=x2

=

∫

dψ2n . . . dψ1e−
1
2

∑2n
i, j=3ψi m

(2)
t (x i ,x j)ψ j e−(ψ1+ψ2)

∑2n
k=3 m(2)t (x1,xk)ψk .

The sum M =
∑2n

k=3 m(2)t (x1, xk)ψk is independent of ψ1 and ψ2 and the dψ2dψ1 integral becomes
(using the rules for Berezin integrals)

∫

dψ2dψ1e−(ψ1+ψ2)M =

∫

dψ2dψ1(1−ψ2ψ1)(1− (ψ1+ψ2)M) = 1.

This simplification leaves only
∫

dψ2n . . . dψ3e−
1
2

∑2n
i, j=3ψi m

(2)
t (x i ,x j)ψ j which is the Berezin integral for

m(2n−2)(x3, . . . , x2n).

An argument that avoids Berezin integrals is as follows. Using the recursive relation for Pfaffians
(13) we see that the Pfaffian in (2) equals

2n
∑

k=2

(−1)km(2)t (x1, xk)m
(2n−2)
t (x (1,k)).

Since m(2)t (x1, x2) extends to the function 1 on x1 = x2, it remains only to check that

2n
∑

k=3

(−1)km(2)t (x1, xk)m
(2n−2)
t (x (1,k)) (16)

vanishes when x1 = x2 and t > 0. But this follows from expressing m(2n−2) using (12). Indeed, fix
j, k ≥ 3. Then for an expression of the form

m(2)t (x1, xk)m
(2)
t (x2, x j)m

(2)
t (x i2 , x j2) . . . m(2)t (x in−1

, x jn−1
)

arising from the kth term in (16), where {i2, j2, . . . , in−1, jn−1} = {3,4, . . . , 2n} \ { j, k}, there is a
corresponding term

m(2)t (x1, x j)m
(2)
t (x2, xk)m

(2)
t (x i2 , x j2) . . . m(2)t (x in−1

, x jn−1
)
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arising from the jth term in (16). These terms agree on x1 = x2 and a careful check of the signs of
the permutations, and the factors (−1) j and (−1)k in (16), shows they will cancel. One way to do
this check is to compare the sign of

σ =

�

2 3 4 5 . . . k− 1 k+ 1 . . . 2n− 1 2n
2 j i2 i3 . . . . . . . . . . . . in−1 jn−1

�

with that of

σ′ =

�

2 3 4 5 . . . j− 1 j+ 1 . . . 2n− 1 2n
2 k i2 i3 . . . . . . . . . . . . in−1 jn−1

�

by counting crossings. The loop joining 2 to j in σ must be replaced by a loop joining 2 to k in σ′.
This may affect crossings with any of the loops emanating from sites between j and k, and will do
so unless a pair of them are joined to each other. There are |k − j| − 1 sites between j and k so it
will change the parity of the number of crossings exactly when |k− j| is even.

Remark 1. For odd moments there is also a Pfaffian representation, namely, when x1 < x2 < . . . <
x2n−1,

m(2n−1)
t (x1, . . . , x2n−1) = Pf

�

m(2)t (x i , x j) : 0≤ i < j ≤ 2n− 1
�

(17)

where we adopt the convention that m(2)t (x0, xk) = m(1)t (xk). This Pfaffian involves a linear combi-
nation of terms of the form

sgn(σ)m(1)t (x j1)m
(2)(x i2 , x j2) . . . m(2)(x in , x jn)

which again shows that it solves the heat equation when [0,∞) × V2n−1. The recursive Pfaffian
relation gives

m(2n−1)
t (x) =

2n−1
∑

k=1

(−1)km(1)t (xk)m
(2n−2)
t (x (k)).

Expanding the Pfaffian along its first row using (13) we obtain for x = (x1, . . . , x2n−1) ∈ V2n−1

Pf
�

m(2)t (x i , x j) : 0≤ i < j ≤ 2n− 1
�

=
2n−1
∑

k=1

(−1)k+1m(1)t (xk)m
(2n−2)
t (x (k)) (18)

where we again write superscripts x (i, j,...) to mean that we remove the indicated co-ordinates. The
terms with k = 1 and k = 2 cancel on the face F2n−1,1 where x1 = x2. Moreover on this face, for

k ≥ 3, m(2n−2)
t (x (k)) = m(2n−4)

t (x (1,2,k)) so that the Pfaffian in (18) becomes

2n−1
∑

k=3

(−1)k+1m(1)t (xk)m
(2n−4)
t (x (1,2,k)).

But this is the decomposition of m(2n−3)
t (x (1,2)) along the first row, and this shows the boundary

conditions are correct on F2n−1,1. Other faces are similar.

Remark 2. Since our proof relies only on uniqueness for the underlying system of heat equations, the
extension of these product moment Pfaffians to more general spatial motions looks quite straightfor-
ward, for example to Markovian spatial motions that are continuous and suitably non-degenerate.
The Pfaffians in the next section would then also follow for these more general motions, just by
algebraic manipulation, once maximal entrance laws characterized by (8) and (11) are established.
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3.3 Proof of Theorem 2, the Pfaffian point process kernel

Fixing a1 < . . .< a2m and choosing g(x) = (−1)
∑

i χ(x≤ai) in (2) we see that both sides of the duality
(7) are Pfaffians in the variables (x i). Choosing g = 0, recalling that an empty product takes the
value 1, we see that PA

(x i)
[τ < t] is a Pfaffian. The entrance law dualities (8) and (11) show that

PC
∞
�

Nt(I1) = Nt(I3) = . . .= Nt(I2m−1) = 0
�

= EA
∞

�

(−1)Nt (I1∪I3∪...∪I2m−1)
�

are Pfaffians in the variables (ai). The entries in this last Pfaffian are explicit since

PC
∞

�

Nt

�

(a j , ak)
�

= 0
�

= EA
∞

h

(−1)Nt((a j ,ak))
i

= PA
(ai ,a j)

[τ < t]

are all equal to (by Brownian hitting probabilities)

F
�

t−1/2(a j − ai)
�

where F(x) = π−1/2
∫∞

x
exp(−y2/4) d y . (19)

We switch dummy variables for the rest of this section, taking x1 < x2 < . . . < x2n and Ik =
(xk, xk+1) so that we start from

PC
∞
�

Nt(Ik) = 0 for k = 1,3, . . . , 2n− 1
�

= Pf
�

F
�

t−1/2(x j − x i)
�

: i < j
�

. (20)

To prove Theorem 2, we shall identify the Pfaffian point process kernel by differentiating the empty
interval Pfaffian (20) above. By scaling we may take t = 1. Differentiate the identity (20) for t = 1
in the variables x1, x3, . . . , x2n−1. The left hand side becomes, formally,

EC
∞
�

N1(d x1)N1(d x3) . . . N1(d x2n−1)I(N1(Ik) = 0 for k = 1, 3, . . . , 2n− 1)
�

.

Letting x2l ↓ x2l−1 for l = 1, . . . , n we reach the n-point density ρ(n)1 (x1, x3, . . . , x2n−1). In the
appendix 4.3 we give more details verifying the formal differentiation above is valid, by using dis-
tributional derivatives.

On the right hand side of (20) we will also differentiate in the variables x1, x3, . . . , x2n−1. Note that
each product term in the permutation expansion (12) of the Pfaffian contains exactly one element
that involves the variable x1. So differentiating in x1 leads to a similar permutation expansion, but
where all the terms that involve x1 have been differentiated. Repeating this argument, differenti-
ating in x1, x3, . . . , x2n−1 yields the Pfaffian where each term in the matrix has been differentiated
in the variables x1, x3, . . . , x2n−1 that is where the 2× 2 block formed by the rows 2 j − 1, 2 j and
columns 2k− 1, 2k is given by

�

−F ′′(x2k−1− x2 j−1) −F ′(x2k − x2 j−1)
F ′(x2k−1− x2 j) sgn(x2k − x2 j) F(x2k − x2 j)

�

when j ≤ k. (Note that F ′′ is an odd function and so no sgn is needed in the 2 j − 1, 2k− 1 entry.)
Letting x2l ↓ x2l−1 for l = 1, . . . , n we obtain the kernel K stated in Theorem 2. The decay in F, F ′, F ′′

implies that K acts as a suitable bounded operator. The scaling relation (9) implies that the kernel
of the distribution time t is t−1/2K(x t−1/2, y t−1/2).

Remark 1. An alternative starting point, used by ben Avraham et al. (see [2], [3]), is to show the
empty interval probabilities PC

∞[Nt(I1) = Nt(I3) = . . .= Nt(I2m−1) = 0] satisfy heat equations in the
variables (x i), though the connection with Pfaffians does not seem to have been noted.
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Remark 2. The linear ordering of particles seems to be crucial. For Brownian particles on a one-
dimensional torus, there is an extra boundary condition where x2n may hit x1 by going ’the other
way’ around the torus, and this is not satisfied by the Pfaffians.

Remark 3. Differentiating in the variables x2, . . . , x2n instead leads to the alternative dual kernel

K(x , y) =

�

sgn(y − x)F(|y − x |) F ′(y − x)
−F ′(y − x) −F ′′(y − x)

�

Remark 4. Starting from the Pfaffian (20) certain other probabilities can, by algebraic manip-
ulation, also be expressed as Pfaffians. We give three examples, leaving details of the deriva-
tions to the appendix. In each case F is the 2n × 2n anti-symmetric matrix with elements
Fi j = PC

∞[Nt

�

(x j , xk)
�

= 0] = F(t−1/2(x j − x i)) as in (19).

• Let I = I2n be the 2n× 2n anti-symmetric matrix with entries 1 above the diagonal. Then

PC
∞
�

Nt(Ik)> 0 for k = 1, . . . , 2n− 1
�

= Pf (I − F). (21)

The annihilating analogue of this is

PA
∞
�

Nt(Ik) is odd for k = 1, 2, . . . , 2n− 1
�

= 21−2nPf (I − F). (22)

• Let O = O2n be the 2n × 2n anti-symmetric matrix formed by n copies of the 2 × 2 matrix
�

0 1
−1 0

�

down the diagonal and zeros elsewhere. Then

PC
∞
�

Nt
�

Ik)
�

> 0 for k = 1, 3,5, . . . , 2n− 1
�

= Pf (O− F). (23)

Again there is an annihilating analogue.

• Let Ô = Ô2n be the 2n× 2n anti-symmetric matrix with entries

Ôi j =







+1 if i = 2, 4, . . . , 2n− 2 and j = i+ 1,
−1 if j = 2, 4, . . . , 2n− 2 and i = j+ 1,
0 otherwise.

Note that Ô also has copies of the 2× 2 matrix
�

0 1
−1 0

�

in some places down the diagonal

and zeros elsewhere. Then

PC
∞
�

Nt(Ik) = 0 for k = 1,3, . . . , 2k− 1 and Nt(Ik)> 0 for k = 2,4, . . . , 2k− 2
�

= Pf (F − Ô). (24)

Remark 5. Suppose (Mx y : x ≤ y) is a bounded continuous field that satisfies E[Mx1 x2
Mx3 x4

] =
Pf (E[Mx i x j

] : 1 ≤ i < j ≤ 4) for x1 < . . . < x4. Then by continuity E[Mx x Mx x] = Pf (E[Mx x]) =
E[Mx x]2 and so Mx x must be deterministic. This imposes a restriction on the class of correlation
functions admitting a Pfaffian representation.
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3.4 Proof of Theorem 1, the asymptotics for ρ(2n)
t

We work throughout under the entrance measure PC
∞. By thinning the corresponding density for

annihilating systems differs only by a multiplicative factor 2−n. The n-point density function ρ(n)t (x)
is a Lebesgue density for the measure EC

∞[Nt(d x1) . . . Nt(d xn)] on Vn. The existence of this density,
defined almost everywhere, and the simple bound

ρ
(n)
t (x)≤ Cn t−n/2 for all t > 0 and x ∈ Vn (25)

is discussed in [12]. Furthermore there we established the following upper bound: for all L > 0
there exists CL <∞ so that

ρ
(n)
t (x1, . . . , xn)≤ CL t−

n
2
− n(n−1)

4

∏

1≤i< j≤n

|x i − x j| for all t > 0 and |x i| ≤ Lt1/2. (26)

As t →∞ the entries in the Pfaffian for ρ(n)t are of the form F, F ′, F ′′ evaluated at points t−1/2(x j −
x i) close to zero. One may approximate these by using the Taylor expansion for F(z) at small
values of z. However, considerable cancellation occurs in the many terms of the Pfaffian and it
is not immediately clear how to read off the leading asymptotic decay in t. Indeed the following
argument shows at F needs to be expanded to a large number of terms to obtain the correct answer.

We shall analyze first a modified density function ρ̃(2n)
t (x) for x ∈ V2n, which is a density for the

measure
EC
∞
�

Nt(d x1) . . . Nt(d x2n)χ(Nt(Ik) = 0 for k = 1, 3, . . . , 2n− 1)
�

(where we recall that Ik = (xk, xk+1)). We claim that

ρ̃
(2n)
t (x1, . . . , x2n) = (4πt2)−n/2 Pf

�

φ
�

(x j − x i)/t1/2
�

: 1≤ i < j ≤ 2n
�

(27)

where φ(z) = z exp(−z2/4). This follows formally, as in section 3.3, by differentiating (20) in all
variables x1, x2, . . . , x2n, and using that,

∂x1
. . .∂x2n

Pf
�

F(x j − x i) : i < j
�

= Pf
�

−(4π)−1/2φ(x j − x i)
�

(which follows from differentiating each term in the permutation expansion (12) of the Pfaffian).
We give more details in the appendix 4.3.

The advantage of the representation (27) is that it is a Pfaffian all of whose entries are of the form
f (x i − x j) for a single function f , and this allows us to apply the following lemma, proved at the
end of this section, that gives an expansion for a Pfaffian whose entries are close to the zero of an
odd function.

Lemma 5. Let φ : R→ R be an odd function that is analytic at zero. Then for any n ≥ 1 there exist
ε(n,φ)> 0 and C(n,φ)<∞ so that for y ∈ Vn with |y| ≤ ε(n,φ)

Pf
�

φ(y j − yi) : 1≤ i < j ≤ 2n
�

= Pf (J (2n)(φ) + R(2n)(y))
∏

1≤i< j≤2n

(y j − yi)

where J (2n)(φ) is the constant anti-symmetric matrix with entries

J (2n)
i j (φ) = (−1) j−1 1

(i− 1)!( j− 1)!
d i+ j−2φ

d x i+ j−2 (0) for 1≤ i < j ≤ 2n, (28)
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and the remainder R(2n)(y) is a anti-symmetric matrix satisfying
�

�

�R(2n)
i j (y)

�

�

�≤ C(n,φ)|y| for all i, j and |y| ≤ ε(n,φ).

We apply this lemma to the Pfaffian in (27) with φ(z) = ze−z2/4 and with y = t−1/2 x for t large
enough. Expanding the Pfaffian Pf (J (2n)(φ) + R(2n)(t−1/2 x)) using (14) we find only one term,
namely Pf (J (2n)(φ)), that does not decay as t →∞. This shows that

lim
t→∞

tn2+ n
2 ρ̃
(2n)
t (x1, . . . , x2n) = (4π)

−n/2 Pf
�

J (2n)(φ)
�

∏

1≤i< j≤2n

(x j − x i).

To obtain the same estimate for ρ(2n) we estimate the difference as follows.

0 ≤ ρ
(2n)
t (x1, . . . , x2n)− ρ̃

(2n)
t (x1, . . . , x2n)

= EC
∞
�

Nt(d x1) . . . Nt(d x2n)χ(Nt(Ik)> 0 for some k = 1,3, . . . , 2n− 1)
�

≤
2n−1
∑

k=1

EC
∞
�

Nt(d x1) . . . Nt(d x2n)Nt(Ik)
�

=
2n−1
∑

k=1

∫

Ik

ρ
(2n+1)
t (x1, . . . , xk, z, xk+1, . . . , x2n)dz.

Each term in this sum is of a smaller order in t by (26).

Examination of the proof shows that we need not let the values of x1, . . . , x2n be fixed, and that in
fact we may take the supremum over any positions (x i(t)) provided that supi |x i(t)|t−1/2 → 0 as
t →∞.

Proof of Lemma 5. Let Φ be the 2n× 2n anti-symmetric matrix with entries given by Φi j = φ(y j −
yi). The aim is to show, for small y , that

Φ = V T (J + R)V

where J and R are as in the lemma (with n fixed and suppressed) and V is the 2n×2n Vandermond
matrix given by Vi j = y i−1

j . Since det(V ) =
∏

1≤i< j≤2n(y j − yi), the conclusion then holds from

Pf (V T (J + R)V ) = det(V )Pf (J + R)

For small |y| we expand by analyticity (writing φk(0) for the kth derivative of φ at zero)

Φi j =
∞
∑

n=0

1

n!
φn(0)(y j − yi)

n

=
∞
∑

n=0

n
∑

k=0

1

k! (n− k)!
φn(0)yk

j (−yi)
n−k

=
∞
∑

k,l=0

1

k! l!
φk+l(0)yk

j (−yi)
l

=
∞
∑

k,l=1

y l−1
i yk−1

j Jlk (29)
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where we have rearranged using l = n− k in the penultimate equality. Note that

(V T JV )i j =
2n
∑

k,l=1

Vl iVk jJlk =
2n
∑

k,l=1

y l−1
i yk−1

j Jlk.

It remains to re-express the remaining terms in (29) as the desired remainder.

Recall the symmetric polynomials σ2n
k (y) defined for y ∈ R2n by

2n
∏

k=1

(yk −λ) =
2n
∑

k=0

(−1)kσ2n
k (y)λ

2n−k. (30)

Note that σ2n
k is a polynomial of order k. Since σ2n

0 ≡ 1 we may choose λ= yi to see that

0= y2n
i +

2n
∑

k=1

(−1)kσ2n
k (y)y

2n−k
i for i = 1, . . . , 2n.

Multiplying by y p
i we see that

y p+2n
i =

2n
∑

k=1

(−1)k+1σ2n
k (y)y

p+2n−k
i for i = 1, . . . , 2n and p = 0,1, . . .. (31)

By iterating this we may express y p+2n
i for p ≥ 0 as a mixture of 1, yi , y2

i , . . . , y2n−1
i , as follows:

y p+2n
i =

2n
∑

k=1

τ
2n,p+2n
k (y)yk−1

i for i = 1, . . . , 2n and p = 0, 1, . . . (32)

where τ2n,p+2n
k (y) is a polynomial of order p+ 2n− k+ 1. Using this substitution in the remaining

terms of (29), that is where k or l is at least 2n+ 1, we find (formally) that




∞
∑

k,l=2n+1

+
2n
∑

k=1

∞
∑

l=2n+1

+
2n
∑

l=1

∞
∑

k=2n+1



 y l−1
i yk−1

j Jlk =
2n
∑

p,q=1

y p−1
i yq−1

j Rpq(y)

where

Rpq(y) =
∞
∑

k,l=2n+1

τ2n,l−1
p (y)Jklτ

2n,k−1
q (y)

+
2n
∑

k=1

∞
∑

l=2n+1

τ2n,l−1
p (y)Jql +

2n
∑

l=1

∞
∑

k=1

τ2n,k−1
q (y)Jkp. (33)

Note the lowest order of the polynomial entries in the terms for Rpq is of order 1. In the appendix
4.4 we check that this rearrangement of (29) is valid when |y| is suitably small and that the required
error bound |Rpq(y)| ≤ C(n,φ)|y| holds.

Thanks. We would like to thank our colleague Dmitriy Rumynin for advice on the use of symmetric
polynomials.
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4 Appendix

4.1 Details for section 2.3

We give a few details on (one approach to) the results surveyed in section 2.3. For coalescing systems
one can use monotonicity, adding initial particles one by one, to construct the infinite system. This
is not available for annihilating systems, so we sketch a weak convergence argument that applies to
both systems.

One can control moments by bounds on the n-point density function. Indeed ρ(n)t (x), the density
for the measure EC

(x i)
[Nt(d x1) . . . Nt(d xn)] on Vn, depends on the initial condition, but satisfies the

bound ρ(n)t (x) ≤ Cn t−n/2 uniformly over all possible finite initial conditions (x i). This follows by
duality for n = 1 and by anti-correlation for n > 1 (see [12]). It follows that EC

(x i)
[N p

t (a, b)] is
bounded, for each t, p > 0, a, b ∈ R, uniformly over finite initial conditions (x i).

Fix µ ∈M0 and take finite measures µn so that µn→ µ (recall we are using vague convergence). The
moment bounds above imply that the laws of Nt onMLF P under PC

µn
are tight. Take a subsequence

n′ along which they converge to a limit, which we denote Q. The functions

ν → F(ai)(ν) := χ(ν(I1) = ν(I3) = . . .= ν(I2n−1) = 0)

are discontinuous onMLF P . However the moment bound EC
(x i)
[Nt(a, b)] ≤ C(t)(b− a) holds also

for the limit law Q and implies that ν({ai}) = 0, Q(dν) almost surely. This shows that Q does not
charge the discontinuity set of F(ai). Then we may pass to the limit in (6) to deduce that

∫

F(ai)(ν)Q(dν) = PA
(ai)

�

St ∩ supp(µ) = ;
�

. (34)

These functionals do not characterize a law on MLF P , but they do characterize a law that is sup-
ported onM0. To see this note that for ν ∈M0

ν([x , y]) = lim
N→∞

∑

k

χ

�

ν([x , y]∩ (
k

N
,

k+ 1

N
])> 0

�

.

From this one may use (34) to find
∫

ν([x1, y1]) . . .ν([xn, yn])Q(dν)which, by the moment bounds,
determine Q. To see that Q is supported onM0 note that

PC
µn

�

Nt(a, b)≥ 2
�

≤
∫ b

a

∫ b

a

ρ
(2)
t (x1, x2) d x1d x2 ≤ C(t)(b− a)2.

This bound holds uniformly over n and hence also for the limit law Q. Then the conclusion follows
from the usual covering argument, for instance

Q
�

µ({x}> 1 for some x ∈ [−L, L])
�

≤
LN
∑

k=−LN

Q
�

µ([k/N , (k+ 1)/N])≥ 2
�

≤ C(L, t)N−1.

Thus the law Q is determined and we may define pt(µ, dν) to equal Q(dν).

2097



The remainder of the results in section 2.3 follow using similar tools. For example, for the continuity
of µ → pt(µ, dν), that is the Feller property, suppose that µn → µ in M0. The moment bounds,
which still hold for infinite initial conditions, imply the tightness of pt(µn, dν). Passing to the limit
in

∫

F(ai)(ν)pt(µn, dν) = PA
(ai)

�

St ∩ supp(µn) = ;
�

.

shows that any limit point of pt(µn, dν) must be pt(µ, dν). The semigroup property, for bounded
continuous F :MLF P → R,

∫

F(ν)pt+s(µ, dν) =

∫ ∫

F(ν ′)ps(ν , dν ′)pt(µ, dν), (35)

which is valid for finite measures µ extends to hold for µ ∈ M0 by approximation, using the Feller
property. The same tightness and characterization methods establish the existence of a law charac-
terized by (8), and justify the arguments in (10) that many initial laws are attracted to it. That (8)
determines an entrance law can be established by passing to the limit in (35) along µ =

∑

k δλ−1k
as λ→∞.

The annihilating case follows the same lines, with moments controlled since the n-point density
and moments for annihilating systems are bounded by the corresponding coalescing system. The
coalescing duality formula (6) is replaced by the annihilating duality formula (7), and to see that
this will characterize the law note that for ν ∈M0

ν([x , y]) = lim
N→∞

∑

k

�

1− (−1)ν
�

[x ,y]∩( k
N , k+1

N ]
��

.

4.2 Details for Remark 3 in section 3.3

We give here the algebraic manipulations to derive the Pfaffians (21,22,23,24).

Pf (I) = 1 for I the 2n×2n anti-symmetric matrix with entries 1 above the diagonal, and the formula
(14) specializes to

Pf (I − A) =
∑

J

(−1)s(J)Pf (A|J ),

(using for a 2n× 2n anti-symmetric matrix A, that Pf (−A) = (−1)nPf (A)). We combine this with a
simple combinatorial identity (which can be checked by induction on n): suppose that (m j,k : 1 ≤
j < k ≤ n) satisfy the collapsing product m j,kmk,l = m j,l for all j, k, l; then

n−1
∏

k=1

(1+mk,k+1) = 1+
∑

1≤k1<k2≤n

mk1,k2

+
∑

1≤k1<k2<k3<k4≤n

mk1,k2
mk3,k4

+
∑

1≤k1<k2<k3<k4<k5<k6≤n

mk1,k2
mk3,k4

mk5,k6
+ . . .

=
∑

J

mJ
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where the final sum is over all subsets J of {1,2, . . . , n} of even size, and if J = {k1, . . . , k2m} where
k1 < . . . < k2m then mJ = mk1,k2

mk3,k4
. . . mk2m−1,k2m

(and with m; = 1). If n is even then the last
term of this series is m1,2m3,4 . . . mn−1,n. Note that m̄ j,k = αk− jm j,k also satisfy m̄ j,km̄k,l = m̄ j,l and

applying the above for m̄ one obtains a decomposition for
∏n−1

k=1(1 + αmk,k+1). In particular for
α=−1 we get

N−1
∏

k=1

(1−mk,k+1) =
∑

J

(−1)s(J)mJ .

Now apply this with m j,k = χ(Nt

�

(a j , ak)
�

= 0). These satisfy the collapsing products almost surely
under the probability PC

∞. The Pfaffian (20) shows that EC
∞[mJ] = Pf (F |J ) and so

PC
∞
�

Nt(Ik)> 0 for k = 1, . . . , 2n− 1
�

= EC
∞





2n−1
∏

k=1

(1−mk,k+1)





=
∑

J

(−1)s(J)EC
∞
�

mJ
�

=
∑

J

(−1)s(J)Pf (F |J )

= Pf (I − F).

We may apply the same argument for the annihilating case taking m j,k = (−1)Nt((a j ,ak)), where
1−m j,k = 2χ(Nt

�

(a j , ak)
�

is odd), to find (22).

For (23) we have Pf (O2n) = 1 and Pf (O2n|J ) = 0 unless O2n|J is a copy of O2m for some m ∈
{0, 1, . . . , n}. This occurs either if J is empty or if J is of the form

J1 = {2k1− 1,2k1, 2k2− 1, 2k2, . . . , 2km− 1,2km}
for some 1≤ k1 < . . .< km ≤ n. (36)

Then formula (14) specializes to

Pf (O− A) =
∑

J1

(−1)|J1|/2Pf (A|J1
)

where the sum is over all J1 of the form in (36) (including the empty set). We use another combi-
natorial identity, also straightforward by induction on n:

n
∏

k=1

�

1−m2k−1,2k

�

=
∑

J1

(−1)|J1|/2mJ1

where the sum is over all J1 of the form in (36) (including the empty set). Arguing as in the previous
example leads to (23).

For (24) one has Pf (Ô2n) = 0 and Pf (Ô2n|J ) = 0 unless Ô2n|J is a copy of O2m for some m ∈
{0, 1, . . . , n− 1}. This occurs either if J is empty or if J is of the form

J2 = {2k1, 2k1+ 1,2k2, 2k2+ 1, . . . , 2km, 2km+ 1}
for some 1≤ k1 < . . .< km ≤ n− 1. (37)
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Then formula (14) specializes to

Pf (A− Ô) =
∑

J2

(−1)|J2|/2Pf (A|cJ2
)

where the sum is over all J2 of the form in (37) (including the empty set). The required combinato-
rial identity is

n−1
∏

k=1

�

1−m2k,2k+1

�

n
∏

k=1

m2k−1,2k =
∑

J2

(−1)|J2|/2mJ2

where the sum is over all J2 of the form in (37) (including the empty set). Arguing as in the previous
examples leads to (24).

4.3 Details on distributional derivatives

The derivation of the kernel K in section 3.3, and also the Pfaffian (27), use formal differentiation
that can be made precise by using distributional derivatives. Consider first (27). For µ =

∑

i δzi
a

locally finite point measure with disjoint atoms, one has the distributional derivative on V2n

∂x1
. . .∂x2n

χ(µ(xk, xk+1) = 0 for k = 1,2, . . . , 2n− 1)

= (−1)nχ(µ(xk, xk+1) = 0 for k = 1,3, 5 . . . , 2n− 1)µ(d x1) . . .µ(d x2n). (38)

We illustrate how to check this by showing that, in the distributional sense on V2,

∂xχ(µ(x , y) = 0) = χ(µ(x , y) = 0)µ(d x) d y.

Indeed, if f is smooth and compactly supported in V2 then
∫

R2

f (x , y)χ(µ(x , y) = 0)µ(d x) d y

=
∑

i

∫

R

f (x i , y)χ(µ(zi , y) = 0, zi < y) d y

=

∫

R2

∂x f (x , y)

 

∑

i

χ(µ(zi , y) = 0, x < zi < y)

!

d x d y

=

∫

R2

∂x f (x , y)χ(µ(x , y)> 0) d x d y

= −
∫

R2

∂x f (x , y)χ(µ(x , y) = 0) d x d y

2100



since at most one term in the sum over i is non-zero. Iterating such calculations leads to (38). Then
for smooth f compactly supported in V2n,
∫

V2n

f (x1, . . . , x2n)ρ̃
(2n)
t (x1, . . . , x2n)d x1 . . . d x2n

= EC
∞





∫

V2n

f (x1, . . . , x2n)χ(Nt(Ik) = 0 for k = 1, 3, . . . , 2n− 1)Nt(d x1) . . . Nt(d x2n)





= (−1)nEC
∞





∫

V2n

∂x1
. . .∂x2n

f (x1, . . . , x2n)χ(Nt(Ik) = 0 for k = 1,2, . . . , 2n− 1)d x1 . . . d x2n





= (−1)n
∫

V2n

∂x1
. . .∂x2n

f (x1, . . . , x2n)Pf
�

F(t−1/2(x j − x i))
�

d x1 . . . d x2n

= (4πt2)−n/2

∫

V2n

f (x1, . . . , x2n)Pf
�

φ(t−1/2(x j − x i))
�

d x1 . . . d x2n.

In the last step we have passed the derivatives onto the Pfaffian, which is smooth since F is smooth,
and used F ′′(x) = (4π)−1/2φ(x).

The argument for the kernel K is similar. Fix x2 < x4 < . . . < x2n and consider the open set
V = {(x1, x3, . . . , x2n−1) : x1 < x3 < . . .< x2n−1}. Then, as above, in the distributional sense on V

∂x1
∂x3

. . .∂x2n−1
χ(µ(xk, xk+1) = 0 for k = 1, 3, . . . , 2n− 1)

= χ(µ(xk, xk+1) = 0 for k = 1, 3 . . . , 2n− 1)µ(d x1)µ(d x3) . . .µ(d x2n−1).

Then for smooth f compactly supported in V , with Ω = {Nt(Ik) = 0 for k = 1,3, . . . , 2n− 1},

EC
∞

�
∫

V

f (x1, x3, . . . , x2n−1)χ(Ω)Nt(d x1)Nt(d x3) . . . Nt(d x2n−1)

�

= (−1)nEC
∞

�
∫

V

∂x1
∂x3

. . .∂x2n−1
f (x1, x3, . . . , x2n−1)χ(Ω)d x1 d x3 . . . d x2n−1

�

= (−1)n
∫

V

∂x1
∂x3

. . .∂x2n−1
f (x1, x3, . . . , x2n−1)

Pf
�

F(t−1/2(x j − x i)) : 1≤ i < j ≤ 2n
�

d x1 d x3 . . . d x2n−1

Now one can pass the derivatives onto the Pfaffian and then let x2 ↓ x1, x4 ↓ x3, . . . as described in
section 3.3.

4.4 Details for section 3.4

Here we give the error estimates for the Pfaffian expansion Lemma 5.

The product (30) that defines the symmetric polynomials σ2n
k yields a total of 22n monomials so we

have the simple bound |σ2n
k (y)| ≤ 22n|y|k. The expansion (31) must be iterated at most p times to

derive (32) and this leads to to the bound

|τ2n,p+2n
k (y)| ≤ (2n22n)p|y|p+2n−k+1. (39)

2101



Using this we may bound the size of the remainder terms given in (33). For example

∞
∑

k,l=2n+1

|τ2n,l−1
p (y)| |Jkl | |τ2n,k−1

q (y)|

≤
∞
∑

k,l=2n+1

1

(k− 1)!(l − 1)!
|φk+l−2(0)| (2n22n)l+k−4n−2|y|l+k−p−q

≤ |y|2
∞
∑

k,l=2n+1

1

(k− 1)!(l − 1)!
|φk+l−2(0)| (2n22nε)l+k−4n−2 when |y| ≤ ε

≤ |y|2
∞
∑

r=4n

∑

|s|≤r−4n

2r

r!
|φ r(0)| (2n22nε)r−4n

using r = k+ l − 2, s = k− l and k! l!
(k+l)! ≥ 2−k−l

≤ 24n|y|2
∞
∑

r=4n

1

r!
|φ r(0)|2r(4n22nε)r−4n.

Choosing ε = ε(n,φ) so that 4n22nε lies in the radius of convergence of φ we obtain a convergent
series. Similarly

∞
∑

l=2n+1

|τ2n,l−1
p (y)| |Jql | ≤

∞
∑

l=2n+1

1

(q− 1)! (l − 1)!
|φq+l−2(0)| (2n22n)l−2n−1|y|l−p

≤ |y|
∞
∑

l=2n+1

1

(l − 1)!
|φq+l−2(0)| (2n22nε)l−2n−1

≤ |y|
∞
∑

l=2n+1

1

(q+ l − 2)!
|φq+l−2(0)| (2n22nε)l−2n−1(l + 2n)2n

≤ C(n,φ)|y|.

A similar bound holds for the final term in (33). Combining the estimates yields the desired error
bound on R(2n)

pq . Moreover these bounds show the absolute convergence that justifies the rearrange-
ment of the series (29) used in Lemma 5 provided that |y| ≤ ε(n,φ).
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