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Abstract

Let ΣN be a M×N random matrix defined by ΣN = BN+σWN where BN is a uniformly bounded
deterministic matrix and where WN is an independent identically distributed complex Gaussian
matrix with zero mean and variance 1

N
entries. The purpose of this paper is to study the almost

sure location of the eigenvalues λ̂1,N ≥ . . . ≥ λ̂M ,N of the Gram matrix ΣNΣ∗N when M and N
converge to +∞ such that the ratio cN =

M
N

converges towards a constant c > 0. The results are
used in order to derive, using an alternative approach, known results concerning the behaviour
of the largest eigenvalues of ΣNΣ∗N when the rank of BN remains fixed and M , N tend to +∞.
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1 Introduction

The addressed problem and the results Let ΣN be a M × N complex-valued matrix defined by

ΣN = BN +σWN (1)

where BN is a M×N deterministic matrix such that supN ‖BN‖<+∞, and where WN = [WN]i, j is a
M×N complex Gaussian random matrix with independent identically distributed (i.i.d) entries such

that E
�

[WN]i, j
�

= 0,
�

�

�E
�

[WN]i, j
�

�

�

�

2
= 1

N
, Re

�

[WN]i, j
�

and Im
�

[WN]i, j
�

are i.i.d zero mean real

Gaussian random variables. Model (1) is referred in the literature to as the information plus noise
model (see e.g Dozier-Silverstein [14]). In this paper, we assume that Rank(BN ) = K(N) = K < M
because this assumption is verified in a number of practical situations, in particular in the context
of the spiked models addressed here.

The purpose of this paper is to study the almost sure location of the eigenvalues λ̂1,N ≥ . . . ≥ λ̂M ,N

of the Gram matrix ΣNΣ∗N when M and N converge to +∞ such that the ratio cN =
M
N

converges
towards a constant c > 0 and to take benefit of the results to obtain, using a different approach
than Benaych-Nadakuditi [7], the behaviour of the largest eigenvalues of the information plus noise
spiked models for which the rank K of BN remains constant when M and N increase to +∞.

The empirical spectral measure (or eigenvalue distribution) µ̂N =
1
M

∑M
m=1δλ̂m,N

of matrix ΣNΣ∗N
has the same asymptotic behaviour than a deterministic probability distribution µN (see e.g. Dozier-
Silverstein [14, Th.1.1] or Girko [16, Th.7.4]) whose support SN is the union of disjoint compact
intervals called in the following the clusters of SN . The boundary points of each cluster coincide
with the positive extrema of a certain rational function depending on the empirical spectral measure
of matrix BN B∗N , σ2 and on the ratio cN =

M
N

(see [28], Thereom 2). Each cluster I of SN appears
to be naturally associated to another interval containing a group of consecutive eigenvalues of BN B∗N
([28]). It is shown in [28] that the property proved in Bai-Silverstein [2] holds in the context of
model (1). Roughly speaking, it means that for an interval [a, b] located outside SN for N large
enough, no eigenvalue of ΣNΣ∗N belong to [a, b] almost surely, for all large N .

In this paper, we establish the analog of the property called in Bai-Silverstein [3] "exact separation":
almost surely, for N large enough, the number of eigenvalues of ΣNΣ∗N less than a (resp. greater
than b) coincides with the number of eigenvalues of BN B∗N associated to the clusters included into
[0, a] (resp. included into [b,∞)). Note that these results also hold in the case where K = M , not
treated in this paper. Indeed, the analysis of the support SN provided in [28] can be extended when
BN B∗N is full rank. Once the characterization of the support is established, the probabilistic part of
the proof of the above mentioned exact separation result eigenvalues can be used verbatim.

We also use the separation result to study the case where Rank(BN ) = K is independent of N . It is
assumed that for each k = 1, . . . , K , the non zero eigenvalues of BN B∗N satisfy limN→+∞λk,N = λk.
The support SN of µN is first characterized in this case, and using the above results related to the
almost sure location of the (λ̂k,N )k=1,...,M , it is proved that if λk > σ

2pc, then,

λ̂k,N →
(σ2+λk)(σ2c+λk)

λk
, (2)

and that if λk ≤ σ2pc, then,

λ̂k,N → σ2(1+
p

c)2. (3)

This behaviour was first established in [7] using a different approach.
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Motivations Our work has been originally motivated by the context of array processing in which
the signals transmitted by K < M sources are received by an array equiped with M sensors. Under
certain assumptions, the M -dimensional vector y(n) received on the sensor array at time n can be
written as

y(n) =
K
∑

k=1

dksk(n) + v(n), (4)

where each time series (sk(n))n∈Z represents a non observable deterministic signal corresponding to
source k and where dk is an unknown deterministic M -dimensional vector depending on the direc-
tion of arrival of the k-th source. (v(n))n∈Z is an additive complex white Gaussian noise such that
E[v(n)v(n)∗] = σ2IM . It is clear that (4) is equivalent to (1) if we put ΣN = N−1/2 [y(1), . . . ,y(N)],
WN = N−1/2σ−1[v(1), . . . ,v(N)] and BN = N−1/2D[s(1), . . . , s(N)], with s(n) = [s1(n), . . . , sK(n)]T

and D= [d1, . . . ,dK].

Model (4) poses important statistical problems such as detection of the number of sources K or
estimation of the direction of arrivals of the K sources. A number of estimation schemes based on
the eigenvalues and the eigenvectors of matrix ΣNΣ∗N were developed, and analysed if N → +∞
while M remains fixed. If however M and N are of the same order of magnitude, the above technics
may fail, and it is therefore quite relevant to study these statistical problems in the asymptotic regime
M , N → +∞ in such a way that M

N
→ c, c ∈ (0,+∞). The number of sources may be constant or

scale up with the dimensions M and N . For this, the first step is to evaluate the behaviour of the
eigenvalues of ΣNΣ∗N .

About the literature Concerning the zero-mean correlated model. The problems addressed in this
paper were studied extensively in the context of the popular zero-mean correlated model defined by

ΣN = HN WN , (5)

where HN is a deterministic M × M matrix and where WN is a random matrix with possibly non
Gaussian zero mean variance 1

N
i.i.d entries. The most complete results concerning the almost sure

localization of the eigenvalues of ΣNΣ∗N are due to Bai-Silverstein [2, 3] and were established in
the non Gaussian case. Spiked models were first proposed by Johnstone [20] in the context of (5)
(matrix HN is a diagonal matrix defined as a finite rank perturbation of the identity matrix). Later,
Baik et al. [4] studied, in the complex Gaussian case, the almost sure convergence of the largest
eigenvalues of ΣNΣ∗N and established central limit theorems. The analysis of [4] uses extensively
the explicit form of the joint probability distribution of the entries of ΣN . Using the results of [2, 3]
as well as the characterization of the support of the limiting distribution µN of the empirical eigen-
value distribution µ̂N (see Silverstein-Choi [27]), Baik-Silverstein [5] addressed the non Gaussian
case, and showed the almost sure convergence of certain eigenvalues of ΣNΣ∗N . Mestre considered
in [21] the case where HN H∗N has a finite number of different positive eigenvalues having multi-
plicities converging to +∞, and showed how to estimate the eigenvalues of HN H∗N as well as their
associated eigenspace. Similar ideas were also developed in [22] in order to address the source lo-
calization problem in the context of large sensor arrays when the source signals are i.i.d. sequences.
The analysis of Mestre [22, 21] is based on the results of [2, 3] as well as on the observation that it
is possible to exhibit contours depending on the Stieljes transform of µN , and enclosing each eigen-
value of HN H∗N . Paul studied in [26] the behaviour of the eigenvectors associated to the greatest
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eigenvalues of a Gaussian spiked model (almost sure convergence and central limit theorems). Bai
and Yao showed in [1] that certain eigenvalues of a non Gaussian spiked model satisfy a central
limit theorem. We finally note that the above results on zero-mean spiked models have been used
in the context of source localization (see [19, 23]).

Concerning the information plus noise model. Except our paper [28] devoted to the source localiza-
tion of deterministic sources, the almost sure location of the eigenvalues of matrix ΣNΣ∗N was not
studied previously. In [28], we however followed partly the work of Capitaine et al. [9], devoted
to finite rank deformed Gaussian (or satisfying a Poincaré inequality) Wigner matrices, which was
inspired by previous results of Haagerup and Thorbjornsen [17]. See also the recent paper [10] in
which the rank of the deformation may scale with the size of the matrix. We used in [28] the same
approach to prove that for N large enough, no eigenvalue of ΣNΣ∗N is outside the support SN of
µN . In [28], under the assumption that the eigenvalue 0 of BN B∗N is "far enough" from the others,
we established a partial result showing that the M − K smallest eigenvalues of ΣNΣ∗N are almost
surely separated from the others. In the present paper, we prove a general exact separation property
extending the result of [5] to the complex Gaussian information plus noise model.

The almost sure behaviour (2), (3), of the largest eigenvalues of information plus noise spiked
models appears to be a consequence of the general results of [6, 7] devoted to the analysis of
certain random models with additive and/or multiplicative finite rank perturbation. (2) and (3) are
therefore not new, but the technics of [7] completely differ from the approach used of the present
paper which can be seen as an extension to the information plus noise model of the paper [5].

Organization of the paper In section 2, we review some results of [13] and [28] concerning the
support SN of µN as well as some useful background material. As [28] assumed cN < 1, we address
the case cN = 1 and prove some extra results concerning the behaviour of the Stieltjes transform
of µN around 0. In section 3, we prove the analog of the exact separation of [3]. [9] generalized
the approach of [3] to prove this property in the finite rank deformed Wigner model. We however
show that it is still possible to use again the ideas of [17]. We establish that it is sufficient to
prove that the mass (w.r.t. µN ) of any interval I of SN is equal to the proportion of eigenvalues
of BN B∗N associated to I . For this, we evaluate an integral along a certain contour enclosing the
eigenvalues of BN B∗N associated to I . This contour is the analog of the contour introduced by [21]
in the context of model (5) and was extensively used in [28]. Section 4 addresses the behaviour
of the largest eigenvalues of an information plus noise spiked model. We analyse the support SN
of µN , which appears equivalent to evaluate the positive extrema of a certain rational function.
Using results concerning perturbed third order polynomial equations, it is shown that if λk 6= σ2pc
for k = 1, . . . , K , the intervals of SN are [σ2(1−pcN )2 + O (1/M),σ2(1+pcN )2 + O (1/M)] and
[λ−1

k,N (λk,N +σ2cN )(λk,N +σ2)−O +(M−1/2),λ−1
k,N (λk,N +σ2cN )(λk,N +σ2) + O +(M−1/2)], where

k is any index for which λk,N > σ
2pc, and where O +(M−1/2) represents a positive O (M−1/2) term.

The results of section 3 imply immediately (2) and (3) when λk 6= σ2pc for k = 1, . . . , K . If one the
(λk)k=1,...,K is equal to σ2pc, we use an argument similar to Baik-Silverstein [5], which relies on an
eigenvalue perturbation technic.

Model and assumptions We now summarize the model and assumptions which will be used in
the paper, and introduce some definitions. Let M , N , K ∈ N∗ such that 1 ≤ K < M , K = K(N) and
M = M(N), functions of N with cN =

M
N
→ c > 0 as N →∞. We consider a M × N random matrix
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ΣN defined as

ΣN = BN +σWN ,

where σ > 0 and BN and WN satisfy the two following assumptions.

Assumption A-1: Matrix BN is deterministic and satisfies supN ‖BN‖<+∞.

Assumption A-2: The entries of matrix WN are i.i.d and follow a standard complex normal
distribution CN (0, 1

N
).

Note that the Gaussian assumption A-2 will be only required in section 3. All the results in section 2
concerning the convergence of the spectral distribution of ΣNΣ∗N are also valid in the non Gaussian
case. In the following, we study the context where

Assumption A-3: BN B∗N is rank deficient, and the non zero eigenvalue of BN B∗N have multiplicity 1.

The assumption on the multiplicities of the eigenvalues of BN B∗N is not really necessary, but it allows
to simplify the notations. We denote by K the rank of BN B∗N (K may depend on N), and by λ1,N >

λ2,N > . . .> λK ,N > λK+1,N = . . .= λM ,N = 0 its eigenvalues. We also assume that

Assumption A-4: cN =
M
N
≤ 1 for each N.

This of course implies that c ≤ 1. Assuming cN ≤ 1 does not introduce any restriction because if
cN > 1, the eigenvalues of ΣNΣ∗N are 0 with multiplicity M −N as well as the eigenvalues of matrix
Σ∗NΣN . The location of this set of eigenvalues can of course be deduced from the results related to
cN < 1.

In this paper, C∞c (R,R) will denote the set of infinitely differentiable functions with compact sup-
port, defined from R to R. If A ⊂ R, ∂A and Int(A ) represent the boundary and the interior of
A respectively.

We finally recall the definition and useful well known properties of the Stieltjes transform, a funda-
mental tool for the study of the eigenvalues of random matrices. Let µ be a positive finite measure
on R. We define its Stieltjes transform Ψµ as the function

Ψµ(z) =

∫

R

dµ(λ)
λ− z

∀z ∈ C\supp(µ),

where supp(µ) represents the support of measure µ. We have the following well-known properties

Property 1. Ψµ satisfies

1. Ψµ is holomorphic on C\supp(µ).

2. z ∈ C+ implies Ψµ(z) ∈ C+.

3. If µ(R−∗ ) = 0, then zΨµ(z) ∈ C+ if z ∈ C+ .
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2 Characterization of the support SN of measure µN

In this section, we recall some known results of [13] and [28] related to the support SN of measure
µN . As we assumed in [28] that cN < 1, we also provide, when it is necessary, some details on the
specific case cN = 1.

2.1 Convergence of the empirical spectral measure µ̂N of ΣNΣ∗N torward µN

We recall that µ̂N is defined by µ̂N = M−1
∑M

i=1δλ̂i,N
. Its Stieltjes transform m̂N is given, for all

z ∈ C\{λ̂1,N , . . . , λ̂M ,N}, by

m̂N (z) =

∫

R

dµ̂N (λ)
λ− z

.

The following result, concerning the convergence of m̂N (z) can be found in [14, Th.1.1], [16,
Th.7.4] (see also [18, Th.2.5] for a more general model).

Theorem 1. It exists a deterministic probability measure µN , such that µ̂N −µN
D−→ 0 as N →∞ with

probability one. Equivalently, the Stieltjes transform mN of µN satisfies m̂N (z)− mN (z) → 0 almost
surely ∀z ∈ C\R+. Moreover, ∀z ∈ C\R+, mN (z) is the unique solution of the equation,

mN (z) =
1

M
Tr

�

−z(1+σ2cN mN (z))IM +σ
2(1− cN )IM +

BN B∗N
1+σ2cN mN (z)

�−1

(6)

satisfying Im(zmN (z))> 0 for z ∈ C+.

The behaviour of the Stieltjes transform mN around the real axis is fundamental to evaluate the
support SN of µN . The following theorem is essentially due to [13].

Theorem 2. 1. If cN < 1, the limit of mN (z), as z ∈ C+ converges to x, exists for each x ∈ R and
is still denoted by mN (x). If cN = 1, the limit exists for x 6= 0. The function x → mN (x) is
continuous on R if cN < 1 and on R∗ if cN = 1. It is also continuously differentiable on R\∂SN .

2. If cN < 1, then Re(1+σ2cN mN (z)) ≥ 1/2 for each z ∈ C+ ∪R, and if cN = 1, this inequality
holds on C+ ∪R∗.

3. mN (x) is a solution of (6) for x ∈R\∂SN .

4. Measure µN is absolutely continuous and its density is given by fµN
(x) = π−1Im(mN (x)).

The statements of this theorem are essentially contained in [13, Th.2.5] (see also [28] for more
details), except item 2 because it is shown in [13, Lem.2.1] that Re(1 + σ2cN mN (z)) ≥ 0. We
therefore prove item 2 in the Appendix A.

We note that as mN is a Stietljes transform, it also satisfies mN (z∗) = mN (z)∗. Therefore, it holds
that mN (z)→ mN (x)∗ as z ∈ C−→ x , for x ∈R if cN < 1 and for x ∈R∗ if cN = 1.
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In the following, we denote by fN ,φN and wN the functions defined by

fN (w) =
1

M
Tr
�

BN B∗N −wIM

�−1
,

φN (w) = w
�

1−σ2cN fN (w)
�2
+σ2(1− cN )

�

1−σ2cN fN (w)
�

, (7)

wN (z) = z(1+σ2cN mN (z))
2−σ2(1− cN )(1+σ

2cN mN (z)).

Functions wN and φN are of crucial importance because, as shown in [28], the interior of SN is
given by Int(SN ) = {x > 0, Im(wN (x)) > 0} and for each x ∈ R\∂SN , wN (x) is a solution of the
equation φN (w) = x . The characterization of SN proposed in [28], based on a reformulation of the
results in [13, Th.3.2, Th.3.3], consists in identifying wN (x) out of the set of solutions of φN (w) = x .

We also note that (6) is equivalent to

mN (z)
1+σ2cN mN (z)

= fN (wN (z)), (8)

and that the identity

1

1+σ2cN mN (z)
= 1−σ2cN fN (wN (z)) (9)

holds for z ∈ C+ ∪R if cN < 1, or for z ∈ C+ ∪R∗ if cN = 1.

2.2 Properties of φN and wN , and characterization of SN

In this paragraph, we recall the main properties of functions φN and wN , as well the structure of SN .
Lemmas 1, 2 as well as theorem 3 are proved in [28, Prop.3, Th.2] for cN < 1, but the derivations
for cN = 1 are similar, except items 6 and 8 of lemma 2.

Lemma 1. 1. The function φN admits 2QN non-negative local extrema counting multiplicities (with
1≤QN ≤ K + 1) whose preimages are denoted w−1,N < 0< w+1,N ≤ w−2,N . . .≤ w−QN ,N < w+QN ,N .

2. Define x−q,N = φN (w
−
q,N ) and x+q,N = φN (w

+
q,N ) for q = 1 . . .QN . Then,

x−1,N < x+1,N ≤ x−2,N < . . .≤ x−QN ,N < x+QN ,N ,

and x−1,N > 0 if cN < 1 while x−1,N = 0 if cN = 1.

3. For q = 1, . . . ,QN , each interval (w−q,N , w+q,N ) contains at least one element of the set of eigenvalues
{λ1,N , . . . ,λK ,N , 0} and each eigenvalue of BN B∗N belongs to one of these intervals.

4. φN is increasing on the intervals (−∞, w−1,N], [w
+
1,N , w−2,N], . . . , [w+QN−1,N , w−QN ,N], [w

+
QN ,N ,+∞),

and moreover

φN

�

(−∞, w−1,N]
�

= (−∞, x−1,N],

φN

�h

w+q,N , w−q+1,N

i�

=
h

x+q,N , x−q+1,N

i

for each q = 1, . . . ,QN − 1,

φN

�

[w+QN ,N ,+∞)
�

= [x+QN ,N ,+∞).
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Support S

Figure 1: Function φ for K = 4 and c < 1. Here Q = 3.

In figure 1, we give a typical representation of function φN . We are now in position to recall the
characterization of SN presented in [28, Th.2].

Theorem 3. The support SN is given by

SN =
QN
⋃

q=1

h

x−q,N , x+q,N

i

,

with x−1,N = 0 if cN = 1 and x−1,N > 0 if cN < 1.

The intervals ([x−q,N , x+q,N])q=1,...,QN
will be called the clusters of SN . Cluster [x−q,N , x+q,N] corresponds

to the interval [w−q,N , w+q,N] in the sense that x−q,N = φN (w
−
q,N ) and x+q,N = φN (w

+
q,N ). Finally, we shall

say that an eigenvalue λk,N of BN B∗N is associated to cluster [x−q,N , x+q,N] if λk,N ∈ (w−q,N , w+q,N ).

In the same way as in theorem 2, we set wN (x) = limz∈C+,z→x wN (z) for x ∈ R if cN < 1 and for
x ∈ R∗ if cN = 1. We notice that limz∈C−,z→x wN (z) = wN (x)∗. Function x → wN (x) satisfies the
following properties.

Lemma 2. The following properties hold

1. x → wN (x) is continuous on R if cN < 1 and on R∗ if cN = 1, and is continuously differentiable
on R\∂SN .

2. wN is real and increasing on R\SN .

3. 1−σ2cN fN (wN (x)) 6= 0 for x ∈R\∂SN .

4. x ∈ Int(SN ) if and only if wN (x) ∈ C+.

5. For x ∈ R\∂SN , wN (x) is a solution of the equation φN (w) = x. If x ∈ Int(SN ), wN (x) is
the unique solution belonging to C+ and if x ∈ S c

N , wN (x) is the unique solution satisfying
φ′N (wN (x))> 0 and 1−σ2cN fN (wN (x))> 0.

1941



6. Function x → wN (x) is continuous at x = x−1,N = 0 for cN = 1.

7. For q = 1, . . . ,QN , wN (x
−
q,N ) = w−q,N and wN (x

+
q,N ) = w+q,N .

8. Let q = 1, . . . ,QN . Then, there exists a constant C > 0 and neighborhoods V (x−q,N ), V (x
+
q,N ) of

respectively x−q,N and x+q,N such that,

|w′N (x)| ≤ C
�

�

�x − x−q,N

�

�

�

−1/2
∀x ∈ V (x−q,N )∩R\{x

−
q,N}, (10)

|w′N (x)| ≤ C
�

�

�x − x+q,N

�

�

�

−1/2
∀x ∈ V (x+q,N )∩R\{x

+
q,N}, . (11)

The lemma was proved in [28, Prop.2, Lem.3] in the case cN < 1. The proofs extend easily to
cN = 1, except items 6 and 8 for q = 1. These 2 statements are proved in the Appendix B.

We finish this section by showing that the following result holds.

Corollary 1. We have

sup
N

x+QN ,N <∞,

i.e. ∪NSN is a bounded set.

Proof: We define λmax by λmax = supN ‖BN‖2. It follows that for w > λmax ,

sup
N
| fN (w)| ≤

1

|λmax −w|
,

sup
N
| f ′N (w)| ≤

1

|λmax −w|2
,

sup
N
|w f ′N (w)| ≤

w

|λmax −w|2
,

and since φ′N (w) = (1−σ
2cN fN (w))2− 2σ2cN w f ′N (w)(1−σ

2cN fN (w))−σ4cN (1− cN ) f ′N (w) con-
verges towards 1 when w → +∞, we deduce that for ε > 0, ∃wε > λmax such that ∀w > wε,
φ′N (w)> ε for all N . Since φ′N (w

+
QN ,N ) = 0, this implies that

sup
N

w+QN ,N ≤ wε <+∞.

Moreover, using w+QN ,N = wN (x
+
QN ,N ) = x+QN ,N (1 + σ

2cN mN (x
+
QN ,N ))

2 − σ2(1 − cN )(1 +
σ2cN mN (x

+
QN ,N )), and item 2 of theorem 2, we get that

x+QN ,N ≤
wε

(1+σ2cN mN (x
+
QN ,N ))

2
+

σ2(1− cN )

1+σ2cN mN (x
+
QN ,N )

< 4wε+ 2σ2.

This completes the proof. �
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3 Almost sure location of the sample eigenvalues.

We first recall the following result of [28, Th.3], which states the almost sure absence of eigenvalue
of ΣNΣ∗N outside the support SN of µN for all large N . This property is well-known in the context
of zero mean non Gaussian correlated matrices (see [2]). We note that the proof of theorem [28,
Th.3] uses extensively that WN is Gaussian (assumption A-2).

Theorem 4. Let a, b ∈R, ε > 0 and N0 ∈N such that (a−ε, b+ε)∩SN = ; for each N > N0. Then,
with probability one, no eigenvalue of ΣNΣ∗N belongs to [a, b] for N large enough.

We remark that theorem 4 extends to semi-infinite intervals [b,+∞) because, as ‖WN W∗N‖ → (1+p
c)2 almost surely, then it holds that λ̂1,N = ‖ΣNΣ∗N‖ ≤ supN ‖BN B∗N‖+2σ2(1+

p
c)2 almost surely

for N large enough.

In order to interpret this result, assume that for each N > N1 ≥ N0, the number of clusters ofSN does
not depend on N (denote Q the number of clusters), and that for each q = 1, . . . ,Q, the sequences
(x−q,N )N>N1

and (x+q,N )N>N1
converge torwards limits x−q and x+q satisfying x−1 ≤ x+1 < x−2 ≤ x+2 <

. . .< x−Q ≤ x+Q . In this context, theorem 4 implies that almost surely, for each ε > 0, each eigenvalue
belongs to one of the intervals [x−q − ε, x+q + ε] for N large enough.

We now establish the following property, also well-know in the literature and referred to as "exact
separation" (see e.g. [3] in the context of non Gaussian correlated zero mean random matrices).

Theorem 5. Let a, b ∈ R, ε > 0, N0 ∈ N such that (a− ε, b+ ε) ∩SN = ; for N > N0. Then, with
probability one,

card{k : λ̂k,N < a}= card{k : λk,N < wN (a)} (12)

card{k : λ̂k,N > b}= card{k : λk,N > wN (b)}

for N large enough.

Under the above simplified assumptions, this result means that almost surely for N large enough,
the number of sample eigenvalues that belong to each interval [x−q − ε, x+q + ε] coincides with the
number of eigenvalues of BN B∗N that are associated to the cluster [x−q,N , x+q,N]. To prove theorem 5,
we use the same technic as in [28], where a less general result is presented in the case c < 1.

3.1 Preliminary results

We first need to state preliminary useful lemmas. The first lemma is elementary and is related to the
solutions of the equation 1−σ2cN fN (w) = 0.

Lemma 3. The equation 1−σ2cN fN (w) = 0 admits K + 1 real solutions z0,N < 0 < z1,N < λ1,N <

. . .< zK ,N < λK ,N . If cN < 1, z0,N < w−1,N while if cN = 1, z0,N = w−1,N . Moreover, for each k = 1, . . . , K,
each solution zk,N belongs to the interval (w−q,N , w+q,N ) containing eigenvalue λk,N , with q ∈ {1, . . . ,QN}.

The next two lemmas are fundamental, and were proved by Haagerup-Thorbjornsen in [17] in the
Wigner case models (see also [8]). Lemma 4 and 5 are established in [28, Prop. 4, Lem. 2 and
proof of Th.3]. Note that, unlike section 2, the Gaussian assumption is required here. We give here
some insights on the proof of these two lemmas for the reader’s convenience.
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Lemma 4. Let ψ ∈ C∞c (R,R), independent of N, then

E

�

1

M
Trψ

�

ΣNΣ
∗
N

�

�

−
∫

SN

ψ(λ)dµN (λ) = O
�

1

N2

�

.

Proof: Using the integration by part formula (see e.g. [24], [25]) and the Poincaré inequality for
Gaussian random vectors [12], it is proved in [28, Prop.4] that

E
�

m̂N (z)
�

= mN (z) +
χN (z)

N2 , (13)

where χN is holomorphic on C\R and satisfies
�

�χN (z)
�

�≤ P1 (|z|)P2

��

�Im(z)−1
�

�

�

, (14)

with P1, P2 two polynomials with positive coefficients independent of N , z. The Stieltjes inversion
formula gives

E

�

1

M
Trψ

�

ΣNΣ
∗
N

�

�

=
1

π
lim
y↓0

Im

�
∫

R

ψ(x)E
�

m̂N (x + i y)
�

dx

�

, (15)

as well as
∫

R
ψ(λ)dµN (λ) = π−1 limy↓0 Im

�∫

R
ψ(x)mN (x + i y)dx

�

. The polynomial bound (14)

implies the bound lim supy↓0
∫

R
ψ(x)

�

�χN (x + i y)
�

�dx ≤ C < ∞, with C > 0 independent of N (a
result shown in [8, Sec.3.3] using the ideas of [17]). Plugging (13) into (15), we obtain the desired
result. �

Lemma 5 is not explicitely stated in [28], but it can be proved easily using the derivation of [28, eq.
(37)].

Lemma 5. Let ψ ∈ C∞c (R,R), independent of N and constant on each cluster of SN for N large
enough. Then, we have

Var
�

1

M
Trψ

�

ΣNΣ
∗
N

�

�

= O
�

1

N4

�

.

Proof: We only give a sketch of proof for the reader’s convienence. Using the Poincaré inequality
for gaussian random vectors, we obtain

Var
�

1

M
Trψ

�

ΣNΣ
∗
N

�

�

≤
C

N2E

�

1

M
Trψ′

�

ΣNΣ
∗
N

�2
ΣNΣ

∗
N

�

=
C

N2

�
∫

R

λψ′(λ)2dµN (λ) +O
�

1

N2

�

�

,

where the last equality follows from the application of lemma 4 to the function λ 7→ λψ′(λ)2. The
conclusion follows from the observation that this function vanishes on SN for all large N . �

We are now in position to prove theorem 5.
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3.2 End of the proof

We first prove (12) and assume that a > 0 because (12) is obvious if a ≤ 0. We consider η < ε and
assume without restriction that 0< η < a. We consider a function ψa ∈ C∞c (R,R), independent of
N , such that ψa ∈ [0,1] and

ψa(λ) =

(

1 ∀λ ∈
�

0, a−η
�

0 ∀λ≥ a.

By lemma 4, we have

E

�

1

M
Trψa

�

ΣNΣ
∗
N

�

�

−
∫

R+
ψa(λ)dµN (λ) = O

�

1

N2

�

,

or equivalently

E

�

1

M
Trψa

�

ΣNΣ
∗
N

�

�

= µN
�

[0, a−η]
�

+O
�

1

N2

�

.

Lemma 5 also implies that

Var
�

1

M
Trψa

�

ΣNΣ
∗
N

�

�

= O
�

1

N4

�

.

Therefore, Markov inequality leads to

P

�
�

�

�

�

1

M
Trψa

�

ΣNΣ
∗
N

�

−µN
�

[0, a−η]
�

�

�

�

�

>
1

N4/3

�

≤ N8/3Var
�

1

M
Trψa

�

ΣNΣ
∗
N

�

�

+ N8/3

�

�

�

�

E

�

1

M
Trψa

�

ΣNΣ
∗
N

�

−µN
�

[0, a−η]
�

�
�

�

�

�

2

= O
�

1

N4/3

�

,

which implies that with probability one,

1

M
Trψa

�

ΣNΣ
∗
N

�

= µN
�

[0, a−η]
�

+O
�

1

N4/3

�

. (16)

The remainder of the proof is dedicated to the evaluation of µN ([0, a−η]). Let IN =max{q : x+q,N <

a}. It is clear that µN ([0, a−η]) =
∑IN

q=1µN ([x
−
q,N , x+q,N]) because µN ((a−η, a)) = 0. By theorem

2, µN is absolutely continuous with density π−1Im(mN (x)). Therefore, it holds that

µN ([x
−
q,N , x+q,N]) =

1

π
Im







∫ x+q,N

x−q,N

mN (x)dx






. (17)

In order to evaluate the righthandside of (17), we use the contour integral approach introduced in
[28]. For this, we consider the curve Cq,N defined by

Cq,N =
n

wN (x) : x ∈ [x−q,N , x+q,N]
o

∪
n

wN (x)
∗ : x ∈ [x−q,N , x+q,N]

o

.

1945



We notice that x → wN (x) (resp. x → wN (x)∗) is a one-to-one correspondance from (x−q,N , x+q,N )
onto {wN (x), x ∈ (x−q,N , x+q,N )} (resp. {wN (x)∗, x ∈ (x−q,N , x+q,N )}) because if wN (x) = wN (y), then
φN (wN (x)) = x = φN (wN (y)) = y (see lemma 2, item 5).

It follows from lemma 2 items 1, 4 and 7 that Cq,N is a closed continuous contour enclosing the
interval (w−q,N , w+q,N ). Cq,N is differentiable at each point except at w−q,N and w+q,N (see item 8 of
lemma 2). However, (10) and (11) imply that |w′N | is summable on [x−q,N , x+q,N]. Therefore, for each
function g continuous in a neighborhood of Cq,N , satisfying (g(w))∗ = g(w∗), it is still possible to
define the contour integral

∮

C−q,N
g(w)dw by

∮

C−q,N

g(w)dw = 2iIm







∫ x+q,N

x−q,N

g(wN (x))w
′
N (x)dx






.

The notation C−q,N means that the contour Cq,N is clockwise oriented. Although Cq,N is not differ-
entiable, the main results related to contour integrals of meromorphic functions remain valid. In
particular, it holds that

IndC−q,N
(ξ) =

1

2πi

∫

C−q,N

dλ

ξ−λ
=







1 if ξ ∈
�

w−q,N , w+q,N

�

0 if ξ 6∈
h

w−q,N , w+q,N

i

In order to evaluate the righthandside of (17) using a contour integral, we remark that

mN (x) =
fN (wN (x))

1−σ2
N cN fN (wN (x))

∀x ∈R\∂SN

(see (8) and item 3 of lemma 2). Moreover, by item 5 of lemma 2, we have w′N (x)φ
′
N (wN (x)) = 1

on (x−q,N , x+q,N ). Therefore, we have

µN ([x
−
q,N , x+q,N]) =

1

π
Im







∫ x+q,N

x−q,N

gN (wN (x))w
′
N (x)dx






, (18)

where gN (w) is the rational function defined by

gN (w) =
fN (w)φ′N (w)

1−σ2
N cN fN (w)

= fN (w)
(1−σ2cN fN (w))2− 2σ2

N cN w f ′N (w)(1−σ
2
N cN fN (w))−σ4

N cN (1− cN ) f ′N (w)

1−σ2
N cN fN (w)

.

In order to justify the existence of the integral at the righthandside of (18), we prove that gN (w) is
continuous in a neighborhood of Cq,N . We first note that the poles of gN (w) coincide with the eigen-
values of BN B∗N and the zeros (zk,N )k=0,...,K of 1−σ2

N cN fN (w). As wN (x) is not real on (x−q,N , x+q,N ),
x → gN (wN (x)) is continuous on (x−q,N , x+q,N ). It remains to check the continuity at x−q,N and x+q,N .
If cN < 1, w−q,N = wN (x

−
q,N ) and w+q,N = wN (x

+
q,N ) do not coincide with one the poles of gN (w).

If cN = 1 and q = 1, this property still holds true except for w−1,N = wN (x
−
1,N ) = wN (0) because

z0,N = w−1,N (see lemma 3). However, if cN = 1, the solutions of 1−σ2
N cN fN (w) are not poles of gN

due to a pole zero cancellation.
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Therefore, it is clear that µN ([x
−
q,N , x+q,N]) can also be written as

µN ([x
−
q,N , x+q,N]) =

1

2πi

∮

C−q,N

gN (λ)dλ.

The integral can be evaluated using residue theorem and we give here the main steps of calculation.
Define Iq = {k ∈ {1,2, . . . , K} : λk,N ∈ (w−q,N , w+q,N )} and Lq = card(Iq) > 0 (Lq > 0 from lemma
1 item 3). Assume cN < 1. Since Cq,N only encloses (w−q,N , w+q,N ), we will have residues at the
following points:

• for q = 1: residues at z0,N , 0 and zk,N ,λk,N for k ∈ I1.

• for q ≥ 2: residues at zk,N ,λk,N for k ∈ Iq.

If cN = 1, the zeros of 1−σ2cN fN (w) are not poles of gN (w):

• for q = 1: residues at 0 and λk,N for k ∈ I1.

• for q ≥ 2: residues at λk,N for k ∈ Iq.

We just consider the case cN < 1 in the following (the calculations are similar for cN = 1 and are
therefore omitted). We consider the decomposition gN (λ) = g1,N (λ) + g2,N (λ) + g3,N (λ), with

g1,N (λ) = fN (λ)
�

1−σ2cN fN (λ)
�

,

g2,N (λ) =−2σ2cNλ fN (λ) f
′
N (λ),

g3,N (λ) =−σ4cN (1− cN )
fN (λ) f ′N (λ)

1−σ2cN fN (λ)
.

These three functions admit poles at 0,
�

λk,N

�

k=1,...,K
, and g3,N has moreover poles at (zk,N )k=0,...,K .

After tedious but straightforward calculations, we finally find that for k ∈ {1,2, . . . , K},

Res
�

g1,N ,λk,N

�

=−
1

M
+

2σ2cN

M2

∑

l 6=k

1

λl,N −λk,N
,

Res
�

g2,N ,λk,N

�

=−
2σ2cN

M2

∑

l 6=k

1

λl,N −λk,N
,

Res
�

g3,N ,λk,N

�

=−
1− cN

cN
.

For the residues at 0, we get

Res
�

g1,N , 0
�

=−
M − K

M
+ 2σ2cN

M − K

M

1

M

K
∑

l=1

1

λl,N
,

Res
�

g2,N , 0
�

=−2σ2cN
M − K

M

1

M

K
∑

l=1

1

λl,N
,

Res
�

g3,N , 0
�

=−
1− cN

cN
.
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Finally, the residues at zk,N for k = 0, . . . , K are given by Res(g3,N , zk,N ) =
1−cN

cN
. Using these evalua-

tions, we obtain immediately that if q ≥ 2, then,

µN ([x
−
q,N , x+q,N]) =−

∑

k∈Iq

�

Res
�

g1,N ,λk,N

�

+Res
�

g2,N ,λk,N

�

+Res
�

g3,N ,λk,N

�

+Res
�

g3,N , zk,N

��

=
Lq

M
.

This coincides with the ratio of eigenvalues of BN B∗N associated to the cluster [x−q,N , x+q,N] (i.e. the
eigenvalues λk,N for k ∈ Iq). If q = 1,

µN ([x
−
1,N , x+1,N]) =−

∑

k∈I1

�

Res
�

g1,N ,λk,N

�

+Res
�

g2,N ,λk,N

�

+Res
�

g3,N ,λk,N

�

+Res
�

g3,N , zk,N

��

−
�

Res
�

g1,N , 0
�

+Res
�

g2,N , 0
�

+Res
�

g3,N , 0
�

+Res
�

g3,N , z0,N ,
��

=
L1

M
+

M − K

M
,

which also coincides with the ratio of eigenvalues of BN B∗N associated to the cluster [x−1,N , x+1,N] (the
λk,N for k ∈ I1 and 0 with multiplicity M − K).

Therefore, using (16), we get that

Trψa

�

ΣNΣ
∗
N

�

−





IN
∑

q=1

Lq + (M − K)



= O
�

1

N1/3

�

. (19)

But almost surely, for N large enough, Trψa(ΣNΣ∗N ) is exactly the number of eigenvalues contained
in [0, a] because no eigenvalue of ΣNΣ∗N belong to [a−η, a] (use theorem 4 with a−η in place of
a). The left handside of (19) is thus an integer. Since this integer decreases at rate N−1/3, it is equal
to zero for N large enough. (12) follows from the observation that

∑IN
q=1 Lq +M − K is equal to the

number of eigenvalues of BN B∗N that are less than wN (a).

To evaluate the number of eigenvalues in interval (b,+∞), we use that no eigenvalue belongs to
[a, b] (theorem 4). Therefore,

card{k : λ̂k,N > b}= M − card{k : λ̂k,N < a}.

(12) implies that

card{k : λ̂k,N > b}= M −
IN
∑

q=1

Lq − (M − K),

which coincides with the number of eigenvalues of BN B∗N in interval (wN (b),+∞). This concludes
the proof of theorem 5.

4 Applications to the spiked models

In this section, we use the above results in order to evaluate the behaviour of the largest eigenvalues
of the information plus noise spiked models. In the remainder of this section, we assume that
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Assumption A-5: K does not depend on N and for all k = 1, . . . , K, the positive sequence (λk,N )
writes

λk,N = λk + εk,N ,

with limN→+∞ εk,N = 0 and λi 6= λ j for i 6= j.

We define Ks = max{k : λk > σ
2pc} and the function ψ(λ) = (σ2+λ)(σ2c+λ)

λ
. In the following, we

characterize the support SN of measure µN and use the above results on the almost sure location of
the sample eigenvalues in order to prove the theorem

Theorem 6. We have with probability one,

λ̂k,N −−−→N→∞

(

ψ(λk) if k ≤ Ks

σ2(1+
p

c)2 k ∈ {Ks + 1, . . . , K}

We note that theorem 6 was already proved in the recent paper [7] using a different approach.

4.1 Preliminary results on perturbed equations

We first state two useful lemmas related to the solutions of perturbed equations. They can be
interpreted as extensions of lemmas 3.2 and 3.3 of [5]. In the following, we denote respectively by
Do(z, r), Dc(z, r) and C (z, r) the open disk, closed disk and circle of radius r > 0 with center z.
Moreover, in this paragraph, the notation o(1) denotes a term that converges towards 0 when the
variable ε converges towards 0. The first result is a straightforward modification of [5, lemma 3.2].
Its proof is thus omitted.

Lemma 6. For each ε > 0, we consider hε(z) = h(z) + χε(z) with h,χε two holomorphic functions
in a disk Do(z0, r0). We assume that supz∈Do(z0,r0) |χε(z)| = o(1). We consider z0,ε = z0 + δε with
δε = o(1). Then, ∃ ε0 > 0 and r > 0 such that for each 0< ε≤ ε0, z0,ε ∈ Do(z0, r) and the equation

z− z0,ε− εhε(z) = 0,

admits a unique solution in Do(z0, r) given by

zε = z0,ε+ εh(z0) + o(ε).

Moreover, if we assume that z0 ∈ R, h(z) ∈ R for z ∈ R, and that for ε small enough, z0,ε ∈ R,
hε(z) ∈R for z ∈R, then zε ∈R.

The second result is an extension of [5, Lem.3.3] to certain third degree equations. The proof is
given the Appendix C.

Lemma 7. For each ε > 0 and i = 1, 2, we consider hi,ε(z) = hi(z) +χi,ε(z) with hi ,χi,ε holomorphic
functions in a disk Do(z0, r0). We assume that h1(z0) 6= 0 and that supz∈Do(z0,r0) |χi,ε(z)| = o(1) for
i = 1, 2. We consider z0,ε = z0+δε with δε = o(1). Then, ∃ ε0 > 0 and r > 0 such that z0,ε ⊂ Do(z0, r)
∀ε ∈ (0,ε0) and the equation

�

z− z0,ε

�3
− ε
�

z− z0,ε

�

h1,ε(z) + ε
2h2,ε(z) = 0
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has 3 solutions in Do(z0, r) given by

z−ε = z0,ε−
p
ε
p

h1(z0) + o(
p
ε)

z+ε = z0,ε+
p
ε
p

h1(z0) + o(
p
ε)

zε = z0,ε+ ε
h2(z0)
h1(z0)

+ o(ε),

where p. is an arbitrary branch of the square root, analytic in a neighborhood of h1(z0). Moreover, if
we assume that z0 ∈R, hi(z) ∈R for z ∈R and that for ε small enough that z0,ε ∈R, hi,ε(z) ∈R for
z ∈ R, then zε is real. Moreover, if h1(z0) > 0 then z−ε , z+ε and zε are real while z−ε , z+ε are non real if
h1(z0)< 0.

4.2 Characterization of SN and limits of the eigenvalues if λk 6= σ2pc

In this paragraph, we identify the clusters of the support SN , and evaluate the points x−q,N , x+q,N for
q = 1, . . . ,QN . From theorem 3, these points coincide with the positive extrema of function φN
(defined in (7)), and eventually x−1,N = 0 if cN = 1. Therefore, we first evaluate the real zeros of
φ′N (w) = (1−σ

2cN fN (w))2−2σ2cN w f ′N (w)(1−σ
2cN fN (w))−σ4cN (1−cN ) f ′N (w). Straightforward

calculations give

φ′N (w) =
1

w2
∏K

k=1(λk,N −w)3

�

γ1,N (w) +
1

M
γ2,N (w) +

1

M2γ3,N (w)
�

,

with

γ1,N (w) = (w
2−σ4cN )

K
∏

k=1

(λk,N −w)3,

γ2,N (w) =−2σ2cN

K
∏

k=1

(λk,N −w)
K
∑

j=1











λ j,N

�

w2+σ2(1+ cN )w−
σ2(1+ cN )λ j,N

2

� K
∏

l=1
l 6= j

(λl,N −w)2











,

γ3,N (w) = σ
4c2

N











K
∑

k=1

λk,N

K
∏

l=1
l 6=k

(λl,N −w)





















K
∑

k=1

λk,N (3w−λk,N )
K
∏

l=1
l 6=k

(λl,N −w)2











.

Therefore, φ
′

N (w) = 0 if and only if

γ1,N (w) +
1

M
γ2,N (w) +

1

M2γ3,N (w) = 0. (20)

We assume c < 1, which implies that cN < 1 for N large enough. The calculations are essentially
the same if c = 1. We first observe that the zeros of φN are included into a compact interval I
independent of N (see the proof of Corollary 1). Next, we claim that for each α > 0, it exists β > 0
and N0 ∈N such that

�

�

�

�

γ1,N (w) +
1

M
γ2,N (w) +

1

M2γ3,N (w)

�

�

�

�

> β ,
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if N > N0 and |w −σ2pc| > α, |w +σ2pc| > α, |w −λk| > α, k = 1, . . . , K and w ∈ I . This follows
immediately from the inequality

�

�

�

�

γ1,N (w) +
1

M
γ2,N (w) +

1

M2γ3,N (w)

�

�

�

�

≥ |γ1,N (w)| −
1

M
γ2,max −

1

M2γ3,max ,

where γi,max = maxw∈I |γi,N (w)| for i = 2,3. This shows that the solutions of eq. (20) are located
around the points σ2pc,−σ2pc,λk, k = 1, . . . , K .

In a disk Do(σ2pc, r), (20) is equivalent to

w−σ2pcN +
1

M

w−σ2pcN

γ1,N (w)

�

γ2,N (w) +
1

M
γ3,N (w)

�

= 0. (21)

We use lemma 6 with ε= M−1, z0 = σ2pc, z0,ε = σ2pcN , and the functions

hε(w) =−
(w−σ2pcN )
γ1,N (w)

�

γ2,N (w) +
1

M
γ3,N (w)

�

and h(w) = limM→+∞ hε(w). h(w) is obtained by replacing cN and the (λk,N )k=1,...,K by c and the
(λk)k=1,...,K in the expression of hε. Lemma 6 implies that it exists r for which equation (21), or
equivalently equation (20), has a unique solution in Do(σ2pc, r) for M large enough. This solution
is given by σ2pcN +O (

1
M
). It is easy to check that

φN

�

σ2pcN +O
�

M−1
��

= σ2(1+
p

cN )
2+O

�

1

M

�

.

This quantity is positive, thus showing thatσ2pcN+O (M−1) is the pre-image of a positive extremum
of φN . Exchanging σ2pc with −σ2pc, we obtain similarly that it exists a neighborhood of −σ2pc
in which equation (20) has a unique solution given by −σ2pcN +O (

1
M
). Moreover,

φN

�

−σ2pcN +O
�

M−1
��

= σ2(1−
p

cN )
2+O

�

1

M

�

,

so that −σ2pcN +O (
1
M
) is also the pre-image of a positive extremum of φN .

We now consider i ∈ {1, . . . , K}, and study the equation (20) in a neighborhood Do(λi , r) of λi . In
order to use lemma 7, we put ε = 1

M
, z0 = λi , z0,ε = λi,N . It is easily seen that in Do(λi , r), eq. (20)

is equivalent to

(w−λi,N )
3−

1

M
(w−λi,N )h1,ε(w) +

1

M2 h2,ε(w) = 0,

where

h1,ε(w) =

2σ2cN
∑N

k=1

�

λk,N

�

w2+σ2(1+ cN )w−
σ2(1+cN )λk,N

2

�

∏K
l=1
l 6=k
(λl,N −w)2

�

(w2−σ4cN )
∏K

k=1
k 6=i
(λk,N −w)2

,

h2,ε(w) =−
γ3,N (w)

(w2−σ4cN )
∏K

k 6=i(λk,N −w)3
.
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We denote by h1(w) and h2(w) the limits of h1,ε(w) and h2,ε(w) when ε→ 0, i.e. the functions ob-
tained by replacing cN and the (λk,N )k=1,...,K by c and the (λk)k=1,...,K respectively in the expressions
of h1,ε, h2,ε. After some algebra, we obtain that

h1(λi) =
2σ2cλ2

i (λi +
σ2(1+c)

2
)

λ2
i −σ

4c
,

while h2(λi) is equal to

h2(λi) =−
2σ4c2λ3

i

λ2
i −σ

4c
.

Lemma 7 implies that it exists r such that

λi,N −
1

M

σ2cλi

λi +σ2 1+c
2

+ o
�

1

M

�

is solution of (20) contained in Do(λi , r). It is however easy to check that

φN

 

λi,N −
1

M

σ2cλi

λi +σ2 1+c
2

+ o
�

1

M

�

!

=−
σ4(1− c)2

2λi

�

1−
c

2

�

< 0.

Therefore, the above extremum is negative, and its pre-image cannot be one the points w−q,N , w+q,N .
Moreover, if λi < σ

2pc, then h1(λi) < 0 and (20) has no extra real solution in Do(λi , r). If
λi > σ

2pc, then h1(λi)> 0, and the quantities

λi,N −
1
p

M

p

h1(λi) + o
�

1
p

M

�

and λi,N +
1
p

M

p

h1(λi) + o
�

1
p

M

�

are the 2 other real solutions of (20) contained in Do(λi , r). After some algebra, we get that

φN

�

λi,N −
1
p

M

p

h1(λi) + o
�

1
p

M

��

=
(λi,N +σ2cN )(λi,N +σ2)

λi,N
−

1
p

M

2
p

h1(λi)(λ2
i −σ

4c)

λ2
i

+ o
�

1
p

M

�

,

φN

�

λi,N +
1
p

M

p

h1(λi) + o
�

1
p

M

��

=
(λi,N +σ2cN )(λi,N +σ2)

λi,N
+

1
p

M

2
p

h1(λi)(λ2
i −σ

4c)

λ2
i

+ o
�

1
p

M

�

,

are both positive. It is easy to check that if k ≤ Ks, then, σ2pcN < λk,N for N large enough. The
above discussion thus implies that SN has Ks + 1 clusters, and that for k ≤ Ks, then

x−1,N = σ
2(1−pcN )

2+O
�

1

M

�

,

x+1,N = σ
2(1+

p
cN )

2+O
�

1

M

�

,

x−Ks+2−k,N =
(λk,N +σ2cN )(λk,N +σ2)

λk,N
−

1
p

M

2
p

h1(λk)(λ2
k −σ

4c)

λ2
k

+ o
�

1
p

M

�

,

x+Ks+2−k,N =
(λk,N +σ2cN )(λk,N +σ2)

λk,N
+

1
p

M

2
p

h1(λk)(λ2
k −σ

4c)

λ2
k

+ o
�

1
p

M

�

.
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In order to complete the proof, we use theorem 5. Let k ∈ {1, . . . , Ks}. From the previous analysis,
the eigenvalue λk,N is the unique eigenvalue of BN B∗N associated with interval (w−q,N , w+q,N ) with
q = Ks − k+ 2, for N large enough. Moreover, the number of clusters of SN is equal to Ks + 1 for
N large enough and the sequences x−q,N and x+q,N converge towards limits equal to σ2(1−

p
c)2 and

σ2(1+
p

c)2 for q = 1, and both coincide with ψ(λKs+2−q) for q ≥ 2. This implies that for each
ε > 0, almost surely for N large enough, then λ̂k,N ∈ (ψ(λk)− ε,ψ(λk) + ε) for k = 1, . . . , Ks and
that λ̂k,N ∈ (σ2(1 −

p
c)2 − ε,σ2(1 +

p
c)2 + ε) for k > Ks. This shows that λ̂k,N → ψ(λk) for

k = 1, . . . , Ks.

We now prove the convergence of λ̂k,N to σ2(1+
p

c)2 for Ks < k ≤ K . Let kmax = Ks + 1 (i.e the
index of the largest eigenvalue associated with the first cluster [x−1,N , x+1,N]). We have already shown
limsupN λ̂kmax,N ≤ σ2(1+

p
c)2 almost surely. It remains to prove lim infN λ̂kmax,N ≥ σ2(1+

p
c)2.

Assume the converse is true. Then it exists ε > 0 such that lim infN λ̂kmax,N < σ
2(1+

p
c)2 − ε. We

can thus extract a subsequence λ̂kmax,φ(N) converging towards a limit less than σ2(1+
p

c)2− ε. Let
µ̂φ(N) be the empirical spectral measure associated with matrix Σφ(N)Σ∗φ(N). We deduce that

µ̂φ(N)
�

(σ2(1+
p

c)2− ε,σ2(1+
p

c)2]
�

= 0 a.s for all large N. (22)

Theorem 1 implies that µ̂φ(N) converges torwards the Marcenko-Pastur distribution, which contra-
dicts (22). This proves that λ̂kmax,N → σ2(1+

p
c)2 with probability one. We can prove similarly that

λ̂k,N → σ2(1+
p

c)2 a.s for Ks + 1< k ≤ K .

4.3 Characterization of SN and limits of the eigenvalues if σ2pc ∈ {λ1, . . . ,λK}

In this section, we handle the case where one the (λk)k=1,...,K , say λ j with j ≤ K , is equal to σ2pc.
For this, we will use the Fan inequality (see [15, Th.2]). For a rectangular matrix A, we will denote
by κk(A) its k-th largest singular value. With this notations, we have κ j(B) =

p

λ j =
p

σ2pc. We
also denote by u j,N and v j,N the left and right singular vector of BN associated with κ j(BN ). Fan
inequality gives, for ε > 0,

κ j(BN +σWN )≤ κ j(BN +σWN + εu j,N v∗j,N ) + κ1(εu j,N v∗j,N ),

κ j(BN +σWN + εu j,N v∗j,N )≤ κ j(BN +σWN ) + κ1(εu j,N v∗j,N ).

From the results of the previous section, it is clear that, almost surely,

κ j(BN +σWN + εu j,N v∗j,N ) =

r

ψ

�

�

p

λ j + ε
�2
�

+ o(1).

Therefore, we end up with
r

ψ

�

�

p

λ j + ε
�2
�

− ε≤ lim inf
N

κ j(BN +σWN )≤ limsup
N

κ j(BN +σWN )≤

r

ψ

�

�

p

λ j + ε
�2
�

+ ε.

Since ψ(λ)→ σ2(1+
p

c)2 when λ→ σ2pc, this completes the results of theorem 6.
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A Proof of item 2 of theorem 2

The proof is a direct consequence of Section 2 of [13] (formulas (2.1) to (2.5) of [13]). We first
recall that if we denote by g(z) and G(z) the terms defined for z ∈ C+ by

g(z) =
σ2cN

|1+σ2cN mN (z)|2
1

M
TrBN B∗N TN (z)TN (z)

∗,

G(z) = σ2cN
1

M
TrTN (z)TN (z)

∗,

where TN (z) =
h

−z(1+σ2cN mN (z))IM +σ2(1− cN )IM +
BN B∗N

1+σ2cN mN (z)

i−1
, then, it is shown in [13]

that

0< |z|G(z)< 1− g(z) (23)

for each z ∈ C+. If z1 = Re(z) and z2 = Im(z), (23) implies that 0 < 1 − g(z) − |z1|G(z) ≤
1− g(z) + z1G(z). It is shown in [13] that

Re(1+σ2cN mN (z)) =
1+σ2(1− cN )G(z) + Im(1+σ2cN mN (z))z2G(z)

1− g(z) + z1G(z)
,

for z ∈ C+. As Im(1+σ2cN mN (z)) = σ2cN Im(mN (z))> 0 on C+ (see item 3 of Property 1), we get
that

Re(1+σ2cN mN (z))>
1

1− g(z) + z1G(z)
>

1

1+ z1G(z)
.

The inequality |z1|G(z) < 1 implies that Re(1+σ2cN mN (z)) >
1
2

for each z ∈ C+. This also implies

that Re(1+σ2cN mN (x))≥
1
2

for x ∈R if cN < 1 and for x ∈R∗ if cN = 1.

B Proof of items 6 and 8 of lemma 2 when q = 1

In order to prove these 2 statements, we study the behaviour of wN (x) and of w
′

N (x) when x →
0, x < 0 and x → 0, x > 0.

We first look at the limit for x < 0. Lemmas 1 and 2 imply that wN is the inverse of φN on interval
(−∞, 0). wN (x) is a continuous increasing function on (−∞, 0) upperbounded by w−1,N ; therefore,
limx→0,x<0 wN (x) exists, and is less than w−1,N . Taking the limit when x → 0, x < 0 from both sides
of the equation φN (wN (x)) = x for x ∈ (−∞, 0), and using the continuity of φN on (−∞, 0], we
obtain immediately that φN (limx→0,x<0 wN (x)) = 0. This implies that limx→0,x<0 wN (x) = w−1,N .
This shows that wN is left continuous at x = 0. Since wN (x) = x(1+ σ2mN (x))2, it follows that
1+σ2mN (x) = O (|x |−1/2). As wN is continuously differentiable on (−∞, 0), we can differentiate
the relation φN (wN (x)) = x , and obtain that φ′N (wN (x))w′N (x) = 1 for x < 0, or equivalently that
w′N (x) =

1
φ′N (wN (x))

. In other words, it holds that

w′N (x) =
1

[1−σ2 fN (wN (x))][1−σ2 fN (wN (x))− 2σ2wN (x) f ′N (wN (x))]
. (24)
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We observe that 1−σ2 fN (w
−
1,N ) = 0 so that

lim
x↑0

1−σ2 fN (wN (x))− 2σ2wN (x) f
′
N (wN (x))) =−2σ2w−1,N f ′N (w

−
1,N ) 6= 0 (25)

Moreover, (9) implies that

1

1−σ2 fN (wN (x))
= 1+σ2mN (x) for x < 0,

which proves that (1− σ2 fN (wN (x)))−1 = O ((−x)−1/2). (24) implies immediately that w′N (x) =

O
�

1p
−x

�

.

We now study the behaviour of wN and w
′

N when x → 0, x > 0. We first study
p

xmN (x) for
x → 0, x > 0. For this, we introduce the function ψ(ξ, y) defined by

ψ(ξ, y) = 1−
1

M
Tr
�

BN B∗N
ξ

y +σ2ξ
− ξ(y +σ2ξ)

�−1

.

The introduction ofψ is based on the observation that eq. (6) is equivalent toψ(
p

xmN (x),
p

x) = 0
for x > 0. We denote by ξ0 the term ξ0 = iσ−2

Æ

|w−1,N | and notice that ψ(ξ0, 0) = 0. It is easily

checked that ψ is holomorphic in a neighborhood of (ξ0, 0) and that ∂ψ

∂ ξ
(ξ0, 0) 6= 0. Therefore,

from the implicit function theorem (the analytic version - see e.g Cartan [11, Prop.6]), it exists a
unique function ξ(y), holomorphic in a neighborhood V of 0 satisfying ψ(ξ(y), y) = 0 for y ∈ V
and ξ(0) = ξ0. As Im(ξ0) > 0, it is clear that it exists a neighborhood V

′
of 0 included in V such

that Im(ξ(y))> 0 for each y ∈ V
′
. We claim that for

p
x ∈ V

′
∩R+∗, ξ(

p
x) =

p
xmN (x). For this,

we notice that if x ∈ (0, x+1,N ), mN (x) is the unique solution of Eq. (6) for which Im(mN (x)) > 0.
Indeed, from item 5 of lemma 2, for x ∈ (0, x+1,N ), wN (x) is the unique solution with positive
imaginary part of equation φN (w) = x . But, mN (x) is solution of (6) iff wN (x) is solution of
φN (w) = x . Moreover mN (x) ∈ C+ iff wN (x) ∈ C+, a property which is readily seen from the
relation (8). The conclusion follows from the observation that mN (x) satisfies (6) iff

p
xmN (x)

satisfiesψ(
p

xmN (x),
p

x) = 0. This in turn shows that for each
p

x ∈ V
′
∩R+∗, ξ(

p
x) =

p
xmN (x),

or equivalently that ξ(y) = ymN (y2) for y ∈ V
′
∩R+∗. As ξ(y) is holomorphic in V

′
, ξ(y) =

ξ0 + o(1) and ξ
′
(y) = ξ1 + o(1) for some coefficient ξ1. Therefore, ymN (y2) = ξ0 + o(1) and

2y2m
′

N (y
2) + mN (y2) = ξ1 + o(1) for y ∈ V

′
∩R+∗, or equivalently

p
xmN (x) = ξ0 + o(1) and

2xm
′

N (x) +mN (x) = ξ1+ o(1) for x > 0 small enough. As wN (x) = x(1+σ2mN (x))2, we get that

w
′

N (x) =
�

1+σ2mN (x)
��

1+σ2(mN (x) + 2xm
′

N (x))
�

.

As (mN (x) + 2xm
′

N (x)) is a O (1) term, and as mN (x) =
ξ0p

x
+ o( 1p

x
), we obtain that |w

′

N (x)| ≤
Cp
x

for x > 0 small enough for some constant C > 0.

C Proof of lemma 7

We begin by choosing r > 0 and ε1 > 0 such that r < r0, z0,ε ∈ Dc(z0, r) and Dc(z0,ε, r)⊂ D0(z0, r0),
for each 0 < ε < ε1. Let fε(z) = (z − z0,ε)3 − ε(z − z0,ε)h1,ε(z) + ε2h2,ε(z) and gε(z) = (z − z0,ε)3.
Moreover, define Ki

2
= supDc(z0,r) |hi(z)| (for i = 1, 2).
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As supz∈Do(z0,r0) |χi,ε(z)| = o(1), it exists ε2 ≤ ε1 such that supDc(z0,r) |hi,ε(z)| ≤ Ki (for i = 1, 2) for
each ε≤ ε2. For z ∈ Dc(z0, r), it holds that

�

� fε(z)− gε(z)
�

�≤ ε
�

�z− z0,ε

�

�

�

�h1,ε(z)
�

�+ ε2
�

�h2,ε(z)
�

� .

As z0,ε−z0 = o(1), it exists ε3 ≤ ε2 such that, for each ε≤ ε3, |z−z0,ε|< 2r on Dc(z0, r). Hence, for
each ε≤ ε3, it holds that

�

� fε(z)− gε(z)
�

�≤ 2εrK1+ε2K2 on Dc(z0, r). We now restrict z to C (z0, r),

the boundary of Dc(z0, r). It exists ε4 ≤ ε3 for which 2εrK1 + ε2K2 <
r3

2
< r3 = |z − z0|3 holds on

C (z0, r) for each ε ≤ ε4. Therefore, ∀z ∈ C (z0, r), we have | fε(z)− gε(z)| < |gε(z)| for ε ≤ ε4. It
follows from Rouché’s theorem that these values of ε, then fε and gε have the same number of zeros
inside Do(z0, r). Thus, for ε≤ ε4, the equation

(z− z0,ε)
3− ε(z− z0,ε)h1,ε(z) + ε

2h2,ε(z) = 0 (26)

has three solutions in Do(z0, r). Using the the same procedure to functions fε(z) = (z − z0,ε)2 −
εh1,ε(z) and gε(z) = (z− z0,ε)2, we deduce that if ε≤ ε5 ≤ ε4, the equation

(z− z0,ε)
2− εh1,ε(z) = 0 (27)

has two solutions ẑ−ε , ẑ+ε in Do(z0, r). We clearly have |z0,ε − ẑ−ε | = O (ε
1/2) and |z0 − ẑ−ε | = o(1).

Therefore, h1,ε(ẑ−ε )− h1(z0) = o(1). As h1(z0) 6= 0, it exists ε6 ≤ ε5 and a neighborhood of h1(z0),
containing h1,ε(ẑ−ε ), h1,ε(z0) for each ε ≤ ε6, in which a suitable branch of the square-root p. is

analytic. We assume that solution ẑ−ε is given by z0,ε− ẑ−ε =−
p
ε
p

h1,ε(ẑ−ε ). As |h1(z0)−h1,ε(ẑ−ε )|=
o(1), we have z0,ε− ẑ−ε =−

p
ε
p

h1(z0)+ o(
p
ε). We obtain similarly that z0,ε− ẑ+ε =

p
ε
p

h1(z0)+
o(
p
ε).

Considering again ẑ−ε , it follows that it exists ε7 ≤ ε6 such that for each ε≤ ε7, it holds that

�

�z0,ε− ẑ−ε
�

�>

p
ε
p

h1(z0)

2
>
p
ε
p

r ′, (28)

with r ′ < |h1(z0)|
4

. For ε≤ ε8 ≤ ε7, we have
p
εr ′ < r and for z ∈ Dc(z0,ε,

p
εr ′), we get

�

�(z− z0,ε)
2− εh1,ε(z)

�

�> ε|h1,ε(z)| − |z− z0,ε|2 > ε
�

|h1,ε(z)| − r
′�

.

It is easy to check that for each ε≤ ε9 ≤ ε8, then |h1,ε(z)|>
|h1(z0)|

2
for z ∈ Dc(z0,ε,

p
εr ′). Therefore,

�

�(z− z0,ε)
2− εh1,ε(z)

�

�> ε

� |h1(z0)|
2

− r ′
�

> εr ′. (29)

The inequalities (28) and (29) prove that in Dc(z0,ε,
p
εr ′), the equation (27) has no solution and

that the equation (z− z0,ε)3− ε(z− z0,ε)h1,ε(z) = 0 has only one solution there.

We now study the number of solutions in Dc(z0,ε,
p
εr ′) of the equation (26). Consider

fε(z) = (z− z0,ε)
3− ε(z− z0,ε)h1,ε(z) + ε

2h2,ε(z),

gε(z) = (z− z0,ε)
3− ε(z− z0,ε)h1,ε(z).
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We have | fε(z)− gε(z)| = ε2|h2,ε(z)|. We consider z ∈ C (z0,ε,
p
εr ′). From (29), |gε(z)| > (εr ′)3/2.

Therefore, for each ε ≤ ε10 ≤ ε9, it holds that |gε(z)| > ε2|h2,ε(z)| = | fε(z)− gε(z)|. Thus, from
Rouché’s theorem, the equation (26) has only one solution in Do(z0,ε,

p
εr ′), denoted by zε. To

obtain zε, we write

zε− z0,ε =
−ε2h2,ε(zε)

(zε− z0,ε)2− εh1,ε(zε)
.

Since |(z− z0,ε)2− εh1,ε(z)|> εr
′
on Dc(z0,ε,

p
εr ′) (see (29)), we get that

�

�zε− z0,ε

�

�≤
ε2K2

εr ′
= O (ε) .

But from equation (26), we also have ε(zε− z0,ε)h1,ε(zε) = (zε− z0,ε)3+ ε2h2,ε(zε) which leads to

zε− z0,ε = ε
h2,ε(zε)

h1,ε(zε)
+
(zε− z0,ε)3

εh1,ε(zε)
.

It is clear that

h2,ε(zε)

h1,ε(zε)
−

h2(z0)
h1(z0)

= o(1),

so that

zε− z0,ε = ε
h2(z0)
h1(z0)

+ o(ε).

We now evaluate the two remaining solutions of (26) located in the set Do(z0, r)\Do(z0,ε,
p
εr ′),

denoted z−ε , z+ε . As |z−ε − z0,ε|>
p

r ′ε, we can write

�

z−ε − z0,ε

�2
= εh1,ε(z

−
ε )− ε

2 h2,ε(z−ε )

z−ε − z0,ε
(30)

This implies that |z−ε − z0,ε| = O (
p
ε) and that |z−ε − z0| = o(1). Taking a suitable branch of the

square root, (30) implies that

z−ε − z0,ε =−
p

εh1,ε(z−ε ) + o(
p
ε) =−

p

εh1(z0) + o(
p
ε).

We obtain similarly that z+ε − z0,ε =
p

εh1(z0) + o(
p
ε).

We finally verify that if z0 and z0,ε belong to R for each ε, and that hi(z) and hi,ε(z) belong to R for
each ε if z ∈R for i = 1,2, then zε is real while z−ε , z+ε are real if h1(z0)> 0.

If zε is not real, it is clear that z∗ε is also solution of (26) because functions hi,ε verifies (hi,ε(z))∗ =
hi,ε(z∗). As |z∗ε − z0,ε| = |zε − z0,ε| = O (ε), and that (26) has a unique solution in the disk

Do(z0,ε,
p

εr ′), this implies that z∗ε = zε. On the other hand, assume that h1(z0) > 0 and the
z−ε , z+ε are non-real. Then, z+ ∗ε and z− ∗ε are also solution of (27). Since equation (27) has only two

solutions outside the disk Do(z0,ε,
p

εr ′), it follows that ẑ+ε and ẑ−ε are complex conjuguate. But as
their real parts have opposite sign for ε small enough, this leads to a contradiction. Therefore ẑ+ε
and ẑ−ε are real. We finally note that if h1(z0)< 0, then ẑ+ε and ẑ−ε are non real.
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