

Vol. 16 (2011), Paper no. 68, pages 1880-1899.

Journal URL http://www.math.washington.edu/~ejpecp/

A note on higher dimensional p-variation *

Peter Friz

Nicolas Victoir

Abstract

We discuss *p*-variation regularity of real-valued functions defined on $[0, T]^2$, based on rectangular increments. When p > 1, there are two slightly different notions of *p*-variation; both of which are useful in the context of Gaussian roug paths. Unfortunately, these concepts were blurred in previous works [2, 3]; the purpose of this note is to show that the afore-mentioned notions of *p*-variations are " ε -close". In particular, all arguments relevant for Gaussian rough paths go through with minor notational changes.

Key words: higher dimensional p-variation, Gaussian rough paths.

AMS 2010 Subject Classification: Primary 60H99.

Submitted to EJP on March 4, 2011, final version accepted July 6, 2011.

^{*}The first author has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237

1 Higher-dimensional *p*-variation

Let T > 0 and $\Delta_T = \{(s, t) : 0 \le s \le t \le T\}$. We shall regard $((a, b), (c, d)) \in \Delta_T \times \Delta_T$ as (closed) **rectangle** $A \subset [0, T]^2$;

$$A:=\left(\begin{array}{c}a,b\\c,d\end{array}\right):=[a,b]\times[c,d];$$

if a = b or c = d we call A degenerate. Two rectangles are called **essentially disjoint** if their intersection is empty or degenerate. A **partition** Π of a rectangle $R \subset [0, T]^2$ is then a a finite set of essentially disjoint rectangles, whose union is R; the family of all such partitions is denoted by $\mathscr{P}(R)$. Recall that **rectangular increments** of a function $f : [0, T]^2 \to \mathbb{R}$ are defined in terms of f evaluated at the four corner points of A,

$$f(A) := f\begin{pmatrix} a, b \\ c, d \end{pmatrix} := f\begin{pmatrix} b \\ d \end{pmatrix} - f\begin{pmatrix} a \\ d \end{pmatrix} - f\begin{pmatrix} b \\ c \end{pmatrix} + f\begin{pmatrix} a \\ c \end{pmatrix}.$$

Let us also say that a **dissection** *D* of an interval $[a, b] \subset [0, T]$ is of the form $D = (a = t_0 \le t_1 \le \cdots \le t_n = b)$; we write $\mathcal{D}([a, b])$ for the family of all such dissections.

Definition 1. Let $p \in [1, \infty)$. A function $f : [0, T]^2 \to \mathbb{R}$ has finite *p*-variation if

$$V_p\left(f;[s,t]\times[u,v]\right) := \left(\sup_{\substack{D=(t_i)\in\mathscr{D}([s,t])\\D'=(t'_j)\in\mathscr{D}([u,v])}}\sum_{i,j} \left| f\left(\begin{array}{c}t_i,t_{i+1}\\t'_j,t'_{j+1}\end{array}\right) \right|^p\right)^{\frac{1}{p}} < \infty;$$

it has finite **controlled** p-variation¹ if

$$\left|f\right|_{p\text{-var};[s,t]\times[u,v]} := \sup_{\Pi\in\mathscr{P}([s,t]\times[u,v])} \left(\sum_{A\in\Pi} \left|f\left(A\right)\right|^{p}\right)^{1/p} < \infty.$$

The difference is that in the first definition (i.e. of V_p) the sup is taken over grid-like partitions,

$$\left\{ \left(\begin{array}{c} t_i, t_{i+1} \\ t'_j, t'_{j+1} \end{array}\right) : 1 \le i \le n, 1 \le j \le m \right\},\$$

based on D, D' where $D = (t_i : 1 \le i \le n) \in \mathcal{D}([s, t])$ and $D' = (t'_j : 1 \le j \le m) \in \mathcal{D}([u, v])$. Clearly, not every partition is grid-like (consider e.g. $[0, 2]^2 = [0, 1]^2 \cup [1, 2] \times [0, 1] \cup [0, 2] \times [1, 2])$ hence

$$V_p(f;R) \leq |f|_{p\operatorname{-var};R}.$$

for every rectangle $R \subset [0, T]^2$.

¹Our main theorem below will justify this terminology.

Definition 2. A map $\omega : \Delta_T \times \Delta_T \to [0, \infty)$ is called **2D control** if it is continuous, zero on degenerate rectangles, and super-additive in the sense that, for all rectangles $R \subset [0, T]$,

$$\sum_{i=1}^{n} \omega(R_i) \le \omega(R), \text{ whenever } \{R_i : 1 \le i \le n\} \in \mathscr{P}(R).$$

Our result is

Theorem 1. (i) For any function $f : [0, T]^2 \to \mathbb{R}$ and any rectangle $R \subset [0, T]$,

$$|f|_{1-var;R} = V_1(f;R).$$
 (1.1)

(ii) Let $p \in [1,\infty)$ and $\varepsilon > 0$. There exists a constant $c = c(p,\varepsilon) \ge 1$ such that, for any function $f : [0,T]^2 \to \mathbb{R}$ and any rectangle $R \subset [0,T]$,

$$\frac{1}{c(p,\varepsilon)} \left| f \right|_{(p+\varepsilon)\text{-var};R} \le V_p(f;R) \le \left| f \right|_{p\text{-var};R}.$$
(1.2)

(iii) If $f : [0, T]^2 \to \mathbb{R}$ is of finite controlled *p*-variation, then $R \mapsto |f|_{p\text{-var};R}^p$ is super-additive. (iv) If $f : [0, T]^2 \to \mathbb{R}$ is continuous and of finite controlled *p*-variation, then $R \mapsto |f|_{p-var;R}^p$ is a 2D control. Thus, in particular, there exists a 2D control ω such that

$$\forall$$
 rectangles $R \subset [0, T] : |f(R)|^p \leq \omega(R)$

As will be seen explicitly in the following example, there exist functions f which are of finite pvariation but of infinite controlled *p*-variation; that is,

$$V_p(f;[0,T]^2) < |f|_{p-\text{var};[0,T]^2} = +\infty$$

which also shows that one cannot take $\varepsilon = 0$ in (1.2). In the same example we see that *p*-variation $R \mapsto V_p(f; R)^p$ can fail to be super-additive².

Example 1 (Finite (1/2H)-variation of fBM covariance, $H \in (0, 1/2]$.). Let β^H denote fractional Brownian motion with Hurst parameter H; its covariance is given by

$$C^{H}(s,t) := \mathbb{E}\left(\beta_{s}^{H}\beta_{t}^{H}\right) := \frac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}\right), \ s,t \in [0,T]^{2}, H \in (0,1/2].$$

We show that C^{H} has finite 1/(2H)-variation in 2D sense³ and more precisely,

$$V_{1/(2H)}(C^{H};[s,t]^{2}) \le c_{H}|t-s|^{2H}, \text{ for every } s \le t \text{ in } [0,T].$$

²... in contrast to controlled *p*-variation $R \mapsto |f|_{p\text{-var};R}^p$ which yields a 2D control, cf part (iv) of the theorem. ³This is a minor modification of the argument in [3] where it was assumed that D = D'.

(By fractional scaling it would suffice to consider [s, t] = [0, 1] but this does not simplify the argument which follows). Consider $D = (t_i)$, $D' = (t'_j) \in \mathcal{D}[s, t]$. Clearly⁴,

$$3^{1-\frac{1}{2H}} \sum_{j} \left| E \left[\beta_{t_{i},t_{i+1}}^{H} \beta_{t_{j}',t_{j+1}}^{H} \right] \right|^{\frac{1}{2H}} \leq 3^{1-\frac{1}{2H}} \left| E \left[\beta_{t_{i},t_{i+1}}^{H} \beta_{\cdot}^{H} \right] \right|^{\frac{1}{2H}}_{\frac{1}{2H} - var;[s,t]} \leq \left| E \left[\beta_{t_{i},t_{i+1}}^{H} \beta_{\cdot}^{H} \right] \left|^{\frac{1}{2H}}_{\frac{1}{2H} - var;[s,t_{i}]} \right|$$

$$(1.3)$$

$$+ \left| E \left[\beta_{t_i, t_{i+1}}^H \beta_{\cdot}^H \right] \right|_{\frac{1}{2H} - var; \left[t_i, t_{i+1} \right]}^{\frac{1}{2H}}$$
(1.4)

$$+ \left| E \left[\beta_{t_i, t_{i+1}}^H \beta_{\cdot}^H \right] \right|_{\frac{1}{2H} - \operatorname{var}; \left[t_{i+1}, t \right]}^{\frac{1}{2H}}, \tag{1.5}$$

by super-additivity of (1D!) controls. The middle term (1.4) is estimated by

$$\begin{aligned} \left| E \left[\beta_{t_i, t_{i+1}}^H \beta_{\cdot}^H \right] \right|_{\frac{1}{2H} \cdot \operatorname{var}; \left[t_i, t_{i+1} \right]}^{\frac{1}{2H}} &= \sup_{(s_k) \in \mathscr{D} \left[t_i, t_{i+1} \right]} \sum_k \left| E \left[\beta_{t_i, t_{i+1}}^H \beta_{s_k, s_{k+1}}^H \right] \right|_{\frac{1}{2H}}^{\frac{1}{2H}} \\ &\leq c_H \left| t_{i+1} - t_i \right|, \end{aligned}$$

where we used that $[s_k, s_{k+1}] \subset [t_i, t_{i+1}]$ implies $\left| E \left[\beta_{t_i, t_{i+1}}^H \beta_{s_k, s_{k+1}}^H \right] \right| \leq c_H \left| s_{k+1} - s_k \right|^{2H}$. The first term (1.3) and the last term (1.5) are estimated by exploiting the fact that disjoint increments of fractional Brownian motion have negative correlation when H < 1/2 (resp. zero correlation in the Brownian case, H = 1/2); that is, $E \left(\beta_{c,d}^H \beta_{a,b}^H \right) \leq 0$ whenever $a \leq b \leq c \leq d$. We can thus estimate (1.3) as follows;

$$\begin{split} \left| E \left[\beta_{t_{i},t_{i+1}}^{H} \beta_{\cdot}^{H} \right] \right|_{\frac{1}{2H} \cdot var; [s,t_{i}]}^{\frac{1}{2H}} &= \left| E \left[\beta_{t_{i},t_{i+1}}^{H} \beta_{s,t_{i}}^{H} \right] \right|_{\frac{1}{2H}}^{\frac{1}{2H}} \\ &\leq 2^{\frac{1}{2H} - 1} \left(\left| E \left[\beta_{t_{i},t_{i+1}}^{H} \beta_{s,t_{i}}^{H} \right] \right|_{\frac{1}{2H}}^{\frac{1}{2H}} + E \left[\left| \beta_{t_{i},t_{i+1}}^{H} \right|_{\frac{1}{2H}}^{2} \right]_{\frac{1}{2H}}^{\frac{1}{2H}} \right). \end{split}$$

The covariance of fractional Brownian motion gives immediately $E\left[\left|\beta_{t_{i},t_{i+1}}^{H}\right|^{2}\right]^{\frac{1}{2H}} = c_{H}\left(t_{i+1} - t_{i}\right)$. On the other hand, $[t_{i}, t_{i+1}] \subset [s, t_{i+1}]$ implies $\left|E\left[\beta_{t_{i},t_{i+1}}^{H}\beta_{s,t_{i}}^{H}\right]\right|^{\frac{1}{2H}} \leq c_{H}\left|t_{i+1} - t_{i}\right|$; hence

$$\left| E \left[\beta_{t_i, t_{i+1}}^H \beta_{\cdot}^H \right] \right|_{\frac{1}{2H} \operatorname{-var}; [s, t_i]}^{\frac{1}{2H}} \leq c_H \left| t_{i+1} - t_i \right|.$$

As already remarked, the last term is estimated similarly. It only remains to sum up and to take the supremum over all dissections D and D'.

Example 2 (Failure of super-addivity of (1/2H)-variation, infinite controlled (1/2H)-variation of fBM covariance, $H \in (0, 1/2)$.). We saw above that

$$V_{1/(2H)}(C^{H};[0,T]^{2}) < \infty.$$

⁴We write $\beta_{a,b}^{H} \equiv \beta_{b}^{H} - \beta_{a}^{H}$.

When H = 1/2 we deal with Brownian motion and see that its covariance has finite 1-variation, which, by (i),(iv) of Theorem 1, constitues a 2D control for $C^{1/2}$. In contrast, we claim that, for H < 1/2, there does <u>not</u> exist a 2D control for the 1/(2H)-variation of C^{H} . In fact, the sheer existence of a super-additive map ω (in the sense of definition 2) such that

$$\forall rectangles R \subset [0,T] : \left| C^{H}(R) \right|^{1/(2H)} \leq \omega(R)$$

leads to a contradiction as follows: assume that such a ω exists. By super-addivity,

$$\bar{\omega}(R) := \left| C^H \right|_{1/(2H)\text{-var};R}^{1/(2H)} \le \omega(R) < \infty$$

and $\bar{\omega}$ is super-additive (in fact, a 2D control) thanks to part (iv) of the theorem. On the other hand, by fractional scaling there exists C such that

$$\forall (s,t) \in \Delta_T : \bar{\omega} \left([s,t]^2 \right) = C |t-s|$$

Let us consider the case T = 2 and the partition

$$[0,2]^2 = [0,1]^2 \cup [1,2]^2 \cup R \cup R'$$

with $R = [0,1] \times [1,2]$, $R' = [1,2] \times [0,1]$. Super-addivitiy of $\bar{\omega}$ gives

$$\begin{split} \bar{\omega}\left([0,1]^2\right) + \bar{\omega}\left([1,2]^2\right) + \bar{\omega}\left(R\right) + \bar{\omega}\left(R'\right) &\leq \bar{\omega}\left([0,2]^2\right), \\ C\left(1-0\right) + C\left(2-1\right) + \bar{\omega}\left(R\right) + \bar{\omega}\left(R'\right) &\leq 2C, \end{split}$$

hence $\bar{\omega}(R) = \bar{\omega}(R') = 0$, and thus also

$$C^{H}(R) = \mathbb{E}\left[\left(B_{1}^{H} - B_{0}^{H}\right)\left(B_{2}^{H} - B_{1}^{H}\right)\right] = 0;$$

which is false for $H \neq 1/2$ and hence the desired contradiction. En passant, we see that we must have

$$|C^{H}|_{1/(2H)-var;[0,T]^{2}} = +\infty;$$

for otherwise part (iv) of Theorem 1 would yield a 2D control for the 1/(2H)-variation of C^{H} . This also shows that, with $f = C^{H}$ and p = 1/(2H) one has

$$V_p(f;[0,T]^2) < |f|_{p-var;[0,T]^2} = +\infty.$$

Remark 1. The previous examples clearly show the need for Theorem 1; variational regularity of C^H can be controlled upon considering $[(1/2H) + \varepsilon]$ -variation rather than 1/(2H)-variation. In applications, this distinction never matters. Existence for Gaussian rough paths for instance, requires 1/(2H) < 2 and one can always insert a small enough ε . It should also be point out that, by fractional scaling,

$$\left|C^{H}\right|_{\left[1/(2H)+\varepsilon\right]\text{-var};\left[s,t\right]^{2}}\propto\left|t-s\right|^{2H};$$

hence, even in estimates that involve directly that variational regularity of C^{H} , no ε loss is felt.

Remark 2. The previous examples dealt with $H \le 1/2$ and reader may wonder about the case H > 1/2. In this case 1/(2H) < 1 and clearly the (non-trivial) covariance function of fBM with Hurst parameter H will not be of finite 1/(2H)-variation. Indeed, any continuous function $f : [0, T]^2 \to \mathbb{R}$, with $f(0, \cdot) \equiv f(\cdot, 0) \equiv 0$, and finite p-variation for $p \in (0, 1)$, is necessarily constant (and then equal to zero).

Acknowledgement 1. The authors are indebted to Bruce Driver for pointing out, in the most constructive and gentle way, that $R \mapsto V_p(f;R)^p$ is not, in general, super-additive. P. Friz received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237.

2 Proof of (i)

We claim the *controlled* 1-variation is exactly equal to its 1-variation. More precisely, for all rectangles $R \subset [0, T]^2$ we have

$$\left|f\right|_{1-\operatorname{var};R}=V_1\left(f;R\right).$$

Proof. Trivially $V_1(f;R) \leq |f|_{1-\operatorname{var};R}$. For the other inequality, assume Π is a partition of R. It is obvious that one can find a grid-like partition $\tilde{\Pi}$, based on $D \times D'$, for sufficiently fine dissections D, D', which **refines** Π in the sense that every $A \in \Pi$ can be expressed as

 $A = \bigcup_i A_i$ (essentially disjoint), $A_i \in \tilde{\Pi}$.

From the very definition of rectangular increments, we have $f(A) = \sum_i f(A_i)$ and it follows that $|f(A)| \le \sum_i |f(A_i)|$. (If $|\cdot|$ is replaced by $|\cdot|^p$, p > 1, this estimate is false.⁵) Hence

$$\sum_{A \in \Pi} \left| f(A) \right| \le \sum_{A \in \tilde{\Pi}} \left| f(A) \right| \le \left| f \right|_{1 \text{-var};R}$$

It now suffices to take the supremum over all such Π to see that $|f|_{1-\text{var},R} \leq V_1(f;R)$.

3 Proof of (ii)

The second inequality $V_p(f;R) \leq |f|_{p\text{-var};R}$ is trivial. Furthermore, if $V_p(f;R) = +\infty$ there is nothing to show so we may assume $V_p(f;R) < +\infty$. We claim that, for all rectangle $R \subset [0,T]^2$,

$$|f|_{p+\varepsilon\text{-var};R} \leq c(p,\varepsilon) V_p(f;R).$$

For the proof we note first that there is no loss in generality in taking $R = [0, T]^2$; an affine reparametrization of each axis will transform R into $[0, T]^2$, while leaving all rectangular increments invariant. The plan is to show, for an arbitrary partition $(Q_k) \in \mathcal{P}([0, T]^2)$, the estimate

$$\left(\sum_{k} \left| f\left(Q_{k}\right) \right|^{p+\varepsilon} \right)^{\frac{1}{p+\varepsilon}} \leq c\left(p,\varepsilon\right) V_{p}\left(f;\left[0,T\right]^{2}\right).$$

where *c* depends only on *p*, ε for any partition $(Q_k) \in \mathscr{P}([0, T]^2)$. The key observation is that for a suitable choice of *y*, *x*, *D* = (t_i) , *D'* = (t'_j) we have

$$\sum_{k} \left| f\left(Q_{k}\right) \right|^{p+\varepsilon} = \sum_{k} \left| f\left(Q_{k}\right) \right|^{p+\varepsilon-1} sgn\left(f\left(Q_{k}\right)\right) f\left(Q_{k}\right)$$

$$= \sum_{i} \sum_{j} y\left(\begin{array}{c} t_{i} \\ t_{j}' \end{array}\right) x\left(\begin{array}{c} t_{i-1}, t_{i} \\ t_{j-1}', t_{j}' \end{array}\right)$$

$$= : \int_{D \times D'} y \, dx.$$
(3.1)

⁵One has $\left|\sum_{i=1}^{m} a_i\right|^p \le \left|\sum_{i=1}^{m} \left|a_i\right|\right|^p \le m^{p-1} \left(\sum_{i=1}^{m} \left|a_i\right|^p\right)$ and this is sharp as seen by taking $a_i \equiv 1$.

Indeed, we may take (as in the proof of part (i)) sufficiently fine dissections $D = (t_i), D' = (t'_j) \in \mathcal{D}[0, T]$ such that the grid-like partition based on $D \times D'$ refines (Q_k) ; followed by setting⁶

$$x := f$$

$$y := \sum_{k} |f(Q_{k})|^{p-1+\varepsilon} sgn(f(Q_{k})) \mathbb{I}_{\hat{Q}_{k}}$$

where \hat{Q}_k is the of the form $(a, b] \times (c, d]$ whenever $Q_k = [a, b] \times [c, d]$. Lemma 1 below, applied with $p + \varepsilon$ instead of p, says

$$V_q\left(y;[0,T]^2\right) \le 4 \left|\sum_k \left|x\left(Q_k\right)\right|^{p+\varepsilon}\right|^{\frac{1}{q}}$$

where $q := 1/(1 - 1/(p + \varepsilon))$ denotes the Hölder conjugate of $p + \varepsilon$. Since

$$\frac{1}{p} + \frac{1}{q} = 1 + \left(\frac{1}{p} - \frac{1}{p+\varepsilon}\right) > 1,$$

noting also that $y(0, \cdot) = y(\cdot, 0) = 0$, we can use **Young-Towghi's maximal inequality** [4, Thm 2.1.], included for the reader's convenience as Theorem 3 in the appendix, to obtain the estimate

$$\begin{split} \sum_{k} \left| f\left(Q_{k}\right) \right|^{p+\varepsilon} &\leq c\left(p,\varepsilon\right) V_{q}\left(y;\left[0,T\right]^{2}\right) V_{p}\left(x;\left[0,T\right]^{2}\right) \\ &\leq 4c\left(p,\varepsilon\right) \left| \sum_{k} \left| x\left(Q_{k}\right) \right|^{p+\varepsilon} \right|^{\frac{1}{q}} V_{p}\left(x;\left[0,T\right]^{2}\right) \end{split}$$

Since $1 - \frac{1}{q} = \frac{1}{p+\varepsilon}$ and x = f we see that

$$\left(\sum_{k} \left| f\left(Q_{k}\right) \right|^{p+\varepsilon} \right)^{\frac{1}{p+\varepsilon}} \leq 4c\left(p,\varepsilon\right) V_{p}\left(f;\left[0,T\right]^{2}\right)$$

and conclude by taking the supremum over all partitions $(Q_k) \in \mathcal{P}([0,T]^2)$.

Lemma 1. Fix $p \ge 1$ and write p' for the Hölder conjugate i.e. 1/p'+1/p = 1. Let $(Q_j) \in \mathscr{P}([0,T]^2)$ and $y = \sum_j |x(Q_j)|^{p-1} sgn(x(Q_j)) \mathbb{I}_{\hat{Q}_j}$. Then

$$V_{p'}(y,[0,T]^2) \le |y|_{p'-var;[0,T]^2} \le 4\left(\sum_i |x(Q_i)|^p\right)^{1/p'}$$

⁶The "right-closed" form of \hat{Q}_k in the definition of y is tied to our definition of $\int_{D \times D'} y \, dx$ which imposes "right-endpoint-evaluation" of y. Recall also that Q_k is *really* a point in $((a, b), (c, d)) \in \Delta_T \times \Delta_T$; viewing it as closed rectangle is pure convention.

Proof. Only the second inequality requires a proof. By definition, (Q_j) forms a partition of $[0, T]^2$ into essentially disjoint rectangles and we note that y(., 0) = y(0, .) = 0. Consider now another partition $(R_i) \in \mathscr{P}([0, T]^2)$. The rectangular increments of y over R_i spells out as "+ - + sum" of y evaluated at the corner points of R_i . Recall that on each set \hat{Q}_j the function y takes the consant value

$$c_j := \left| x\left(Q_j\right) \right|^{p-1} sgn\left(x\left(Q_j\right)\right).$$

Since the corner points of R_i are elements of $Q_{j_1} \cup Q_{j_2} \cup Q_{j_3} \cup Q_{j_4}$ for suitable (not necessarily distinct) indices j_1, \ldots, j_4 we clearly have the (crude) estimate

$$|y(R_i)| \le \sum_{j \in \{j_1, j_2, j_3, j_4\}} |c_j|$$
 (3.2)

and, trivially, any $j \notin \{j_1, j_2, j_3, j_4\}$ is not required in estimating $|y(R_i)|$. Let us distinguish a few cases where we can do better than in 3.2.

Case 1: There exists *j* such that all four corner points of R_i are elements of Q_j (equivalently: $\exists j : R_i \subset \hat{Q}_i$). In this case

$$y(R_i) = c_j - c_j - c_j + c_j = 0.$$

In particular, such an index *j* is not required to estimate $|y(R_i)|$.

Case 2: There exists *j* such that precisely two corner points⁷ of R_i are elements of Q_j . It follows that the corner points of R_i are elements of $Q_{j_1} \cup Q_{j_2} \cup Q_j$ for suitable (not necessarily distinct) indices j_1, j_2 . Note however that $j \notin \{j_1, j_2\}$. In this case

$$y(R_i) = c_{j_1} - c_{j_2} - c_j + c_j = c_{j_1} - c_{j_2}.$$

In general, this quantity is non-zero (although it is zero when $j_1 = j_2$, which is tantamount to say that $R_i \subset Q_{j_1} \cup Q_j$). Even so, we note that

$$\left| y\left(R_{i}\right) \right| \leq \left| c_{j_{1}} \right| + \left| c_{j_{2}} \right|$$

and again the index *j* is not required in order to estimate $|y(R_i)|$.

Case 3: There exists *j* such that precisely one corner point of R_i is an element of Q_j . In this case, for suitable (not necessarily distinct) indices j_1, j_2, j_3 with $j \notin \{j_1, j_2, j_3\}$

$$|y(R_i)| = |c_{j_1} - c_{j_2} - c_{j_3} + c_j| \le |c_{j_1} - c_{j_2} - c_{j_3}| + |c_j|.$$

In this case, the index *j* is required to estimate $|y(R_i)|$. (There is still the possibily for cancellation between the other terms. If $j_2 = j_3$ for instance, then $|y(R_i)| \le |c_{j_1}| + |c_j|$ and indices j_2, j_3 are not required; this corresponds precisely to case 2 applied to Q_{j_2} . Another possibility is that $\{j_1, j_2, j_3\}$ are all distinct in which case $|y(R_i)| \le |c_{j_1}| + |c_{j_2}| + |c_{j_3}| + |c_j|$ is the best estimate and all four indices j_1, j_2, j_3, j are needed in the estimate.

The moral of this case-by-case consideration is that only those $j \in \phi(i)$ where

 $\phi(i) := \{j: \text{ precisely one corner point of } R_i \text{ is an element of } Q_j\}$

⁷The case that three corner points of R_i are elements of Q_j already implies (rectangles!) that all four corner points of R_i are elements of Q_j . This is covered by Case 1.

are required in estimating $|y(R_i)|$; more precisely,

$$\left| y\left(R_{i} \right) \right| \leq \sum_{j \in \phi(i)} \left| c_{j} \right|.$$

Since rectangles (here: R_i) have four corner points it is clear that $\#\phi(i) \le 4$ where # denotes the cardinality of a set. Hence

$$|y(R_i)|^{p'} \le 4^{p'-1} \sum_{j \in \phi(i)} |c_j|^{p'} \equiv 4^{p'-1} \sum_j \phi_{i,j} |c_j|^{p'}$$

where we introdudced the matrix $\phi_{i,j}$ with value 1 if $j \in \phi(i)$ and zero else. This allows us to write

$$\sum_{i} |y(R_{i})|^{p'} \leq 4^{p'-1} \sum_{i} \sum_{j} \phi_{i,j} |c_{j}|^{p'}$$
$$= 4^{p'-1} \sum_{j} |c_{j}|^{p'} \sum_{i} \phi_{i,j}.$$

Consider now, for fixed j, the number of rectangles R_i which have precisely one corner point inside Q_j . Obviously, there can be a most 4 rectangles with this property. Hence

$$\sum_{i} \phi_{i,j} = \# \{ i : j \in \phi(i) \} \le 4$$

It follows that

$$\sum_{i} |y(R_{i})|^{p'} \leq 4^{p'} \sum_{j} |c_{j}|^{p'} = 4^{p'} \sum_{j} |x(Q_{j})|^{(p-1)p'} = 4^{p'} \sum_{j} |x(Q_{j})|^{p},$$

where we used that (p-1) p' = p. Since (R_i) was an arbitrary partition of $[0, T]^2$ we obtain

$$|y|_{p'-\operatorname{var};[0,T]^2}^{p'} \le 4^{p'} \sum_i |x(Q_i)|^p$$
,

as desired. The proof is finished.

4 Proof of (iii)

The claim is super-additivity of

$$R \mapsto \sup_{\Pi \in \mathscr{P}(R)} \sum_{A \in \Pi} \left| f(A) \right|^p.$$

Assume $\{R_i : 1 \le i \le n\}$ constitutes a partition of R. Assume also that Π_i is a partition of R_i for every $1 \le i \le n$. Clearly, $\Pi := \bigcup_{i=1}^n \Pi_i$ is a partition of R and hence

$$\sum_{i=1}^{n} \sum_{A \in \Pi_{i}} \left| f(A) \right|^{p} = \sum_{A \in \Pi} \left| f(A) \right|^{p} \le \omega(R)$$

Now taking the supremum over each of the Π_i gives the desired result.

5 Proof of (iv)

The assumption is that $f : [0, T]^2 \to \mathbb{R}$ is continuous and of finite controlled *p*-variation. From (iii),

$$\omega(R) := \left| f \right|_{p-\operatorname{var};R}^{p}$$

is super-additive as function of *R*. It is also clear that ω is zero on degenerate rectangles. It remains to be seen that $\omega : \Delta_T \times \Delta_T \rightarrow [0, \infty)$ is continuous.

Lemma 2. Consider the two (adjacent) rectangles $[a, b] \times [s, t]$ and $[a, b] \times [t, u]$ in $[0, T]^2$. Then,

$$\omega \begin{pmatrix} a, b \\ s, u \end{pmatrix} \leq \omega \begin{pmatrix} a, b \\ s, t \end{pmatrix} + \omega \begin{pmatrix} a, b \\ t, u \end{pmatrix}$$

+ $p 2^{p-1} \omega \begin{pmatrix} a, b \\ s, u \end{pmatrix}^{1-1/p} \min \left\{ \omega \begin{pmatrix} a, b \\ t, u \end{pmatrix}, \omega \begin{pmatrix} a, b \\ s, t \end{pmatrix} \right\}^{1/p}$

Proof. From the very definition of $\omega([a, b] \times [s, u])$, it follows that for every fixed $\varepsilon > 0$, there exists a rectangular (not necessarily grid-like) partition of $[a, b] \times [s, u]$, say $\Pi \in \mathscr{P}([a, b] \times [s, u])$, such that

$$\sum_{R\in\Pi} \left| f(R) \right|^p > \omega \left(\begin{array}{c} a, b \\ s, u \end{array} \right) - \varepsilon.$$

Let us divide Π in $\Pi_l \cup \Pi_m \cup \Pi_r$ where Π_l contains all $R \in \Pi$ such that $R \subset [a, b] \times [s, t]$, Π_r contains all $R \in \Pi : R \subset [a, b] \times [t, u]$ and Π_m contains all remaining rectangles of Π (i.e. the one such that their interior intersect with the line $[a, b] \times [t, t]$. It follows that

$$\sum_{R\in\Pi_{l}}\left|f\left(R\right)\right|^{p}+\sum_{R\in\Pi_{m}}\left|f\left(R\right)\right|^{p}+\sum_{R\in\Pi_{r}}\left|f\left(R\right)\right|^{p}>\omega\left(\begin{array}{c}a,b\\s,u\end{array}\right)-\varepsilon$$

Every $R \in \Pi_m$ can be split into (essentially disjoint) rectangles $R_1 \subset [a, b] \times [s, t]$ and $R_2 \subset [a, b] \times [t, u]$. Set $\Pi_m^1 = \{R_1 : R_1 \in \Pi_m\}$ and Π_m^2 similarly. Note that $\Pi_l \cup \Pi_m^1 \in \mathscr{P}([a, b] \times [s, t])$ and $\Pi_m^2 \cup \Pi_r \in \mathscr{P}([a, b] \times [t, u])$. Then, with

$$\Delta := \sum_{R \in \Pi_m} \left[\left| f(R) \right|^p - \left| f(R_1) \right|^p - \left| f(R_2) \right|^p \right]$$

we have

$$\sum_{R \in \Pi_{l} \cup \Pi_{m}^{1}} \left| f(R) \right|^{p} + \sum_{R \in \Pi_{m}^{2} \cup \Pi_{r}} \left| f(R) \right|^{p} + \Delta > \omega([a, b] \times [s, u]) - \varepsilon$$

and hence ,we have

$$\omega\left(\begin{array}{c}a,b\\s,t\end{array}\right)+\omega\left(\begin{array}{c}a,b\\t,u\end{array}\right)+\Delta>\omega\left(\begin{array}{c}a,b\\s,u\end{array}\right)-\varepsilon.$$

We now bound Δ . As $f(R) = f(R_1) + f(R_2)$,

$$\Delta = \sum_{R^{j} \in \Pi_{m}} \left| f\left(R_{1}^{j}\right) + f\left(R_{2}^{j}\right) \right|^{p} - \left| f\left(R_{1}^{j}\right) \right|^{p} - \left| f\left(R_{2}^{j}\right) \right|^{p}$$

$$\leq \sum_{R \in \Pi_{m}} \left(\left| f\left(R_{1}^{j}\right) \right| + \left| f\left(R_{2}^{j}\right) \right| \right)^{p} - \left| f\left(R_{1}^{j}\right) \right|^{p} - \left| f\left(R_{2}^{j}\right) \right|^{p}.$$

$$\leq \sum_{R \in \Pi_{m}} \left(\left| f\left(R_{1}^{j}\right) \right| + \left| f\left(R_{2}^{j}\right) \right| \right)^{p} - \left| f\left(R_{1}^{j}\right) \right|^{p}$$

If $R^{j} = [\tau_{j}, \tau_{j+1}] \times [c, d]$, define $R_{3}^{j} = [\tau_{j}, \tau_{j+1}] \times [s, u]$. Then, quite obviously, we have $\left| f\left(R_{1}^{j}\right) \right|^{p} \le \omega\left(R_{3}^{j}\right)$ and $\left| f\left(R_{2}^{j}\right) \right|^{p} \le \omega\left(R_{3}^{j}\right)$. By the mean value theorem, there exists $\theta \in [0, 1]$ such that

$$\left(\left| f\left(R_{1}^{j}\right) \right| + \left| f\left(R_{2}^{j}\right) \right| \right)^{p} - \left| f\left(R_{1}^{j}\right) \right|^{p}$$

$$= p\left(\left| f\left(R_{1}^{j}\right) \right| + \theta \left| f\left(R_{2}^{j}\right) \right| \right)^{p-1} \left| f\left(R_{2}^{j}\right) \right|$$

$$\le p2^{p-1}\omega \left(R_{3}^{j}\right)^{1-1/p} \left| f\left(R_{2}^{j}\right) \right|$$

$$\le p2^{p-1}\omega \left(\begin{array}{c} \tau_{j}, \tau_{j+1} \\ s, u \end{array} \right)^{1-1/p} \omega \left(\begin{array}{c} \tau_{j}, \tau_{j+1} \\ t, u \end{array} \right)^{1/p}$$

Hence, summing over *j*, and using Hölder inequality

$$\Delta \leq p2^{p-1} \sum_{j} \omega \begin{pmatrix} \tau_{j}, \tau_{j+1} \\ s, u \end{pmatrix}^{p-1} \omega \begin{pmatrix} \tau_{j}, \tau_{j+1} \\ t, u \end{pmatrix}$$
$$\leq p2^{p-1} \left(\sum_{j} \omega \begin{pmatrix} \tau_{j}, \tau_{j+1} \\ s, u \end{pmatrix} \right)^{1-1/p} \left(\sum_{j} \omega \begin{pmatrix} \tau_{j}, \tau_{j+1} \\ t, u \end{pmatrix} \right)^{1/p}$$
$$\leq p2^{p-1} \omega \begin{pmatrix} a, b \\ s, u \end{pmatrix}^{1-1/p} \omega \begin{pmatrix} a, b \\ t, u \end{pmatrix}^{1/p}$$

Interchanging the roles of R_1 and R_2 , we also obtain that

$$\Delta \leq p 2^{p-1} \omega \left(\begin{array}{c} a, b\\ s, u \end{array}\right)^{1-1/p} \omega \left(\begin{array}{c} a, b\\ t, u \end{array}\right)^{1/p},$$

which concludes the proof.

<u>Continuity</u>: ω is a map from $\Delta_T \times \Delta_T \to [0, \infty)$; the identification of points $((a_1, a_2), (a_3, a_4)) \in \Delta_T \times \Delta_T$ with rectangles in $[0, T]^2$ of the form $A = \begin{pmatrix} a_1, a_2 \\ a_3, a_4 \end{pmatrix} = [a_1, a_2] \times [a_3, a_4]$ is pure

convention. If *A* is non-degenerate (i.e. $a_1 < a_2, a_3 < a_4$) and $|h| = \max_{i=1}^4 |h_i|$ sufficiently small then

$$A^{h} := \left(\begin{array}{c} (a_{1} + h_{1}) \lor 0, (a_{2} + h_{2}) \land T \\ (a_{3} + h_{3}) \lor 0, (a_{4} + h_{4}) \land T \end{array} \right)$$

is again a non-degenerate rectangle in $[0, T]^2$. We can then set for r > 0, sufficiently small,

$$A^{\circ;r} := A^{(r,-r,r,-r)}, \ \bar{A}^r := A^{(-r,r,-r,r)}$$

and note that, whenever |h| is small enough to have $A^{\circ;|h|}$ well-defined,

$$A^{\circ;|h|} \subset A \subset \bar{A}^{|h|}, \tag{5.1}$$

$$A^{\circ;|h|} \subset A^h \subset \bar{A}^{|h|}. \tag{5.2}$$

The above definition of A^h (and $A^{\circ;r}$, \bar{A}^r) is easily extended to degenerate A, such that the inclusions (5.1),(5.2) remain valid: For instance, in the case $a_1 = a_2$ we would replace the first line in the definition of A^h by

$$\begin{array}{c} (a_1 + h_1) \lor 0, (a_2 + h_2) \land T \text{ if } h_1 \leq 0 \leq h_2 \\ (a_1 + h_1) \lor 0, a_2 \text{ if } h_1, h_2 \leq 0 \\ a_1, (a_2 + h_2) \land T \text{ if } h_1, h_2 \geq 0 \\ a_1, a_2 \text{ if } h_1 \geq 0 \geq h_2 \end{array}$$

and similarly in the case $a_3 = a_4$. We will prove that, for any rectangle $A \subset [0, T]^2$,

$$\omega(A^h) \to \omega(A) \text{ as } |h| \downarrow 0.$$

This end we can and will consider |h| is small enough to have $A^{\circ;|h|}$ (and thus $A^h, \overline{A}^{|h|}$) well-defined. By monotonicity of ω , it follows that

$$\omega\left(A^{\circ;|h|}\right) \leq \omega\left(A^{h}\right) \leq \omega\left(\bar{A}^{|h|}\right)$$

and the limits,

$$\omega^{\circ}(A) := \lim_{r \downarrow 0} \omega(A^{\circ;r}) \le \omega(A),$$

$$\bar{\omega}(A) := \lim_{r \downarrow 0} \omega(\bar{A}^{r}) \ge \omega(A),$$
(5.3)

exist since $\omega(A^{\circ;r})$ [resp. $\omega(\bar{A}^r)$] are bounded from above [resp. below] and increasing [resp. decreasing] as $r \downarrow 0$. It follows that

$$\omega^{\circ}(A) \leq \lim_{|h| \downarrow 0} \omega\left(A^{h}\right) \leq \overline{\lim_{|h| \downarrow 0}} \omega\left(A^{h}\right) \leq \bar{\omega}(A).$$

The goal is now to show that $\omega^{\circ}(A) = \omega(A)$ ("inner continuity") and $\bar{\omega}(A) = \omega(A)$ ("outer continuity") since this implies that $\underline{\lim}\omega(A^h) = \overline{\lim}\omega(A^h) = \omega(A)$, which is what we want. Inner continuity: We first show that ω° is super-additive in the sense of definition 2. To this end, consider $\{R_i\} \in \mathscr{P}(R)$, some rectangle $R \subset [0, T]^2$. For r small enough, the rectangles

$$\left\{R_i^{0,r}\right\}$$

are well-defined and essentially disjoint. They can be completed to a partition of $R^{0,r}$ and hence, by super-additivity of ω ,

$$\sum_{i} \omega\left(R_{i}^{0,r}\right) \leq \omega\left(R^{0,r}\right);$$

sending $r \downarrow 0$ yields the desired super-addivity of ω° ;

$$\sum_{i}\omega^{\circ}(R_{i})\leq\omega^{\circ}(R).$$

On the other hand, continuity of f on $[0, T]^2$ implies

$$\begin{aligned} \left| f(A) \right|^p &\leq \left| f(A^{\circ,r}) \right|^p + o(1) \\ &\leq \omega(A^{\circ,r}) + o(1) \text{ as } r \downarrow 0 \end{aligned}$$

and hence $|f(A)|^p \le \omega^{\circ}(A)$, for any rectangle $A \subset [0, T]^2$. Using super-additivity of ω° immediately gives

$$\omega(R) \stackrel{\text{by def.}}{=} \sup_{\Pi \in \mathscr{P}(R)} \sum_{A \in \Pi} |f(A)|^p \le \omega^{\circ}(R);$$

together with (5.3) we thus have $\omega(R) = \omega^{\circ}(R)$. Since *R* was an arbitrary rectangle in $[0, T]^2$ inner continuity is proved.

Outer continuity: We assume $A \subset (0, T)^2$ (i.e. $0 < a_1 \le a_2 < T, 0 < a_3 \le a_4 < T$) and take r > 0 small enough so that

$$\bar{A}^r = \left(\begin{array}{c} a_1 - r, a_2 + r \\ a_3 - r, a_4 + r \end{array}\right);$$

the general case $A \subset [0, T]^2$ is handled by a (trivial) adaption of the argument for the remaining cases (i.e. $a_1 = 0$ or $a_2 = T$ or $a_3 = 0$ or $a_4 = T$). We first note that

$$\begin{split} \omega\left(\bar{A}^{r}\right) - \omega\left(A\right) &= \omega\left(\begin{array}{c}a_{1} - r, a_{2} + r\\a_{3} - r, a_{4} + r\end{array}\right) - \omega\left(\begin{array}{c}a_{1}, a_{2}\\a_{3}, a_{4}\end{array}\right) \\ &\leq \left|\omega\left(\begin{array}{c}a_{1} - r, a_{2} + r\\a_{3} - r, a_{4} + r\end{array}\right) - \omega\left(\begin{array}{c}a_{1} - r, a_{2}\\a_{3} - r, a_{4} + r\end{array}\right)\right| \\ &+ \left|\omega\left(\begin{array}{c}a_{1} - r, a_{2}\\a_{3} - r, a_{4} + r\end{array}\right) - \omega\left(\begin{array}{c}a_{1}, a_{2}\\a_{3} - r, a_{4} + r\end{array}\right)\right| \\ &+ \left|\omega\left(\begin{array}{c}a_{1}, a_{2}\\a_{3} - r, a_{4} + r\end{array}\right) - \omega\left(\begin{array}{c}a_{1}, a_{2}\\a_{3}, a_{4} + r\end{array}\right)\right| \\ &+ \left|\omega\left(\begin{array}{c}a_{1}, a_{2}\\a_{3}, a_{4} + r\end{array}\right) - \omega\left(\begin{array}{c}a_{1}, a_{2}\\a_{3}, a_{4} + r\end{array}\right)\right| \end{split}$$

Now we use lemma 2; with

$$\Delta := \left| \omega \left(\begin{array}{c} a_1 - r, a_2 + r \\ a_3 - r, a_4 + r \end{array} \right) - \omega \left(\begin{array}{c} a_1 - r, a_2 \\ a_3 - r, a_4 + r \end{array} \right) \right|$$

we have

$$\Delta \leq \omega \begin{pmatrix} a_{2}, a_{2} + r \\ a_{3} - r, a_{4} + r \end{pmatrix} + c \omega ([0, T]^{2})^{1 - 1/p} \omega \begin{pmatrix} a_{2}, a_{2} + r \\ a_{3} - r, a_{4} + r \end{pmatrix}^{1/p}$$

$$\leq \omega \begin{pmatrix} a_{2}, a_{2} + r \\ 0, T \end{pmatrix} + c \omega ([0, T]^{2})^{1 - 1/p} \omega \begin{pmatrix} a_{2}, a_{2} + r \\ 0, T \end{pmatrix}^{1/p},$$

and similar inequalities for the other three terms in our upper estimate on $\omega(\bar{A}^r) - \omega(A)$ above. So it only remains to prove that for $a \in (0, T)$

$$\omega \left(\begin{array}{c} a, a+r\\ 0, T\end{array}\right), \ \omega \left(\begin{array}{c} a-r, a\\ 0, T\end{array}\right), \ \omega \left(\begin{array}{c} 0, T\\ a, a+r\end{array}\right), \ \text{and} \ \omega \left(\begin{array}{c} 0, T\\ a-r, a\end{array}\right)$$

converge to 0 when r tends to 0.But this is easy; using super-addivity of ω and inner-continuity we see that

$$\omega \left(\begin{array}{c} a, a+r\\ 0, T \end{array}\right) \leq \omega \left(\begin{array}{c} a, T\\ 0, T \end{array}\right) - \omega \left(\begin{array}{c} a+r, T\\ 0, T \end{array}\right)$$
$$\rightarrow 0 \text{ as } r \downarrow 0.$$

Other expressions are handled similarly and our proof of outer continuity is finished.

6 Appendix

6.1 Young and Young-Towghi discrete inequalities

6.1.1 One dimensional case.

Consider a dissection $D = (0 = t_0, ..., t_n = T) \in \mathcal{D}([0, T])$. We define the "discrete integral" between $x, y : [0, T] \to \mathbb{R}$ as

$$I^{D} = \int_{D} y dx = \sum_{i=1}^{n} y_{t_{i}} x_{t_{i-1}, t_{i}}.$$

Lemma 3. Let $p, q \ge 1$, assume that $\theta = 1/p + 1/q > 1$. Assume $x, y : [0, T] \rightarrow \mathbb{R}$ are finite *p*- resp. *q*-variation. Then there exists $t_{i_0} \in D \setminus \{0, T\}$ (equivalently: $i_0 \in \{1, ..., n-1\}$) such that

$$\left| \int_{D} y dx - \int_{D \setminus \left\{ t_{i_0} \right\}} y dx \right| \leq \frac{1}{(n-1)^{\theta}} |x|_{p-var;[0,T]} \left| y \right|_{q-var;[0,T]}$$

Iterated removal of points in the dissection, using the above lemma, leads immediately to Young's maximal inequality which is the heart of the Young's integral construction.

Theorem 2 (Young's Maximal Inequality). Let $p,q \ge 1$, assume that $\theta = 1/p + 1/q > 1$, and consider two paths x, y from [0, T] into \mathbb{R} of finite *p*-variation and *q*-variation, with $y_0 = 0$. Then

$$\left| \int_{D} y dx \right| \leq (1 + \zeta(\theta)) |x|_{p \text{-var}; [0,T]} |y|_{q \text{-var}; [0,T]}$$

and this estimate is uniform over all $D \in \mathcal{D}([0,T])$.

.

Proof. Iterative removal of " i_0 " gives, thanks to lemma 3,

$$\left| \int_{D} y dx - \int_{\{0,T\}} y dx \right| \leq \sum_{n \geq 2} \frac{1}{(n-1)^{\theta}} |x|_{p-\operatorname{var},[0,T]} |y|_{q-\operatorname{var},[0,T]}$$
$$\leq \zeta(\theta) |x|_{p-\operatorname{var},[0,T]} |y|_{q-\operatorname{var},[0,T]}$$

Finally, $\int_{\{0,T\}} y dx = y_T x_{0,T} = y_{0,T} x_{0,T}$ since $y_{0,T} = y_T - y_0$ and $y_0 = 0$ and hence

$$\left| \int_{\{0,T\}} y \, dx \right| = \left| y_{0,T} x_{0,T} \right| \le |x|_{p \text{-var},[0,T]} \left| y \right|_{q \text{-var},[0,T]}$$

and we conclude with the triangle inequality.

Proof. (Lemma 3) Observe that, for any $t_i \in D \setminus \{0, T\}$ with $1 \le i \le n - 1$

$$I^{D} - I^{D \setminus \{t_i\}} = y_{t_i, t_{i+1}} x_{t_{i-1}, t_i}$$

We pick t_{i_0} to make this difference as small as possible:

$$\left|I^{D} - I^{D \setminus \left\{t_{i_{0}}\right\}}\right| \leq \left|I^{D} - I^{D \setminus \left\{t_{i}\right\}}\right| \text{ for all } i \in \left\{1, \dots, n-1\right\}$$

As an elementary consequence, we have

$$\left| I^{D} - I^{D \setminus \left\{ t_{i_{0}} \right\}} \right|^{\frac{1}{\theta}} \leq \frac{1}{n-1} \sum_{i=1}^{n-1} \left| I^{D} - I^{D \setminus \left\{ t_{i} \right\}} \right|^{1/\theta}.$$

The plan is to get an estimate on $\sum_{i=1}^{n-1} |I^D - I^{D \setminus \{t_i\}}|^{1/\theta}$ independent of *n*. In fact, we shall see that

$$\sum_{i=1}^{n-1} \left| I^{D} - I^{D \setminus \{t_i\}} \right|^{1/\theta} \le |x|_{p\text{-var},[0,T]}^{1/\theta} \left| y \right|_{q\text{-var},[0,T]}^{1/\theta}$$
(6.1)

and the desired estimate

$$\left|I^{D} - I^{D \setminus \left\{t_{i_{0}}\right\}}\right| \leq \left(\frac{1}{n-1}\right)^{\theta} |x|_{p-\operatorname{var},[0,T]} |y|_{q-\operatorname{var},[0,T]}$$

~

follows. It remains to establish (6.1); thanks to Hölder's inequality, using $1/(q\theta) + 1/(p\theta) = 1$,

$$\begin{split} \sum_{i=1}^{n-1} \left| I^{D} - I^{D \setminus \{t_{i}\}} \right|^{1/\theta} &= \left(\sum_{i=1}^{n-1} \left| y_{t_{i},t_{i+1}} \right|^{1/\theta} \left| x_{t_{i-1},t_{i}} \right|^{1/\theta} \right)^{\theta} \\ &\leq \left(\sum_{i=1}^{m-1} \left| y_{t_{i},t_{i+1}} \right|^{q} \right)^{\frac{1}{q\theta}} \left(\sum_{i=1}^{n-1} \left| x_{t_{i-1},t_{i}} \right|^{p} \right)^{\frac{1}{p\theta}} \\ &\leq \left| x \right|_{p\text{-var},[0,T]}^{1/\theta} \left| y \right|_{q\text{-var},[0,T]}^{1/\theta} . \end{split}$$

and we are done.

6.1.2 Young-Towghi maximal inequality (2D)

We now consider the two-dimensional case. To this end, fix two dissections $D = (0 = t_0, ..., t_n = T)$ and $D' = (0 = t'_0, ..., t'_m = T)$, and define the discrete integral between $x, y : [0, T]^2 \to \mathbb{R}$ as

$$I^{D,D'} = \int_{D \times D'} y \, dx := \sum_{i} \sum_{j} y \begin{pmatrix} t_i \\ t'_j \end{pmatrix} x \begin{pmatrix} t_{i-1}, t_i \\ t'_{j-1}, t'_j \end{pmatrix}.$$
(6.2)

Lemma 4. Let $p,q \ge 1$, assume that $\theta = 1/p + 1/q > 1$. Assume $x, y : [0,T]^2 \to \mathbb{R}$ are finite *p*-resp. *q*-variation. Then there exists $t_{i_0} \in D \setminus \{0, T\}$ (equivalently: $i_0 \in \{1, ..., n-1\}$ such that for every $\alpha \in (1, \theta)$,

$$\left| \int_{D \times D'} dx - \int_{D \setminus \left\{ t_{i_0} \right\} \times D'} y dx \right| \leq \left(\frac{1}{n-1} \right)^{\alpha} \left(1 + \zeta \left(\frac{\theta}{\alpha} \right) \right)^{\alpha} V_p \left(x; [0,T]^2 \right) V_q \left(y; [0,T]^2 \right)$$

Iterative removal of " i_0 " leads to Young-Towghi's maximal inequality.

Theorem 3 (Young-Towghi Maximal Inequality). Let $p, q \ge 1$, assume that $\theta = 1/p + 1/q > 1$, and consider $x, y : [0, T]^2 \to \mathbb{R}$ of finite p- resp. q-variation and $y(0, \cdot) = y(\cdot, 0) = 0$. Then, for every $\alpha \in (1, \theta)$,

$$\left| \int_{D \times D'} y dx \right| \leq \left[\left(1 + \zeta \left(\frac{\theta}{\alpha} \right) \right)^{\alpha} \zeta(\alpha) + (1 + \zeta(\theta)) \right] V_p\left(x; [0, T]^2\right) V_q\left(y; [0, T]^2\right) \right]$$

and this estimate is uniform over all $D, D' \in \mathcal{D}([0,T])$

Proof. Iterative removal of " i_0 " gives

$$\begin{aligned} \left| \int_{D \times D'} y dx - \int_{\{0,T\} \times D'} y dx \right| &\leq \sum_{n \geq 2} \left(\frac{1}{n-1} \right)^{\alpha} \left(1 + \zeta \left(\frac{\theta}{\alpha} \right) \right)^{\alpha} V_p \left(x; [0,T]^2 \right) V_q \left(y; [0,T]^2 \right) \\ &\leq \zeta \left(\alpha \right) \left(1 + \zeta \left(\frac{\theta}{\alpha} \right) \right)^{\alpha} V_p \left(x; [0,T]^2 \right) V_q \left(y; [0,T]^2 \right). \end{aligned}$$

It only remains to bound

$$\int_{\{0,T\}\times D'} y dx = \sum_{j} y \begin{pmatrix} T \\ t'_{j} \end{pmatrix} x \begin{pmatrix} 0,T \\ t'_{j-1},t'_{j} \end{pmatrix} = \int_{D'} y \begin{pmatrix} 0,T \\ \cdot \end{pmatrix} dx \begin{pmatrix} 0,T \\ \cdot \end{pmatrix}$$

where we used $y \begin{pmatrix} 0 \\ \cdot \end{pmatrix} = 0$ in the last equality. From Young's 1D maximal inequality, we have

$$\begin{aligned} \left| \int_{\{0,T\}\times D'} y dx \right| &\leq (1+\zeta(\theta)) \left| y \begin{pmatrix} 0,T\\0,. \end{pmatrix} \right|_{q\text{-var},[0,T]} \left| x \begin{pmatrix} 0,T\\0,. \end{pmatrix} \right|_{p\text{-var},[0,T]} \\ &\leq (1+\zeta(\theta)) V_p \left(x; [0,T]^2 \right) V_q \left(y; [0,T]^2 \right) \end{aligned}$$

The triangle inequality allows us to conclude.

Proof. (Lemma 4) Observe that, for any $t_i \in D \setminus \{0, T\}$

$$I^{D,D'} - I^{D \setminus \{t_i\},D'} = \int_{D'} y \begin{pmatrix} t_i, t_{i+1} \\ \cdot \end{pmatrix} x \begin{pmatrix} t_{i-1}, t_i \\ \cdot \end{pmatrix}$$
$$= \int_{D'} y \begin{pmatrix} t_i, t_{i+1} \\ 0, \cdot \end{pmatrix} x \begin{pmatrix} t_{i-1}, t_i \\ \cdot \end{pmatrix}$$

where we used $y \begin{pmatrix} \cdot \\ 0 \end{pmatrix} = 0$. We pick t_{i_0} to make this difference as small as possible:

$$|I^{D,D'} - I^{D \setminus \{t_{i_0}\}, D'}| \le |I^{D,D'} - I^{D \setminus \{t_i\}, D'}| \text{ for all } i \in \{1, \dots, n-1\}$$

As an elementary consequence,

$$\left|I^{D,D'} - I^{D\setminus\{t_{i_0}\},D'}\right|^{1/\alpha} \le \frac{1}{n-1} \sum_{i=1}^{n-1} \left|I^{D,D'} - I^{D\setminus\{t_i\},D'}\right|^{1/\alpha}.$$
(6.3)

The plan is to get an estimate on $\sum_{i=1}^{n-1} |I^{D,D'} - I^{D \setminus \{t_i\},D'}|^{1/\alpha}$ independent of *n* and uniformly in $D' \in \mathcal{D}([0,T])$; in fact, we shall see that

$$\Delta^{D,D'} := \sum_{i=1}^{n-1} \left| I^{D,D'} - I^{D \setminus \{t_i\},D'} \right|^{1/\alpha} \le c V_p \left(x; [0,T]^2 \right)^{1/\alpha} V_q \left(y; [0,T]^2 \right)^{1/\alpha}$$
(6.4)

with $c = 1 + \zeta \left(\frac{\theta}{\alpha}\right)$ and the desired estimate

$$\left|I^{D}-I^{D\setminus\left\{t_{i_{0}}\right\}}\right| \leq \left(\frac{c}{n-1}\right)^{\alpha} V_{p}\left(x;\left[0,T\right]^{2}\right) V_{q}\left(y;\left[0,T\right]^{2}\right)$$

follows. It remains to establish (6.4); to this end we consider the removal of $t'_j \in D' \setminus \{0, T\}$ from D' and note that

$$\left(I^{D,D'} - I^{D \setminus \{t_i\},D'} \right) - \left(I^{D,D' \setminus \{t_j'\}} - I^{D \setminus \{t_i\},D' \setminus \{t_j'\}} \right) = y \left(\begin{array}{c} t_i, t_{i+1} \\ t_j', t_{j+1}' \end{array} \right) x \left(\begin{array}{c} t_{i-1}, t_i \\ t_{j-1}', t_j' \end{array} \right)$$

Using the elementary inequality $|a|^{1/\alpha} - |b|^{1/\alpha} \le |a - b|^{1/\alpha}$ valid for $a, b \in \mathbb{R}$ and $\alpha \ge 1$ we have

$$\left| I^{D,D'} - I^{D \setminus \{t_i\},D'} \right|^{1/\alpha} - \left| I^{D,D' \setminus \{t'_j\}} - I^{D \setminus \{t_i\},D' \setminus \{t'_j\}} \right|^{1/\alpha}$$

$$\leq \left| \left(I^{D,D'} - I^{D \setminus \{t_i\},D'} \right) - \left(I^{D,D' \setminus \{t'_j\}} - I^{D \setminus \{t_i\},D' \setminus \{t'_j\}} \right) \right|^{1/\alpha}$$

Hence, summing over *i*, we get

$$\begin{aligned} & \Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_{j} \right\}} \\ &\leq \sum_{i=1}^{n-1} \left| \left(I^{D,D'} - I^{D \setminus \left\{ t_{i} \right\},D'} \right) - \left(I^{D,D' \setminus \left\{ t'_{j} \right\}} - I^{D \setminus \left\{ t_{i} \right\},D' \setminus \left\{ t'_{j} \right\}} \right) \right|^{1/\alpha} \\ &= \sum_{i=1}^{n-1} \left| y \left(\begin{array}{c} t_{i}, t_{i+1} \\ t'_{j}, t'_{j+1} \end{array} \right) \right|^{1/\alpha} \left| x \left(\begin{array}{c} t_{i-1}, t_{i} \\ t'_{j-1}, t'_{j} \end{array} \right) \right|^{1/\alpha} \\ &\leq \left(\sum_{i=1}^{n-1} \left| y \left(\begin{array}{c} t_{i}, t_{i+1} \\ t'_{j}, t'_{j+1} \end{array} \right) \right|^{\theta q/\alpha} \right)^{\frac{1}{\theta q}} \left(\sum_{i=1}^{n-1} \left| x \left(\begin{array}{c} t_{i-1}, t_{i} \\ t'_{j-1}, t'_{j} \end{array} \right) \right|^{\theta p/\alpha} \right)^{\frac{1}{\theta p}} \\ &\leq \left(\sum_{i=1}^{n-1} \left| y \left(\begin{array}{c} t_{i}, t_{i+1} \\ t'_{j}, t'_{j+1} \end{array} \right) \right|^{q} \right)^{\frac{1}{\alpha q}} \left(\sum_{i=1}^{n-1} \left| x \left(\begin{array}{c} t_{i-1}, t_{i} \\ t'_{j-1}, t'_{j} \end{array} \right) \right|^{p} \right)^{\frac{1}{\alpha p}};
\end{aligned}$$

in the last step we used that the $\ell^{\theta p/\alpha}$ norm on \mathbb{R}^{n-1} is dominated by the ℓ^p norm (because $\theta p/\alpha > p$). It follows that

$$\Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_j \right\}} \le Y_j^{1/\alpha} X_j^{1/\alpha}$$
(6.6)

where

$$Y_j := \left(\sum_{i=1}^{n-1} \left| y \begin{pmatrix} t_i, t_{i+1} \\ t'_j, t'_{j+1} \end{pmatrix} \right|^q \right)^{\frac{1}{q}}, X_j := \left(\sum_{i=1}^{n-1} \left| x \begin{pmatrix} t_{i-1}, t_i \\ t'_{j-1}, t'_j \end{pmatrix} \right|^p \right)^{\frac{1}{p}}$$

We pick $t'_{j_0} \in D' \setminus \{0, T\}$ (i.e. $1 \le j_0 \le m - 1$) to make this difference as small as possible,

$$\Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_{j_0} \right\}} \leq \Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_j \right\}} \text{ for all } j \in \left\{ 1, \dots, m-1 \right\};$$

we shall see below that

$$\left| \Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_{j_0} \right\}} \right| \le \left(\frac{1}{m-1} \right)^{\frac{\theta}{\alpha}} V_p \left(x; [0,T]^2 \right)^{1/\alpha} V_q \left(y; [0,T]^2 \right)^{1/\alpha}; \tag{6.7}$$

iterated removal of " j_0 " yields

$$\Delta^{D,D'} \leq \Delta^{D,\{0,T\}} + \zeta \left(\frac{\theta}{\alpha}\right) V_p \left(x, [0,T]^2\right)^{1/\alpha} V_q \left(y, [0,T]^2\right)^{1/\alpha};$$

as in (6.5) we estimate

$$\Delta^{D,\{0,T\}} = \sum_{i=1}^{n-1} \left| y \begin{pmatrix} t_i, t_{i+1} \\ 0, T \end{pmatrix} x \begin{pmatrix} t_{i-1}, t_i \\ 0, T \end{pmatrix} \right|^{1/\alpha} \le \dots \le V_p \left(x, [0,T]^2 \right)^{1/\alpha} V_q \left(y, [0,T]^2 \right)^{1/\alpha}$$

and (6.4) follows, as desired. The only thing left is to establish (6.7). Using (6.6) we can write

$$\begin{split} \Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_{j_0} \right\}} &\leq \left(\prod_{j=1}^{m-1} \Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_j \right\}} \right)^{\frac{1}{m-1}} \\ &\leq \left(\prod_{j=1}^{m-1} X_j^{1/.\alpha} Y_j^{1/\alpha} \right)^{\frac{1}{m-1}} \\ &= \left(\prod_{j=1}^{m-1} X_j^p \right)^{\frac{1}{m-1} \frac{1}{\alpha p}} \left(\prod_{j=1}^{m-1} Y_j^q \right)^{\frac{1}{m-1} \frac{1}{\alpha q}} \end{split}$$

Using the geometric/arithmetic inequality, we obtain

$$\begin{split} \left(\prod_{j=1}^{m-1} X_{j}^{p}\right)^{\frac{1}{m-1}\frac{1}{ap}} &\leq \left(\frac{1}{m-1}\sum_{j=1}^{m-1} X_{j}^{p}\right)^{\frac{1}{ap}} \\ &\leq \left(\frac{1}{m-1}\right)^{\frac{1}{ap}} \left(\sum_{j=1}^{m-1}\sum_{i=1}^{n-1} \left| x \left(\begin{array}{c} t_{i-1}, t_{i} \\ t_{j-1}', t_{j}' \end{array} \right) \right|^{p} \right)^{\frac{1}{ap}} \\ &\leq \left(\frac{1}{m-1}\right)^{\frac{1}{ap}} V_{p} \left(x, [0,T]^{2} \right)^{1/a}. \end{split}$$

and, similarly,

$$\left(\prod_{j=1}^{m-1} Y_j^q\right)^{\frac{1}{m-1}\frac{1}{\alpha q}} \le \left(\frac{1}{m-1}\right)^{\frac{1}{\alpha q}} V_q \left(y, [0, T]^2\right)^{1/\alpha}.$$

Using $\frac{1}{\alpha p} + \frac{1}{\alpha q} = \frac{\theta}{\alpha}$, we thus arrive at

$$\Delta^{D,D'} - \Delta^{D,D' \setminus \left\{ t'_{j_0} \right\}} \le \left(\frac{1}{m-1} \right)^{\frac{\theta}{\alpha}} V_p \left(x, [0,T]^2 \right)^{1/\alpha} V_q \left(y, [0,T]^2 \right)^{1/\alpha}$$

which is precisely the claimed estimate (6.7).

References

- [1] Coutin, L., Qian, Z. : Stochastic analysis, rough path analysis and fractional Brownian motion, Probab. Theory Related Fields 122 (2002), 108–140 MR1883719
- [2] Friz, P., Victoir, N.: Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 2, 369–41 MR2667703

- [3] Friz, P., Victoir, N.: Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge University Press, Cambridge, 2010. (Errata available via CUP's webpages.) MR2604669
- [4] Towghi: Multidimensional extension of L.C.Young's Inequality, J. of Inequalities in Pure and Applied Mathematics, Vol 3, 2-22, 2002 MR1906391