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Abstract

We consider the product of a finite number of non-Hermitian random matrices with i.i.d. cen-
tered entries of growing size. We assume that the entries have a finite moment of order bigger
than two. We show that the empirical spectral distribution of the properly normalized product
converges, almost surely, to a non-random, rotationally invariant distribution with compact sup-
port in the complex plane. The limiting distribution is a power of the circular law.
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1 Introduction and Formulation of Results

Many important results in random matrix theory pertain to Hermitian random matrices. Two pow-
erful tools used in this area are the moment method and the Stieltjes transform. Unfortunately, these
two techniques are not suitable for dealing with non-Hermitian random matrices, [6].

1.1 The Circular Law

One of the fundamental results in the study of non-Hermitian random matrices is the circular law.
We begin by defining the empirical spectral distribution (ESD).

Definition 1. Let X be a matrix of order n and let λ1, . . . ,λn be the eigenvalues of X . Then the
empirical spectral distribution (ESD) µX of X is defined as

µX (z, z̄) =
1

n
#
�

k ≤ n : Re
�

λk
�

≤ Re(z); Im
�

λk
�

≤ Im(z)
	

.

Let ξ be a complex random variable with finite non-zero variance σ2 and let Nn be a random matrix
of order n with entires being i.i.d. copies of ξ. We say that the circular law holds for ξ if, with
probability 1, the ESD µ 1

σ
p

n Nn
of 1

σ
p

n
Nn converges (uniformly) to the uniform distribution over the

unit disk as n tends to infinity.

The circular law was conjectured in the 1950’s as a non-Hermitian counterpart to Wigner’s semi-
circle law. The circular law was first shown by Mehta in 1967 [22] when ξ is complex Gaussian.
Mehta relied upon the joint density of the eigenvalues which was discovered by Ginibre [10] two
years earlier.

Building on the work of Girko [11], Bai proved the circular law under the conditions that ξ has finite
sixth moment and that the joint distribution of the real and imaginary parts of ξ has bounded density,
[3]. In [6], the sixth moment assumption was weakened to E|ξ|2+η for any specified η > 0, but
the bounded density assumption still remained. Götze and Tikhomirov ([15]) proved the circular
law in the case of i.i.d. sub-Gaussian matrix entries. Pan and Zhou proved the circular law for any
distribution ξwith finite fourth moment [25] by building on [15] and utilizing the work of Rudelson
and Vershynin in [27]. In an important development, Götze and Tikhomirov showed in [14] that
the expected spectral distribution EµNn

converges to the uniform distribution over the unit disk as n
tends to infinity assuming that sup jkE|(Nn) jk|2φ((Nn) jk)<∞, where φ(x) = (ln(1+ |x |))19+η, η >
0. In [28], Tao and Vu proved the circular law assuming a bounded (2+η)th moment, for any fixed
η > 0. Finally, Tao and Vu have been able to remove the extra η in the moment condition. Namely,
they proved the circular law in [29] assuming only that the second moment is bounded.

1.2 Main Results

In this paper, we study the ESD of the product

X (n) = X (n)1 X (n)2 · · ·X
(n)
m

of m independent n× n non-Hermitian random matrices as n tends to infinity. Burda, Janik, and
Waclaw [8] studied the mathematical expectation of the limiting ESD, limn→∞Eµ

(n)
X , in the case
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that the entries of the matrices are Gaussian. Here we extend their results by proving the almost
sure convergence of the ESD, µ(n)X , for a class of non-Gaussian random matrices. Namely, we require

that the entries of X (n)i , i = 1, . . . , m, are i.i.d. random variables with a finite moment of order
2+η, η > 0.

Theorem 2. Fix m > 1 and let ξ be a complex random variable with variance 1 such that Re(ξ) and
Im(ξ) are independent each with mean zero and E|ξ|2+η < ∞ for some η > 0. Let X (n)1 , . . . , X (n)m be

independent random matrices of order n where the entries of X (n)j are i.i.d. copies of σ j
ξp
n

for some

collection of positive constants σ1, . . . ,σm. Then the ESD µ(n)X of X (n) = X (n)1 X (n)2 · · ·X
(n)
m converges,

with probability 1, as n→∞ to the distribution whose density is given by

ρ(z, z̄) =

¨

1
mπ
σ−

2
m |z|

2
m−2 for |z| ≤ σ,

0 for |z|> σ,
(1)

where σ = σ1 · · ·σm.

Remark 3. The almost sure convergence of µ(n)X implies the convergence of Eµ(n)X as well.

Remark 4. We refer the reader to [4] for bounds on powers of a square random matrix with i.i.d.
entries. See also [1], [2], [9], [5], [7], and [24] for some other results on the spectral properties
of products of random matrices.

2 Notation and Setup

The proof of Theorem 2 is divided into two parts and presented in Sections 3 and 4.

We note that without loss of generality, we may assume σ1 = σ2 = · · · = σm = 1. Indeed, the
spectrum for arbitrary σ1, . . . ,σm can be obtained by a trivial rescaling. Following Burda, Janik,
and Waclaw in [8], we let Y (n) be a (mn)× (mn) matrix defined as

Y (n) =



















0 X (n)1 0
0 0 X (n)2 0

... . . .

0 0 X (n)m−1
X (n)m 0



















. (2)

Section 4 will be devoted to proving that the ESD of Y (n) obeys the circular law as n tends to infinity.
This statement is presented in the following Lemma.

Lemma 5 (Y (n) obeys the circular law). The ESD µY (n) of Y (n) converges, with probability 1, to the
uniform distribution over the unit disk as n→∞.

3 Proof of Theorem 2

With Lemma 5 above, we are ready to prove Theorem 2.
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Proof of Theorems 2. Using the definition of Y (n) in (2), we can compute

�

Y (n)
�m
=













Y1 0
Y2

. . .
0 Ym













,

where Yk = X (n)k X (n)k+1 · · ·X
(n)
m X (n)1 · · ·X

(n)
k−1 for 1 ≤ k ≤ m. Notice that each Yk has the same eigenval-

ues as X (n). Let λ1, . . . ,λn denote the eigenvalues of X (n) and let η1, . . . ,ηmn denote the eigenvalues
of Y (n). Then it follows that each λk is an eigenvalue of

�

Y (n)
�m

with multiplicity m.

Let f : C→ C be a continuous, bounded function. Then we have
∫

C

f (z)dµX (n)(z, z̄) =
1

n

n
∑

k=1

f (λk) =
1

mn

mn
∑

k=1

f (ηm
k ) =

∫

C

f (zm)dµY (n)(z, z̄).

By Lemma 5,
∫

C

f (zm)dµY (n)(z, z̄)−→
1

π

∫

D

f (zm)dzdz̄ a.s.

as n → ∞ where D denotes the unit disk in the complex plane. Thus, by the change of variables
z 7→ zm and z̄ 7→ z̄m we can write

1

π

∫

D

f (zm)dzdz̄ =
m

π

∫

D

f (z)
1

m2 |z|
2
m−2 dzdz̄ =

1

mπ

∫

D

f (z) |z|
2
m−2 dzdz̄.

where the factor of m out front of the integral corresponds to the fact that the transformation maps
the complex plane m times onto itself.

Therefore, we have shown that for all continuous, bounded functions f ,
∫

C

f (z)dµX (n)(z, z̄)−→
1

mπ

∫

D

f (z) |z|
2
m−2 dzdz̄ a.s.

as n→∞ and the proof is complete.

4 Proof of Lemma 5

In order to prove that the ESD of Y (n) obeys the circular law, we follow the work of Bai in [3], Bai
and Silverstein in [6], and use the results developed by Tao and Vu in [28]. To do so, we introduce
the following notation. Let µn denoted the ESD of Y (n). That is,

µn(x , y) =
1

mn
#
�

k ≤ mn : Re(λk)≤ x; Im(λk)≤ y
	

where λ1, . . . ,λmn are the eigenvalues of Y (n).

An important idea in the proof is to analyze the Stieltjes transformation sn : C→ C of µn defined by

sn(z) =
1

mn

mn
∑

k=1

1

λk − z
=

∫

C

1

x + i y − z
dµn(x , y).
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Since sn(z) is analytic everywhere except the poles, the real part determines the eigenvalues. Let
z = s+ i t. Then we can write

Re(sn(z)) =
1

mn

mn
∑

k=1

Re(λk)− s

|λk − z|2

=−
1

2mn

mn
∑

k=1

∂

∂ s
ln |λk − z|2

=−
1

2

∂

∂ s

∫ ∞

0

ln xνn(dx , z)

where νn(·, z) is the ESD of the Hermitian matrix Hn = (Y (n)− zI)∗(Y (n)− zI). This reduces the task
to controlling the distributions νn.

The main difficulties arise from the two poles of the log function, at ∞ and 0. We will need to use
the bounds developed in [3] and [28] to control the largest singular value and the least singular
value of Y (n)− zI .

A version of the following lemma was first presented by Girko, [11]. We present a slightly refined
version by Bai and Silverstein, [6].

Lemma 6. For any uv 6= 0, we have

cn(u, v) =

∫ ∫

eiux+iv yµn(dx , dy)

=
u2+ v2

4iuπ

∫ ∫

∂

∂ s

�
∫ ∞

0

ln xνn(dx , z)

�

eius+iv tdtds, (3)

where z=s+it.

We note that the singular values of Y (n) are the union of the singular values of X (n)k for 1 ≤ k ≤ n.
Thus, under the assumptions of Theorem 2, the ESD of Y (n)

∗
Y (n) converges to the Marchenko-Pastur

Law (see [20] and [6, Theorem 3.7]). Thus by Lemma 8 it follows that, with probability 1, the
family of distributions µn is tight. To prove the circular law we will show that the right-hand side of
(3) converges to c(u, v), its counterpart generated by the circular law, for all uv 6= 0. Several steps
of the proof will follow closely the work of Bai in [3] and Bai and Silverstein in [6]. We present an
outline of the proof as follows.

1. We reduce the range of integration to a finite rectangle in Section 4.2. We will show that the
proof reduces to showing that, for every large A> 0 and small ε > 0,

∫ ∫

T

�

∂

∂ s

∫ ∞

0

ln xνn(dx , z)

�

eius+iv tdsdt

→
∫ ∫

T

�

∂

∂ s

∫ ∞

0

ln xν(dx , z)

�

eius+iv tdsdt

where T = {(s, t) : |s| ≤ A, |t| ≤ A3, |
p

s2+ t2 − 1| ≥ ε} and ν(x , z) is the limiting spectral
distribution of the sequence of matrices Hn = (Y (n)− zI)∗(Y (n)− zI).
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2. We characterize the limiting spectrum ν(·, z) of νn(·, z).

3. We establish a convergence rate of νn(·, z) to ν(·, z) uniformly in every bounded region of z.

4. Finally, we show that for a suitably defined sequence εn, with probability 1,

lim sup
n→∞

∫ ∫

T

�

�

�

�

�

∫ ∞

εn

ln x(νn(dx , z)− ν(dx , z))

�

�

�

�

�

= 0

and

lim
n→∞

∫ εn

0

ln xνn(dx , z) = 0.

4.1 Notation

In this section, we introduce some notation that we will use throughout the paper.

First, we will drop the superscript (n) from the matrices Y (n), X (n), X (n)1 , . . . , X (n)m and simply write
Y , X , X1, . . . , Xm.

We write R = Y − zI where I is the identity matrix and z = s + i t ∈ C. We will continue to let
Hn = (Y − zI)∗(Y − zI) = R∗R and have νn(x , z) denote the empirical spectral distribution of Hn for
each fixed z.

For a (mn)×(mn)matrix A, there are m2 blocks each consisting of a n×n matrix. We let Aab denote
the n×n matrix in position a, b where 1≤ a, b ≤ m. Aa,b;i, j then refers to the element (Aab)i j where
1≤ i, j ≤ n.

Finally, C will be used as some positive constant that may change from line to line.

4.2 Integral Range Reduction

To establish Lemma 5, we need to find the limiting counterpart to

gn(s, t) =
∂

∂ s

∫ ∞

0

ln xνn(dx , z).

We begin by presenting the following lemmas.

Lemma 7 (Bai-Silverstein [6]). For all uv 6= 0, we have

c(u, v) =
1

π

∫ ∫

x2+y2≤1

eiux+iv ydxdy =
u2+ v2

4iuπ

∫
�
∫

g(s, t)eius+iv tdt

�

ds,

where

g(s, t) =

¨

2s
s2+t2 , if s2+ t2 > 1

2s, otherwise
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Lemma 8 (Horn-Johnson [17]). Let λ j and η j denote the eigenvalues and singular values of an n× n
matrix A, respectively. Then for any k ≤ n,

k
∑

j=1

|λ j|2 ≤
k
∑

j=1

η2

if η j is arranged in descending order.

Lemma 9 (Bai-Silverstein [6]). For any uv 6= 0 and A> 2, we have
�

�

�

�

�

∫

|s|≥A

∫ ∞

−∞
gn(s, t)eius+iv tdtds

�

�

�

�

�

≤
4π

|v|
e−

1
2
|v|A+

2π

n|v|

mn
∑

k=1

I
�

|λk| ≥
A

2

�

and
�

�

�

�

�

∫

|s|≤A

∫

t≥A3

gn(s, t)eius+iv tdtds

�

�

�

�

�

≤
8A

A2− 1
+

4πA

n

mn
∑

k=1

I(|λk|> A)

where λ1, . . . ,λmn are the eigenvalues of Y . Furthermore, if the function gn(s, t) is replaced by g(s, t),
the two inequalities above hold without the second terms.

Now we note that under the assumptions of Theorem 2 and by Lemma 8 and the law of large
numbers we have

1

n

mn
∑

k=1

I(|λk|> A)≤
1

nA2 Tr(Y ∗Y )−→
m

A2 a.s.

Therefore, the right-hand sides of the inequalities in Lemma 9 can be made arbitrarily small by
making A large enough. The same is true when gn(s, t) is replaced by g(s, t). Our task is then
reduced to showing

∫

|s|≤A

∫

|t|≤A3

[gn(s, t)− g(s, t)]eius+iv tdsdt −→ 0.

We define the sets
T =

¦

(s, t) : |s| ≤ A, |t| ≤ A3 and ||z| − 1| ≥ ε
©

and
T1 = {(s, t) : ||z− 1|< ε} ,

where z = s+ i t.

Lemma 10 (Bai-Silverstein [6]). For all fixed A and 0< ε < 1,
∫ ∫

T1

|gn(s, t)|dsdt ≤ 32
p
ε. (4)

Furthermore, if the function gn(s, t) is replaced by g(s, t), the inequality above holds.

Since the right-hand side of (4) can be made arbitrarily small by choosing ε small, our task is
reduced to showing

∫ ∫

T

[gn(s, t)− g(s, t)]eius+iv tdsdt −→ 0 a.s. (5)
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4.3 Characterization of the Circular Law

In this section, we study the convergence of the distributions νn(x , z) to a limiting distribution
ν(x , z) as well as discuss properties of the limiting distribution ν(x , z). We begin with a standard
truncation argument which can be found, for example, in [6].

4.3.1 Truncation

Let bY and eY be the (mn)× (mn) matrices with entries

bYa,b;i, j = Ya,b;i, j I(
p

n|Ya,b;i, j| ≤ nδ)−EYa,b;i, j I(
p

n|Ya,b;i, j| ≤ nδ)

and

eYa,b;i, j =
bYa,b;i, j

q

nE
�

�
bYa,b;i, j

�

�

2

where δ > 0. We denote the ESD of bHn = (bY − zI)∗(bY − zI) by bνn(·, z) and the ESD of eHn =
(eY − zI)∗(eY − zI) by eνn(·, z).

We will let L(F1, F2) be the Levy distance between two distribution functions F1 and F2 defined by

L(F1, F2) = inf{ε : F1(x − ε)− ε≤ F2(x)≤ F1(x + ε) + ε for all x ∈R}.

We then have the following Lemma.

Lemma 11. We have that
L(νn(·, z), eνn(·, z)) = o(n−ηδ/4) a.s.

where the bound is uniform for |z| ≤ M.

Proof. By [6, Corollary A.42] we have that

L4(ν(·, z), bνn(·, z))≤
2

n2 Tr(Hn− bHn)Tr[(Y − bY )∗(Y − bY )].

By the law of large numbers it follows that, with probability 1,

1

n
TrHn =

1

n

m
∑

a=1

∑

1≤i, j≤n

|Ya,a+1;i, j|2+m|z|2 −→ m(1+ |z|2).

Similarly, 1
n
Tr( bHn)→ m(1+ |z|2) a.s.
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For any L > 0, we have

nδη

n
Tr[(Y − bY )∗(Y − bY )] =

nδη

n

m
∑

a=1

∑

1≤i, j≤n

|(Y − bY )a,a+1;i, j|2

≤
nδη

n2

m
∑

a=1

∑

1≤i, j≤n

�

�

p
nYa,a+1;i, j I(

p
n|Ya,a+1;i, j|> nδ)−E

p
nYa,a+1;i, j I(

p
n|Ya,a+1;i, j|> nδ)

�

�

2

≤ 2nδη







1

n2

m
∑

a=1

∑

1≤i, j≤n

|
p

nYa,a+1;i, j|2 I(
p

n|Ya,a+1;i, j|> nδ) +E|ξ|2 I(|ξ|> nδ)







≤
2

n2

m
∑

a=1

∑

1≤i, j≤n

|
p

nYa,a+1;i, j|2+η I(
p

n|Ya,a+1;i, j|> L) +E|ξ|2+η I(|ξ|> L)

and hence

lim sup
n→∞

nδη

n
Tr[(Y − bY )∗(Y − bY )]≤ 4mE|ξ|2+η I(|ξ|> L) a.s.

which can be made arbitrarily small by making L large. Thus we have that

L(ν(·, z), bνn(·, z)) = o(n−ηδ/4) a.s.

where the bound is uniform for |z| ≤ M .

By [6, Corollary A.42] we also have that

L4(bν(·, z), eνn(·, z))≤
2

n2 Tr( bHn+ eHn)Tr(bY ∗bY )






1−

1
Æ

E|
p

nbY1,2;1,1|2






.

A similar argument shows that 1−
Æ

E|
p

nbY1,2;1,1|2 = o(n−ηδ) and the proof is complete.

Remark 12. For the remainder of the subsection, we will assume the conditions of Theorem 2 hold.
Also, by Lemma 11 we additionally assume that |Ya,a+1;i, j| ≤ nδ.

4.3.2 Useful tools and lemmas

We begin by denoting the Stieltjes transform of νn(·, z) by

∆n(α, z) =

∫

νn(dx , z)
x −α

,

where α = x + i y with y > 0. We also note that ∆n(α, z) = 1
mn

Tr(G) where G = (Hn −αI)−1 is the
resolvent matrix. For brevity, the variable z will be suppressed when there is no confusion and we
will simply write ∆n(α).

We first present a number of lemmas that we will need to study ∆n(α). We remind the reader that
R= Y − zI and α= x + i y .
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Lemma 13. If y > 0 and x ∈ K for some compact set K, then we have the following bounds,

‖Y ‖2 ≤ max
1≤k≤m

‖Xk‖2 ≤
m
∑

k=1

‖Xk‖2, (6)

‖G‖ ≤
1

y
, (7)

‖RG‖ ≤ C

r

1

y2 +
1

y
, (8)

‖GR∗‖ ≤ C

r

1

y2 +
1

y
, (9)

for some constant C > 0 which depends on K. Moreover, there exists a constant C which depends only
on K such that

sup
�

‖RG‖ : x ∈ K , y ≥ yn, z ∈ C
	

≤ C

È

1

y2
n
+

1

yn
, (10)

sup
�

‖GR∗‖ : x ∈ K , y ≥ yn, z ∈ C
	

≤ C

È

1

y2
n
+

1

yn
, (11)

for any sequence yn > 0.

Proof. The first inequality in (6) follows from the definition of the norm and the second inequality
is trivial. The resolvent bound in (7) follows immediately because Hn is a Hermitian matrix.

To prove (8), we use polar decomposition to write R = U |R| where U is a partial isometry and
|R|=

p
R∗R. Then

‖RG‖= ‖U |R|(R∗R−α)−1‖ ≤ ‖|R|(R∗R−α)−1‖

≤ sup
t∈Sp(R∗R)

|
p

t(t −α)−1| ≤ sup
t≥0
|
p

t(t −α)−1| ≤ C

r

1

y2 +
1

y
.

A similar argument verifies (9). (10) and (11) follow from (8) and (9) by using that y ≥ yn.

Lemma 14. We have that

E

�

1

n
TrGa,a

�

= E
�

1

mn
TrG
�

for any 1≤ a ≤ m.

Proof. Fix 1≤ a ≤ m and 1≤ i ≤ n. We will show that

EGa,a;i,i = EGa+1,a+1;i,i .

Using the adjoint formula for the inverse of a matrix, we can write that for any 1≤ b ≤ m

Gb,b;i,i =
det (R∗R−αI)(b,i)

det (R∗R−αI)
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where (R∗R−αI)(b,i) is the matrix R∗R−αI with the entries in the row and column that contain the
element (R∗R− αI)b,b;i,i replaced by zeroes except for the diagonal element which is replaced by a
1.

We will write Qb = X ∗bX b + |z|2 I −αI and then note that R∗R−αI has the form




















Qm −z̄X1 0 · · · 0 −zX ∗m
−zX ∗1 Q1 −z̄X2 0 · · · 0

0 −zX ∗2 Q2
. . . 0

...
... 0

.. . . . . −z̄Xm−2 0
0 · · · 0 −zX ∗m−2 Qm−2 −z̄Xm−1

−z̄Xm 0 · · · 0 −zX ∗m−1 Qm−1





















, (12)

where Qm,Q1, . . . ,Qm−1 appear along the diagonal.

Let σ = (1 2 3 . . . m) ∈ Sm. We now construct two bijective maps. Let Tσ be the map that takes
matrices of the form (12) into the matrix where each occurrence of X b is replaced by Xσ(b) and each
occurrence of Qb is replaced by Qσ(b). Also, let

Ω = Cn2
×Cn2

× · · · ×Cn2

︸ ︷︷ ︸

m times

denote the probability space. Then we write ω ∈ Ω as ω = (X1, X2, . . . , Xm). We now define
T ′σ : Ω→ Ω by T ′σ(X1, . . . , Xm) = (X2, X3, . . . , Xm, X1). Since each X1, . . . , Xm is an independent and
identically distributed random matrix, T ′σ is a measure preserving map.

We claim that det(R∗R−αI) = det(Tσ(R∗R−αI)). Indeed, if λ is an eigenvalue of (R∗R−αI) with
eigenvector v = (vm, v1, . . . , vm−1)T where vb is an n-vector, then a simple computation reveals that
w = (vσ(m), vσ(1), . . . , vσ(m−1))T = (v1, . . . , vm)T is an eigenvector of Tσ(R∗R−αI) with eigenvalue λ.

Similarly, det (R∗R−αI)(b,i) = det
�

Tσ
�

(R∗R−αI)(b,i)
��

. Define fa,i(ω) to be

det (R∗R−αI)(b,i) (ω) for each realization ω ∈ Ω. Then we have that

fa+1,i(ω) = det
�

R∗R−αI
�(a+1,i) (ω)

= det
�

Tσ
�

�

R∗R−αI
�(a+1,i)

��

(ω)

= det
�

Tσ
�

R∗R−αI
��(a,i) (ω)

= det
�

R∗R−αI
�(a,i) (T ′σ(ω)) = fa,i(T

′
σ(ω))

and
det(R∗R−αI)(ω) = det(R∗R−αI)(T ′σ(ω)).

Thus Ga,a;i,i(T ′σ(ω)) = Ga+1,a+1;i,i(ω) for each ω ∈ Ω. Since T ′σ is measure preserving, the proof is
complete.

Next, we present the decoupling formula, which can be found, for example, in [18]. If ξ is a real-
valued random variable such that E|ξ|p+2 < ∞ and if f (t) is a complex-valued function of a real
variable such that its first p+ 1 derivatives are continuous and bounded, then

E[ξ f (ξ)] =
p
∑

a=0

κa+1

a!
E[ f (a)(ξ)] + ε, (13)
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where κa are the cumulants of ξ and |ε| ≤ C supt | f (p+1)(t)|E|ξ|p+2 where C depends only on p.

If ξ is a Gaussian random variable with mean zero, then all the cumulants vanish except for κ2 and
the decoupling formula reduces to the exact equation

E[ξ f (ξ)] = E[ξ2]E[ f ′(ξ)].

Finally, to use (13), we need to compute the derivatives of the resolvent matrix G with respect to
the various entries of Y . This can be done by utilizing the resolvent identity and we find

∂ Ga,b;k,l

∂ Re(Yc,c+1;q,p)
=−(GR∗)a,c;k,qGc+1,b;p,l − Ga,c+1;k,p(RG)c,b;q,l ,

∂ Ga,b;k,l

∂ Im(Yc,c+1;q,p)
=−i(GR∗)a,c;k,qGc+1,b;p,l + iGa,c+1;k,p(RG)c,b;q,l .

4.3.3 Main Theorem

For the results below, we will consider α = x + i y where y ≥ yn with yn = n−ηδ. Our goal is to
establish the following result.

Theorem 15. Under the conditions of Theorem 2 and the additional assumption that |Ya,a+1;i, j| ≤ nδ,
we have

∆3
n(α, z) + 2∆2

n(α, z) +
α+ 1− |z|2

α
∆n(α, z) +

1

α
= rn(α, z),

where if δ is chosen such that δη≤ 1/32 and δ ≤ 1/32, then the remainder term rn satisfies

sup
�

|rn(α, z)| : |z| ≤ M , |x | ≤ N , y ≥ yn
	

= O
�

δn
�

a.s.

with δn = n−1/4 y−5
n nδ.

Remark 16. We note that the bounds presented here and in the rest of this section are not optimal
and can be improved. The bounds given, however, are sufficient for our purposes.

In order to prove Theorem 15, we will need the following lemmas. The first lemma is McDiarmid’s
Concentration Inequality [21].

Lemma 17 (McDiarmid’s Concentration Inequality). Let X = (X1, X2, . . . , Xn) be a family of indepen-
dent random variables with Xk taking values in a set Ak for each k. Suppose that the real-valued f
defined on

∏

Ak satisfies
| f (x)− f (x ′)| ≤ ck

whenever the vectors x and x ′ differ only in the kth coordinate. Let µ be the expected value of the
random variable f (X ). Then for any t ≥ 0,

P
�

| f (X )−µ| ≥ t
�

≤ 2e−2t2/
∑

c2
k .

Remark 18. McDiarmid’s Concentration Inequality also applies to complex-valued functions by ap-
plying Lemma 17 to the real part and imaginary part separately.
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Lemma 19. For y ≥ yn and |x | ≤ N (where α= x + i y),

P
�

|∆n(α, z)−E∆n(α, z)|> t
�

≤ 4e−c t2ny4
n (14)

for some absolute constant c > 0. Moreover,

sup
�

|∆n(α, z)−E∆n(α, z)| : |z| ≤ M , |x | ≤ N , y ≥ yn
	

= O
�

n−1/4 y−2
n

�

a.s.

Proof. Let Rk denote the matrix R with the k-th column replaced by zeroes. Then R∗R and R∗kRk
differ by a matrix with rank at most two. So by the resolvent identity

�

�

�

�

1

mn
Tr
�

R∗R−α
�−1−

1

mn
Tr
�

R∗kRk −α
�−1
�

�

�

�

≤
2

mn










�

R∗R−α
�−1 �R∗kRk − R∗R

��

R∗kRk −α
�−1







 (15)

≤
C

nyn
sup
t≥0

�

�(t −α)−1 t
�

�= C ′
1

ny2
n

where the constant C ′ depends only on N . The mn columns of Y form an independent family of
random variables. We now apply Lemma 17 to the complex-valued function 1

mn
Tr (R∗R−α)−1 with

the bound ck = O(n−1 y−2
n ) obtained in (15). This proves the bound (14). Thus, for any fixed point

(α, z) in the region
{(α= x + i y, z = s+ i t) : |x | ≤ N , y ≥ yn, |z| ≤ M} (16)

one has
P
�

|∆n(α, z)−E∆n(α, z)|> n−1/4 y−2
n

�

≤ 4e−cn1/2
, (17)

where we recall that yn = n−ηδ and δ > 0 could be chosen to be arbitrary small.

If y = Imα > n1/4 y2
n , then

|∆n(α, z)| ≤
1

Imα
< n−1/4 y−2

n , |E∆n(α, z)|< n−1/4 y−2
n . (18)

Therefore, it is enough to bound the supremum of |∆n(α)−E∆n(α)| over the region

D = {(α= x + i y, z = s+ i t) : |x | ≤ N , yn ≤ y ≤ n1/4 y2
n , |z| ≤ M}. (19)

To this end, we consider a finite n−C -net of D where C is some sufficiently large positive constant to
be chosen later. Clearly, one can construct such a net that contains at most [4Mn4C n1/4 y2

n] points
if n is sufficiently large, where [k] denotes the integer part of k. Let us denote these points by
(αi , zi), 1≤ i ≤ [4Mn4C n1/4 y2

n]. It follows from (17) that one has

P
�

sup{i : |∆n(αi , zi)−E∆n(αi , zi)|> n−1/4 y−2
n

�

≤ 16M y2
n n4C+1/4e−cn1/2

, (20)

where the supremum is taken over the points of the net. Appying the Borel-Cantelli lemma, we
obtain that

sup
�

i : |∆n(αi , zi)−E∆n(αi , zi)|
	

= O
�

n−1/4 y−2
n

�

a.s. (21)
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where the supremum is again taken over the points of the n−C -net of D. To extend the estimate (21)
to the supremum over the whole region D, we note that for (α, z) ∈ D,

�

�

�

�

∂∆n(α, z)
∂ Reα

�

�

�

�

≤
1

y2
n

, (22)
�

�

�

�

∂∆n(α, z)
∂ Imα

�

�

�

�

≤
1

y2
n

, (23)

�

�

�

�

∂∆n(α, z)
∂ Re z

�

�

�

�

≤ constm
2(n1+δ +M)

y2
n

, (24)

�

�

�

�

∂∆n(α, z)
∂ Im z

�

�

�

�

≤ constm
2(n1+δ +M)

y2
n

, (25)

where constm is a constant that depends only on m.

The bounds (22-23) are simple properties of the Stieltjes transform. Indeed, the l.h.s. of (22) and
(23) are bounded from above by 1

| Imα|2 . The proof of (24-25) follows from the resolvent identitity

(Hn(z2)−αI)−1− (Hn(z1)−αI)−1 = (Hn(z1)−αI)−1(Hn(z2)−Hn(z1))(Hn(z2)−αI)−1,

the formula Hn(z) = (Y (n)− zI)∗(Y (n)− zI), the bound |z| ≤ M , and the bound

‖Y (n)‖ ≤ n1+δ. (26)

We note that (26) follows from the fact that the matrix entries of Y (n) are bounded by nδ.

Now, choosing C in the construction of the net sufficiently large, one extends the bound (21) to the
whole region D by (22-25). This finishes the proof of the lemma.

Lemma 20. For any 1≤ a ≤ m,

sup
�

Var
�

1

n
TrGaa

�

: |x | ≤ N , y ≥ yn, z ∈ C
�

= O(n−1 y−2
n )

where α= x + i y.

Proof. Let Rk denote the matrix R with the k-th column replaced by zeroes and let Pa be the or-
thogonal projector such that TrGa,a = Tr(PaGPa). Following the same procedure as in the proof of
Lemma 19, we have that

�

�

�Tr(R∗R−α)−1
a,a − Tr(R∗kRk −α)−1

a,a

�

�

�

=
�

�

�Tr
�

Pa(R
∗
kRk −α)−1(R∗kRk − R∗R)(R∗R−α)−1Pa

�

�

�

� (27)

≤
C

y2
n

.

where the constant C depends only on N .

We can write
1

n
TrGa,a −E

�

1

n
TrGa,a

�

=
1

n

mn
∑

k=1

γk,
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where γk is the martingale difference sequence

γk = Ek

�

1

n
TrGa,a

�

−Ek−1

�

1

n
TrGa,a

�

and Ek denotes the conditional expectation with respect to the elements in the first k columns of Y .
Then by the bound in (27) and [6, Lemma 2.12], we have

E

�

�

�

�

1

n
TrGa,a −E

1

n
TrGa,a

�

�

�

�

2

≤
C

n2

mn
∑

k=1

|γk|2

≤
C

ny2
n

where the constant C depends only on N . Since the bound holds for any |x | ≤ N , y ≥ yn, and z ∈ C
the proof is complete.

Remark 21. By Lemmas 14, 19, and 20, for every 1≤ a, b, c ≤ m

E

�

1

n
TrGa,a

�

= E
�

1

mn
TrG
�

=
1

mn
TrG+O(n−1/4 y−5

n ) a.s.,

E

�

1

n
TrGa,a

1

n
TrGb,b

�

= E

�

�

1

mn
TrG
�2
�

+O(n−1/4 y−5
n )

=
�

1

mn
TrG
�2

+O(n−1/4 y−5
n ) a.s.,

and

E

�

1

n
TrGa,a

1

n
TrGb,b

1

n
TrGc,c

�

= E

�

�

1

mn
TrG
�3
�

+O(n−1/4 y−5
n )

=
�

1

mn
TrG
�3

+O(n−1/4 y−5
n ) a.s.,

where the bounds hold uniformly in the region |x | ≤ N , y ≥ yn, and |z| ≤ M .

We are now ready to prove Theorem 15.

Proof of Theorem 15. Fix α= x+ i y with |x | ≤ N , y ≥ yn and z ∈ C with |z| ≤ M . We will show that
the remainder term rn(α, z) = O(δn) a.s. where the constants in the term O(δn) depend only on N
and M . In particular, the remainder term will be estimated using Lemmas 13 and 19 and Remark
21 where the bounds all hold uniformly in the region. In the proof presented below, will use the
notation ON ,M (·) to represent a term which is bounded uniformly in the region |x | ≤ N , y ≥ yn, and
|z| ≤ M .

By applying the resolvent identity to G and replacing R and R∗ with Y −zI and Y ∗− z̄ I , respectively,
we obtain

1

n
TrGa,a =−

1

α
+

1

αn
Tr[GY ∗Y ]a,a −

z

αn
Tr[GY ∗]a,a −

z̄

αn
Tr[GY ]a,a +

|z|2

αn
TrGa,a.
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We will let Y (r) be the (mn)×(mn)matrix containing the real entries of Y and Y (i) be the (mn)×(mn)
matrix containing the imaginary entries of Y such that Y = Y (r) + iY (i). By assumption, Y (r) and
Y (i) are independent random matrices. Thus,

�

1−
|z|2

α

�

E
1

n
TrGa,a +

1

α
=

1

αn
ETr(GY ∗Y (r))a,a +

i

αn
ETr(GY ∗Y (i))a,a

−
z

αn
ETr(GY (r)

∗
)a,a +

iz

αn
ETr(GY (i)

∗
)a,a (28)

−
z̄

αn
ETr(GY (r))a,a −

z̄i

αn
ETr(GY (i))a,a

Let δ = Var(Re(ξ)). Then Var(Im(ξ)) = 1−δ. To compute the expectation, we fix all matrix entries
except one and integrate with respect to that entry. Thus, by applying the decoupling formula (13)
with p = 1 and using the fact that Ya,b;i, j = 0 whenever b 6= a+1, we obtain the following expansions
for the terms on the right-hand side of (28),

1

αn
ETr(GY ∗Y (r))a,a =

1

αn
E

∑

1≤ j,k,l≤n

Ga,a; j,k Ȳa−1,a;l,k Re
�

Ya−1,a;l, j

�

=
δ

αn
ETrGa,a −

δ

αn2E
∑

1≤ j,k,l≤n

Ȳa−1,a;l,k

�

(GR∗)a,a−1; j,l Ga,a; j,k

�

−
δ

αn2E
∑

1≤ j,k,l≤n

Ȳa−1,a;l,k

�

Ga,a; j, j(RG)a−1,a;l,k

�

+ON ,M

�

nδ

n1/2 y4
n

�

=
δ

αn
ETrGa,a −

δ

αn2E
�

TrGa,aTr(RGY ∗)a−1,a−1

�

+ON ,M

�

nδ

n1/2 y4
n

�

.

Here we use that the ε error term in (13) contains the second derivative

∂ 2(GY ∗)a,a; j,l

∂ Re
�

Ya−1,a;l, j

�2 = ON ,M

�

1

y3
n

�

which consists of several terms each bounded by Lemma 13. After summing over 1 ≤ j, l ≤ n and
utilizing the fact that the third moment of Re

�

Ya−1,a;l, j

�

is of order nδ−3/2, we obtain an error
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bound of ON ,M (nδ−1/2 y−4
n ). By following the same procedure for the other terms, we obtain

i

αn
ETr(GY ∗Y (i))a,a =

i

αn
E

∑

1≤ j,kl≤n

Ga,a; j,k Ȳa−1,a;l,k Im
�

Ya−1,a;l, j

�

=
1−δ
αn

ETrGa,a −
1−δ
αn2 E

�

TrGa,aTr(RGY ∗)a−1,a−1

�

+ON ,M

�

nδ

n1/2 y4
n

�

,

z

αn
ETr(GY (r)

∗
)a,a =

z

αn
E
∑

1≤ j,k≤n

Ga,a; j,k Re
�

Ya,a+1; j,k

�

=
zδ

αn2E
�

TrGa+1a+ 1Tr(GR∗)a,a

�

+ON ,M

�

nδ

n1/2 y4
n

�

,

iz

αn
ETr(GY (i)

∗
)a,a =

iz

αn
E
∑

1≤ j,k≤n

Ga,a+1; j,k Im
�

Ya,a+1; j,k

�

=
z(1−δ)
αn2 E

�

TrGa+1,a+1Tr(GR∗)a,a

�

+ON ,M

�

nδ

n1/2 y4
n

�

,

z̄

αn
ETr(GY (r))a,a =

z̄

αn
E
∑

1≤ j,k≤n

Ga,a−1; j,k Re
�

Ya−1,a;k, j

�

=
z̄δ

αn2E
�

TrGa,aTr(RG)a−1,a−1

�

+ON ,M

�

nδ

n1/2 y4
n

�

,

and

z̄i

αn
ETr(GY (i))a,a =

iz̄

αn
E
∑

1≤ j,k≤n

Ga,a−1; j,k Im
�

Ya−1,a;k, j

�

=
z̄(1−δ)
αn2 E

�

TrGa,aTr(RG)a−1,a−1

�

+ON ,M

�

nδ

n1/2 y4
n

�

.

Combining these terms yields,
�

1−
|z|2

α

�

E
1

n
TrGa,a =−

1

α
+

1

αn
ETrGa,a −

1

αn2E
�

TrGa,aTr(RGR∗)a−1,a−1

�

+
z

αn2E
�

TrGa+1,a+1Tr(GR∗)a,a

�

+ON ,M

�

nδ

n1/2 y4
n

�

=−
1

α
+

1

αn
ETrGa,a −

1

αn2E
�

TrGa,aTr(RGR∗)a−1,a−1

�

+
z

αn2E
�

TrGa+1,a+1Tr(GR∗R)a,a

�

+
1

αn2E
�

TrGa+1,a+1Tr(GR∗Y )a,a

�

+ON ,M

�

nδ

n1/2 y4
n

�

.
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We note that by Remark 21, we have that

−1

αn2E
�

TrGa+1,a+1Tr(GR∗R)a,a

�

=−
1

αn
ETrGa+1,a+1

−
1

mn2ETrGa,aETrG+ON ,M (δn)

and
−1

αn2E
�

TrGa,aTr(RGR∗)a−1,a−1

�

=−
1

αn2E
�

TrGa,aTr(R∗RG)a,a

�

−
|z|2

αn2E
�

TrGa,a(TrGa,a − TrGa−1,a−1)
�

=−
1

αn
ETrGa,a −

1

mn2ETrGa,aETrG+ON ,M (δn).

Finally, we expand Y in terms of Y (r) and Y (i) and again apply the decoupling formula (13) to obtain

1

αn2E
�

TrGa+1,a+1Tr(GR∗Y )a,a

�

=−
1

n3E
�

TrGa+1,a+1TrGa,aTrGa,a

�

+ON ,M

�

nδ

n1/2 y4
n

�

=−
1

n3m2 (ETrG)2ETrGa,a +ON ,M (δn),

where the last equality comes from Remark 21. Therefore, we have that
�

1−
|z|2

α

�

E
1

n
TrGa,a =−

1

α
−

1

αn
ETrGa+1,a+1−

2

mn2ETrGa,aETrG

−
1

n3m2 (ETrG)2ETrGa,a +ON ,M (δn).

By summing over a and dividing by m, we obtain

�

E∆n(α)
�3+ 2

�

E∆n(α)
�2+

1+α− |z|2

α
E∆n(α) +

1

α
= ON ,M (δn).

Thus, the proof is complete by Lemma 19.

Consider the cubic equation

∆3+ 2∆2+
α+ 1− |z|2

α
∆+

1

α
= 0 (29)

where α = x + i y . The solution of the equation has three analytic branches when α 6= 0 and when
there is no multiple root. Below we show that the Stieltjes transform of νn(·, z) converges to a root
of (29). Following the argument of Bai and Silverstein in [6], we have that there is only one of the
three analytic branches, denoted by ∆(α), to which the Stieltjes transforms are converging to. We
let m2(α) and m3(α) denote the other two branches and note that ∆, m2, and m3 are also functions
of |z|.
By [6, Theorem B.9], there exists a distribution function ν(·, z) such that

∆(α) =

∫

1

u−α
ν(du, z).

Then we use the following Lemmas due to Bai and Silverstein, [6].

2236



Lemma 22. The limiting distribution function ν(x , z) satisfies

|ν(w+ u, z)− ν(w, z)| ≤
2

π
max{2

p

3|u|, |u|}

for all z. Also, the limiting distribution function ν(u, z) has support in the interval [x1, x2] when |z|> 1
and [0, x2] when |z| ≤ 1, where

x1 =
1

8|z|2
h

−1+ 20|z|2+ 8|z|4− (
p

1+ 8|z|2)3
i

,

x2 =
1

8|z|2
h

(
p

1+ 8|z|2)3− 1+ 20|z|2+ 8|z|4
i

.

Lemma 23. For any given constants N > 0, A > 0, and ε ∈ (0,1) (recall that A and ε are used to
define the region T), there exist positive constants ε1 and ε0 (ε0 may depend on ε1) such that for all
large n,

(i) for |α| ≤ N, y ≥ 0, and z ∈ T,

max
j=2,3
|∆(α)−m j(α)| ≥ ε0,

(ii) for |α| ≤ N, y ≥ 0, |α− x2| ≥ ε1 (and |α− x1| ≥ ε1 if |z| ≥ 1+ ε), and z ∈ T,

min
j=2,3
|∆(α)−m j(α)| ≥ ε0,

(iii) for z ∈ T and |α− x2|< ε1,

min
j=2,3
|∆(α)−m j(α)| ≥ ε0

p

|α− x2|,

(iv) for |z|> 1+ ε, z ∈ T, and |α− x1|< ε1,

min
j=2,3
|∆(α)−m j(α)| ≥ ε0

p

|α− x1|.

Remark 24. Lemma 23 shows that away from the real line, ∆ is distinct from the branches m2 and
m3.

Lemma 25. We have
∂

∂ s

∫ ∞

0

ln xν(dx , z) = g(s, t).

Remark 26. Lemma 25 shows that ν(·, z) is the distribution which corresponds to the circular law.
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4.4 Rate of Convergence of νn(x , z)

For this subsection, we return to the original assumptions on the entries of Y . Before we prove
Lemma 5, we need to establish a rate of convergence of νn(x , z) to ν(x , z). We remind the reader
that νn(·, z) is the ESD of Hn = (Y − zI)∗(Y − zI) and eνn(·, z) is the ESD of eHn = (eY − zI)∗(eY − zI).

Lemma 27. For any M2 > M1 ≥ 0,

sup
M1≤|z|≤M2

‖νn(·, z)− ν(·, z)‖= sup
x ,M1≤|z|≤M2

|νn(x , z)− ν(x , z)|= O(n−δη/8).

Proof. We first note that it is enough to show

sup
M1≤|z|≤M2

‖eνn(·, z)− ν(·, z)‖= O(
p

yn). (30)

Indeed, by Lemma 11, we have that

L(νn(·, z),ν(·, z))≤ L(νn(·, z), eνn(·, z)) + ‖eνn(·, z)− ν(·, z)‖

≤ ‖eνn(·, z)− ν(·, z)‖+ o(n−ηδ/4).

and by Lemma 22,
‖νn(·, z)− ν(·, z)‖ ≤ C

p

L(νn(·, z),ν(·, z))

uniformly for |z| ≤ M .

We now prove (30). Since |∆n(α0)| ≤ (Imα0)−1 for any fixed α0 with Imα0 > 0, there exists a
convergent subsequence of {∆n(α0)}∞n=1. Since ∆ is the only branch of (29) that defines a Stieltjes
transform, the subsequence must converge to ∆(α0). Hence, ∆n(α0) → ∆(α0) as n → ∞ for any
fixed α0 with Imα0 > 0. Let m1 =∆ and m2 and m3 be the other two branches of the cubic equation
(29).

We remind the reader that T is a bounded set and that the supports of ν(·, z) are bounded for all
z ∈ T . So by [6, Corollary B.15] there exists N and some absolute constant C such that

‖eνn(·, z)− ν(·, z)‖

≤ C

 

∫

|x |≤N

|∆n(α)−∆(α)|dx +
1

yn
sup

x

∫

|y|≤2yn

|ν(x + y, z)− ν(x , z)|dy

!

≤ C

 

∫

|x |≤N

|∆n(α)−∆(α)|dx +
p

yn

!

,

where α = x + i yn and the last inequality follows from Lemma 22. So, to complete the proof we
only need to estimate the integral in the last inequality above.

We first show that for α = x + i y , |x | ≤ N , |x − x2| ≥ ε1 (|x − x1| ≥ ε1 if |z| < 1), y ≥ yn,
M1 ≤ |z| ≤ M2, and all large n,

|∆n(α)−∆(α)|<
C ′ε0

3
δn (31)
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where ε0 and ε1 come from Lemma 23 and C ′ is a positive constant. By Theorem 15, consider a
realization where

|∆n(α)−∆(α)||∆n(α)−m2(α)||∆n(α)−m3(α)| ≤ C ′
4

27
ε3

0δn.

for some positive constant C ′. Fix α0 = x0 + i y0 with |x0| ≤ N , y0 > 0, and mink=1,2 |x0 − xk| ≥ ε1.
Fix z ∈ T . Choose n large enough such that |∆n(α0)−∆(α0)|<

ε
3
. Then for k ∈ {1, 2},

ε0 ≤ |∆(α0)−mk(α0)| ≤ |∆(α0)−∆n(α0)|+ |∆n(α0)−mk(α0)|

and hence

min
k=1,2

|∆n(α0)−mk(α0)|>
2ε0

3
.

Thus,
|∆n(α0)−∆(α0)| ≤ C ′ε0δn.

Next we show (31) is true for all y ≥ yn, |x | ≤ N , and mink=1,2 |x − xk| ≥ ε1. Suppose (31) is false.
By continuity there exists a subsequence nl , zl ∈ T , and αl with |Re(αl)| ≤ N and Im(αl)≥ ynl

such
that

|∆nl
(αl)−∆(αl)|=

C ′ε0

3
δnl

.

Then
|∆nl
(αl)−∆(αl)|<

ε0

3
for all l greater than some L. By a similar argument as above and Lemma 23, we have

min
k=1,2

|∆nl
(αl)−mk(αl)|>

2ε0

3

for all l > L and hence

|∆nl
(αl)−∆(αl)|<

C ′ε0

3
δn,

a contradiction.

Finally, for the case where |α− xk| ≤ ε1 for k = 1 or 2, we apply a similar argument and Lemma 23
to obtain

|∆n(α)−∆(α)|= O





δn
p

|α− xk|



= O(δn y−1/2
n ).

4.5 Least Singular Value Bound

A key part of proving Lemma 5 is to control the least singular value of Y − zI . Equivalently, we wish
to obtain control of the norm of the inverse ‖(Y − zI)−1‖.
We will obtain a bound using the results of Tao and Vu in [28]. We present Tao and Vu’s bound
on the least singular value below, which only requires a finite second moment assumption on the
entries of the matrix.
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Theorem 28 (Tao-Vu; Least singular value bound). Let A, C1 be positive constants, and let ξ be a
complex-valued random variable with non-zero finite variance (in particular, the second moment is
finite). Then there are positive constants B and C2 such that the following holds: if Nn is the random
matrix of order n whose entries are i.i.d. copies of ξ, and M is a deterministic matrix of order n with
spectral norm at most nC1 , then,

P
�

‖(M + Nn)
−1‖ ≥ nB

�

≤ C2n−A. (32)

Remark 29. We note that the bound in (32) is independent of the matrix M . In particular, this
bound holds for any deterministic matrix of order n with spectral norm at most nC1 .

We will prove an analogous version of Theorem 28 for the matrix Y . We first need the following
bounds for the norm of Y .

Lemma 30. We have the following bounds for the norm of Y .

‖Y ‖= O(n) a.s.,

E‖Y ‖= O(n).

We also have that for any 1≤ a ≤ m,
E‖Xa‖= O(n). (33)

Proof. We note that

Y ∗Y =













X ∗mXm 0
X ∗1X1

. . .
0 X ∗m−1Xm−1













,

and hence the singular values of Y are the the union of the singular values of Xk for 1≤ k ≤ m. Let
s1, . . . smn denote the singular values of Y . Then

1

mn
‖Y ‖ ≤

1

mn

mn
∑

j=1

s j ≤
1

mn

mn
∑

j=1

s2
j + 1

≤
1

mn
TrY ∗Y + 1=

1

mn

m
∑

k=1

∑

1≤i, j≤n

�

�

�

�

Xk
�

i j

�

�

�

2
+ 1−→ 2 a.s.

as n→∞ by the law of large numbers. The same argument shows that

1

mn
E‖Y ‖ ≤

1

mn

m
∑

k=1

∑

1≤i, j≤n

E

�

�

�

�

Xk
�

i j

�

�

�

2
+ 1= 2.

A similar argument verifies (33).

Theorem 31 (Least singular value bound for Y ). Let Y be the (mn)× (mn) matrix defined in (2) and
let A be a positive constant. Then, under the hypothesis of Theorem 2, there exists positive constants B
and C (depending on both A and m) such that

P
�

‖(Y − zI)−1‖ ≥ nB
�

≤ Cn−A

uniformly for |z| ≤ M2.
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Proof. We remind the reader that (Y − zI)−1 is an (mn)× (mn) matrix and again refer to the m2

blocks (Y−zI)−1
a,b each of size n×n. A simple computation reveals, that (when invertible) (Y−zI)−1

a,b
has the form

zκX j1 · · ·X jl

�

X i1 · · ·X iq − zr
�−1

where κ, l, q, r are nonnegative integers no bigger than m, the variables κ, l, q, r, j1, . . . jl , i1, . . . , iq
depend only on a and b, and the indices i1, . . . , iq are all distinct.

By the definition of the norm, we have that

‖(Y − zI)−1‖ ≤ Cm max
1≤a,b≤m

‖(Y − zI)−1
a,b‖ ≤ Cm

∑

1≤a,b≤m

‖(Y − zI)−1
a,b‖

where Cm is a constant that depends only on m. Thus, it is enough to show that given a positive
constant A, there exists B and C such that

P

�

‖zκX j1 · · ·X jl

�

X i1 · · ·X iq − zr
�−1
‖ ≥ nB

�

≤ Cn−A

uniformly for |z| ≤ M2.

So we have,

P

�

‖zκX j1 · · ·X jl

�

X i1 · · ·X iq − zr
�−1
‖ ≥ nB

�

≤ mP
�

‖X1‖ ≥ nB/(m+2)
�

+P
�

‖
�

X i1 · · ·X iq − zr
�−1
‖ ≥ nB/(m+2)

�

for |z| ≤ M2 and n large. The first term can be estimated by Markov’s inequality

P
�

‖X1‖ ≥ nB/(m+2)
�

≤
E‖X1‖

nB/(m+2)
= O(n−B/(m+2)+1)

since E‖X1‖ = O(n) by Lemma 30. Therefore, this term is order n−A by taking B > (m+ 2)(A+ 1).
So, it is now enough to show that given a positive constant A, there exists B and C such that

P

�

‖
�

X i1 · · ·X iq − zr
�−1
‖ ≥ nB

�

≤ Cn−A.

We note that,
�

X i1 · · ·X iq − zr
�−1
= X−1

iq
· · ·X−1

i2

�

X i1 − zr X−1
iq
· · ·X−1

i2

�−1
.

By Theorem 28 there exists positive constants B and C such that

P
�

‖X−1
iq
· · ·X−1

i2
‖ ≥ nB

�

≤ mP
�

‖X−1
1 ‖ ≥ nB/m

�

≤ Cn−A. (34)

Thus, we only need to show that given A there exists B and C such that

P

�

�

X i1 − zr X−1
iq
· · ·X−1

i2

�−1
≥ nB

�

≤ Cn−A.
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We then have that

P

�

�

X i1 − zr X−1
iq
· · ·X−1

i2

�−1
≥ nB

�

= P
�

�

X i1 − zr X−1
iq
· · ·X−1

i2

�−1
≥ nB

�

�

� ‖X−1
iq
· · ·X−1

i2
‖ ≤ nC1

�

×P
�

‖X−1
iq
· · ·X−1

i2
‖ ≤ nC1

�

+P
�

�

X i1 − zr X−1
iq
· · ·X−1

i2

�−1
≥ nB

�

�

� ‖X−1
iq
· · ·X−1

i2
‖ ≥ nC1

�

×P
�

‖X−1
iq
· · ·X−1

i2
‖ ≥ nC1

�

≤ Cn−A

where the first term is controlled by Theorem 28 (in particular, see Remark 29) and the second term
is estimated as in (34). This completes the proof of the Theorem.

4.6 Proof of Lemma 5

Proof of Lemma 5. In order to finish the proof of Lemma 5 we need to show (5) holds. By integration
by parts, we have

�

�

�

�

�

∫

z∈T

(gn(s, t)− g(s, t))eisu+i t vdtds

�

�

�

�

�

=

�

�

�

�

�

−
∫

z∈T

iuτ(s, t)dtds+

∫

|t|≤A3

(τ(A, t)−τ(−A, t))dt

−
∫

|t|≤1+ε

�

τ(
p

(1+ ε)2− t2, t)−τ(−
p

(1+ ε)2− t2, t)
�

dt

+

∫

|t|≤1−ε

�

τ(
p

(1− ε)2− t2, t)−τ(−
p

(1− ε)2− t2, t)
�

dt

�

�

�

�

�

,

where

τ(s, t) = eius+iv t

∫ ∞

0

ln x(νn(dx , z)− ν(dx , z)).

Let εn = e−nηδ/16
. By Theorem 31 and the Borel-Cantelli lemma, with probability 1,

lim
n→∞

∫

z∈T

�

�

�

�

�

∫ εn

0

ln xνn(dx , z)

�

�

�

�

�

dtds = 0.

By Lemma 22,

lim
n→∞

∫

z∈T

�

�

�

�

�

∫ εn

0

ln xν(dx , z)

�

�

�

�

�

dtds = 0.
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By Lemma 30, there exists κ > 0 such that the support of νn(·, z) lies in [0,κn2] for all z ∈ T . Thus,
by Lemma 27

∫

z∈T

�

�

�

�

�

∫ ∞

εn

ln x(νn(dx , z)− ν(dx , z))

�

�

�

�

�

dtds

=

∫

z∈T

�

�

�

�

�

�

∫ κn2

εn

ln x(νn(dx , z)− ν(dx , z))

�

�

�

�

�

�

dtds

≤ C
�

| ln(εn)|+ ln(κn2)
�

max
z∈T
‖νn(·, z)− ν(·, z)‖ −→ 0 a.s.

Therefore, with probability 1,

lim
n→∞

iu

∫

z∈T

τ(s, t)dsdt = 0.

In a similar fashion, we can show that the boundary terms satisfy the following

lim
n→∞

∫

|t|≤A3

τ(±A, t)dt = 0 a.s.,

lim
n→∞

∫

|t|≤1+ε
τ(±

p

(1+ ε)2− t2, t)dt = 0 a.s.,

and

lim
n→∞

∫

|t|≤1−ε
τ(±

p

(1− ε)2− t2, t)dt = 0 a.s.

The proof of Lemma 5 is complete.

Remark 32. After we finished our paper, we learned about a very recent preprint [16]where F.Götze
and A. Tikhomirov proved the convergence of the expected spectral distribution EµX to the limit
defined by (1) under the assumption that the matrix entries are mutually independent centered
complex random variables with variance one. Our approach is different from the one used in [16].
We are grateful to Z. Burda, T. Tao and A. Tikhomirov for useful comments regarding the results of
the paper. In addition, we are grateful to unanimous referees for valuable and constructive criticism
regarding the proofs of Theorem 15 and Lemma 19, and for bringing to our attention the reference
[13] where a similar result was obtained for m= 2.
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