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Abstract

We study the problem of non-asymptotic deviations between a reference measure µ and its
empirical version Ln, in the 1-Wasserstein metric, under the standing assumption that µ satisfies
a transport-entropy inequality. We extend some results of F. Bolley, A. Guillin and C. Villani [8]
with simple proofs. Our methods are based on concentration inequalities and extend to the
general setting of measures on a Polish space. Deviation bounds for the occupation measure of
a contracting Markov chain in W1 distance are also given.
Throughout the text, several examples are worked out, including the cases of Gaussian measures
on separable Banach spaces, and laws of diffusion processe .
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1 Introduction

1.1 Generalities

In the whole paper, (E, d) will denote a Polish space with metric d, equipped with its Borel σ-field
and P (E) will denote the set of probability measures over E. Consider µ ∈ P (E) and a sequence of
i.i.d. variables X i , 1≤ i ≤ n, with common law µ. Let

Ln =
1

n

n
∑

i=1

δX i
(1)

denote the empirical measure associated with the i.i.d. sample (X i)1≤i≤n, then with probability
1, Ln * µ as n → +∞ (here the arrow denotes narrow convergence, or convergence against all
bounded continuous functions over E). This theorem is known as the empirical law of large number
or Glivenko-Cantelli theorem and is due in this form to Varadarajan [33]. Quantifying the speed of
convergence for an appropriate notion of distance between probability measures is an old problem,
with notable importance in statistics. For many examples, we refer to the book of Van der Vaart and
Wellner [32] and the Saint-Flour course of P.Massart [27].

Our aim here is to study non-asymptotic deviations in 1-Wasserstein distance. This is a problem of
interest in the fields of statistics and numerical probability. More specifically, we provide bounds for
the quantity P(W1(Ln,µ) ≥ t) for t > 0, i.e. we quantify the speed of convergence of the variable
W1(Ln,µ) to 0 in probability.

This paper seeks to complement the work of F.Bolley, A.Guillin and C.Villani in [8] where such
estimates are obtained for measures supported inRd . We sum up (part of) their result here. Suppose
that µ is a probability measure on Rd for 1 ≤ p ≤ 2 that satisfies a Tp(C) transportation-entropy
inequality, that is

Wp(ν ,µ)≤
p

CH(ν |µ) for all ν ∈ Pp(R
d)

(see below for definitions). They obtain a non-asymptotic Gaussian deviation estimate for the
p−Wasserstein distance between the empirical and true measures :

P(Wp(Ln,µ)≥ t)≤ C(t)exp(−Knt2).

This is an effective result : the constants K and C(t) may be explicitely computed from the value of
some square-exponential moment of µ and the constant C appearing in the transportation inequality.

The strategy used in [8] relies on a non-asymptotic version of (the upper bound in) Sanov’s theo-
rem. Roughly speaking, Sanov’s theorem states that the proper rate function for the deviations of
empirical measures is the entropy functional, or in other words that for ’good’ subsets A∈ P (E),

P(Ln ∈ A)� e−nH(A|µ)

where H(A|µ) = infν∈A H(ν |µ) (see [11] for a full statement of the theorem).

In a companion work [6], we derive sharper bounds for this problem, using a construction originally
due to R.M. Dudley [14]. The interested reader may refer to [6] for a summary of existing results.
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Here, our purpose is to show that in the case p = 1, the results of [8] can be recovered with simple
arguments of measure concentration, and to give various extensions of interest.

• We would like to consider spaces more general than Rd .

• We would like to encompass a wide class of measures in a synthetic treatment. In order to do
so we will consider more general transportation inequalities, see below.

• Another interesting feature is to extend the result to dependent sequences such as the occu-
pation measure of a Markov chain. This is a particularly desirable feature in applications :
one may wish to approximate a distribution that is unknown, or from which it is practically
impossible to sample uniformly, but that is known to be the invariant measure of a simulable
Markov chain.

Acknowledgements. The author thanks his advisor Patrick Cattiaux for suggesting the problem and
for his advice. Arnaud Guillin is also thanked for enriching conversations. The anonymous referees
are acknowledged for useful suggestions.

In the remainder of this section, we introduce the tools necessary in our framework : transportation
distances and transportation-entropy inequalities. In Section 2, we give our main results, as well
as explicit estimates in several relevant cases. Section 3 is devoted to the proof of the main result.
Section 4 is devoted to the proof of Theorem 2.6. In Section 5 we show how our strategy of proof
can extend to the dependent case.

1.2 A short introduction to transportation inequalities

1.2.1 Transportation costs and Wasserstein distances

We recall here basic definitions and propositions ; for proofs and a thorough account of this rich
theory, the reader may refer to [34]. Define Pp, 1 ≤ p < +∞, as the set of probability measures
with a finite p-th moment. The p-Wasserstein metric Wp(µ,ν) between µ,ν ∈ Pp is defined by

W p
p (µ,ν) = inf

∫

dp(x , y)π(d x , d y)

where the infimum is on probability measures π ∈ P (E × E) with marginals µ and ν . The topol-
ogy induced by this metric is slightly stronger than the weak topology : namely, convergence of
a sequence (µn)n∈N to a measure µ ∈ Pp in the p-Wasserstein metric is equivalent to the weak
convergence of the sequence plus a uniform bound on the p-th moments of the measures µn, n ∈N.

We also recall the well-known Kantorovich-Rubinstein dual characterization of W1 : let F denote
the set of 1-Lipschitz functions f : E→R that vanish at some fixed point x0. We have :

W1(µ,ν) = sup
f ∈F

∫

f dµ−
∫

f dν . (2)
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1.2.2 Transportation-entropy inequalities

For a very complete overview of the subject, the reader is invited to consult the review [17]. More
facts and criteria are gathered in Appendix A. For µ,ν ∈ P (E), define the relative entropy H(ν |µ)
as

H(ν |µ) =
∫

E

log
dν

dµ
ν(d x)

if ν is absolutely continuous relatively to µ, and H(ν |µ) = +∞ otherwise. Let α : [0, +∞) → R

denote a convex, increasing, left-continous function such that α(0) = 0.

Definition 1.1. We say that µ ∈ P (E) satisfies a α(Td) inequality if for all ν ∈ P (E),

α(W1(µ,ν))≤ H(ν |µ). (3)

We say that µ ∈ P (E) satisfies a Tp(C) inequality for some C > 0 if it satisfies a α(Td) inequality with

α(t) =
1

C
t2/p.

2 Results and applications

2.1 General bounds in the independent case

Let us first introduce some notation : if K ⊂ E is compact and x0 ∈ K , we define the set FK of
1-Lipschitz functions over K vanishing at x0, which is is also compact w.r.t. the uniform distance (as
a consequence of the Ascoli-Arzela theorem). We will also need the following definitions.

Definition 2.1. Let (A, d) be a totally bounded metric space. For every δ > 0, define the covering
number N (A,δ) of order δ for A as the minimal number of balls of radius δ needed to cover A.

Definition 2.2. Let α : [0,+∞)→ R be convex, increasing, left-continuous and vanishing at 0. The
monotone conjugate of α is

αþ(s) = sup
t≥0

st −α(t).

We state our first result in a fairly general fashion.

Theorem 2.3. Suppose that µ ∈ P (E) satisfies a α(Td) inequality. Let a > 0 be such that Ea,1 =
∫

ead(x0,x)µ(d x)≤ 2. Choose a compact K = K(a, t, u)⊂ E such that

µ(K c)≤
�

32

at
log

32

at
−

32

at
+ 1
�−1

.

Denote
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Ct =N (FK , t/8). (4)

We have

P(W1(Ln,µ)≥ t)≤ exp−nα
�

t/2−Γ(Ct , n)
�

(5)

where Γ(Ct , n) = infλ>0 1/λ[logCt + nαþ(λ/n)], and with the convention that α(x) = 0 for x < 0.

Remark. It may be convenient to express the condition stated on Ea,1 through a transportation
inequality : on the one hand, they are equivalent as shown in Appendix A, and on the other hand,
transportation inequalities can be more adimensional, in the sense that they behave better with
respect to tensorization than integrability conditions.

We give an explicit connexion here. Assume that µ satisfies a α(Td) inequality. By Proposition A.3,
the condition Ea,1 ≤ 2 is fulfilled as soon as

a

∫

d(x , x0)dµ+α
þ(a)≤ log2.

Remark. With a mild change in the proof, one may replace in (5) the term t/2 by c t for any c < 1,
with the trade-off of choosing a larger compact set, and thus a larger value of Ct . For the sake of
readability we do not make further mention of this.

The result in its general form is abtruse, but it yields interesting results as soon as one knows more
about α. Let us give a few examples.

Corollary 2.4. If µ satisfies T1(C), we have

P(W1(Ln,µ)≥ t)≤Ct exp−
1

8C
nt2.

Corollary 2.5. Suppose that µ verifies the modified transport inequality

W1(ν ,µ)≤ C
�

H(ν |µ) +
p

H(ν |µ)
�

(as observed in paragraph A.2, this is equivalent to the finiteness of an exponential moment for µ).
Then, for t ≤ C/2,

P(W1(Ln,µ)≥ t)≤ A(n, t)exp−
(
p

2− 1)2

2C2 nt2

where

A(n, t) = exp

�

4(
p

2− 1)2n(

r

1+
n

logCt
− 1)−2

�

(observe that A(n, t)→Ct when n→+∞).
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Remark. Corollary 2.5 states that for sub-exponential measures we have a square-exponential de-
cay in t of the right-most term for t close enough to 0 only, whereas this holds everywhere for
sub-Gaussian measures. This is in keeping with other known concentration results for the double-
exponential measure, which have a quadratic-then-linear exponential dependence in the enlarge-
ment parameter t, see for example [4]. For larger t, the dependence should be exponential here as
well.

Proof of Corollary 2.4. In this case, we have α(t) = 1
C

t2, and so

Γ(Ct , n) =

r

C logCt

n
,

so that we get

P(W1(Ln,µ)≥ t)≤ exp−
n

C
(

t

2
−

r

C logCt

n
)2

and conclude with the elementary inequality (a− b)2 ≥ 1
2
a2− b2.

Proof of Corollary 2.5. Here, α(x) = 1
4
(
Æ

1+ 4x
C
− 1)2, and one can get the bound

Γ(Ct , n)≤
C

Æ

1+ n
logCt

− 1
.

By concavity of the square root function, for u ≤ 1, we have
p

1+ u− 1 ≥ (
p

2− 1)u. Thus, for
t ≤ C

2
, we have

α(
t

2
−Γ(Ct , n)) ≥

(
p

2− 1)2

4
(

2

C
t −

4
Æ

1+ n
logCt

− 1
)2

≥
(
p

2− 1)2

2C2 t2− 4(
p

2− 1)2(

r

1+
n

logCt
− 1)−2

(in the last line we have used again the inequality (a − b)2 ≥ a2

2
− b2). This in turn gives the

announced result.

Our technique of proof, though related to the one in [8], is based on different arguments : we
make use of the tensorization properties of transportation inequalities as well as functional equiva-
lents of transportation inequalities of Bobkov-Götze type (see (19)), instead of a Sanov-type bound.
The notion that is key here is the phenomenon of concentration of measure (see e.g. [23]) : its
relevance in statistics was put forth very explicitely in [27]. We may sum up our approach as fol-
lows : first, we rely on existing tensorization results to obtain concentration of W1(Ln,µ) around its
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mean E[W1(Ln,µ)], and in a second time we estimate the decay of the mean as n→ +∞. Despite
technical difficulties, the arguments are mostly elementary.

The next theorem is a variation on Corollary 2.4. Its proof is based on different arguments, and it
The next proposition is a bound on the size of the tail of a Gaussian measure. A proof may be found
e.g. in [22], Chapter 4. is postponed to Section 4. We will use this theorem to obtain bounds for
Gaussian measures in Theorem 2.6.

Theorem 2.6. Let µ ∈ P (E) satisfy a T1(C) inequality. Then :

P(W1(µ, Ln)≥ t)≤ Kt e
−nt2/8C

where

Kt = exp
�

1

C
inf
ν

Card (Supp ν)(Diam Supp ν)2
�

and ν runs over all probability measures with finite support s The next proposition is a bound on
the size of the tail of a Gaussian measure. A proof may be found e.g. in [22], Chapter 4. uch that
W1(µ,ν)≤ t/4.

Remark. As earlier, we could improve the factor 1/8C in the statement above to any constant c <
1/C , with the trade-off of a larger constant Kt .

2.2 Comments

We give some comments on the pertinence of the results above. First of all, we argue that the
asymptotic order of magnitude of our estimates is the correct one. The term “asymptotic” here
means that we consider the regime n → +∞, and the relevant tool in this setting is Sanov’s large
deviation principle for empirical measures. A technical point needs to be stressed : there are several
variations of Sanov’s theorem, and the most common ones (see e.g. [11]) deal with the weak
topology on probability measures. What we require is a version of the principle that holds for
the stronger topology induced by the 1-Wasserstein metric, which leads to slightly more stringent
assumptions on the measure than in Theorem 2.3. With this in mind, we quote the following result
from R. Wang, X. Wang and L. Wu [35] :

Proposition 2.7. Suppose that µ ∈ P (E) satisfies
∫

ead(x ,x0)µ(d x) < +∞ for all a > 0 and some
x0 ∈ E, and a α(Td) inequality. Then :

• for all A⊂P (E) closed for the W1 topology,

lim sup
n→+∞

1

n
logµ(A)≤− inf

ν∈A
H(ν |µ)

• for all B ⊂P (E) open w.r.t. the W1 topology,

lim inf
n→+∞

1

n
logµ(B)≥− inf

ν∈B
H(ν |µ).
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Consider the closed set A= {ν ∈ P (E), W1(µ,ν)≥ t}, then we have according to the above

lim sup
n→+∞

1

n
logP(W1(Ln,µ)≥ t)≤−α(t).

With Theorem 2.3 (and the remark following it), we obtain the bound

lim sup
n→+∞

1

n
logP(W1(Ln,µ)≥ t)≤−α(c t)

for all c < 1, and since α is left-continuous, we indeed obtain the same asymptotic bound as from
Sanov’s theorem.

Let us come back to the non-asymptotic regime. When we assume for example a T1 inequality, we
get a bound in the form P(W1(Ln,µ) ≥ t) ≤ C(t)e−Cnt2

involving the large constant C(t). By the
Kantorovich-Rubinstein dual formulation of W1

W1(µ,ν) = sup
f ∈F

∫

f dµ−
∫

f dν ,

this amounts to simultaneous deviation inequalities for all 1-Lipschitz observables. We recall briefly
the well-known fact that it is fairly easy to obtain a deviation inequality for one Lipschitz observable
without a constant depending on the deviation scale t. Indeed, consider a 1-Lipschitz function f
and a sequence X i of i.i.d. variables with law µ. By Chebyshev’s bound, for θ > 0,

P(
1

n

∑

f (X i)−
∫

f µ≥ ε) ≤ exp−n[θε− log(

∫

eθ f (x)µ(d x)e−θ
∫

f µ)]

According to Bobkov-Götze’s dual characterization of T1, the term inside the log is bounded above
by eCθ2

, for some positive C , whence P( 1
n

∑

f (X i)−
∫

f µ ≥ ε) ≤ exp−n[θε − Cθ2]. Finally, take

θ = 1
2C
ε to get

P(
1

n

∑

f (X i)−
∫

f µ≥ ε)≤ e−Cnt2/2.

Thus, we may see the multiplicative constant that we obtain as a trade-off for the obtention of
uniform deviation estimates on all Lipschitz observables.

2.3 Examples of application

For practical purposes, it is important to give the order of magnitude of the multiplicative constant
Ct depending on t. We address this question on several important examples in this paragraph.
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2.3.1 The Rd case

Example 2.8. Denote θ(x) = 32x log
�

2
�

32x log 32x − 32x + 1
��

. In the case E =Rd , the numeri-
cal constant Ct appearing in Theorem 2.3 satisfies :

Ct ≤ 2
�

1+ θ(
1

at
)
�

2
Cdθ(

1

at
)d

(6)

where Cd only depends on d. In particular, for all t ≤ 1
2a

, there exist numerical constants C1 and C2
such that

Ct ≤ C1(1+
1

at
log

1

at
)e

Cd Cd
2 (

1

at
log

1

at
)d

.

Remark. The constants Cd , C1, C2 may be explicitely determined from the proof. We do not do so
and only state that Cd grows exponentially with d.

Proof. For a measure µ ∈ P (Rd), a convenient natural choice for a compact set of large measure is
a Euclidean ball. Denote BR = {x ∈ Rd , |x | ≤ R}. We will denote by Cd a constant depending only
on the dimension d, that may change from line to line. Suppose that µ satisfies the assumptions in
Theorem 2.3. By Chebyshev’s bound, µ(Bc

R)≤ 2e−aR, so we may choose K = BRt
with

Rt ≥
1

a
log
�

2
�

32

at
log

32

at
−

32

at
+ 1
��

.

Next, the covering numbers for BR are bounded by :

N (BR,δ)≤ Cd

�

R

δ

�d

.

Using the bound (21) of Proposition B.2, we have

Ct ≤
�

2+ 2b
32Rt

t
c
�

2
Cd

�

32Rt

t

�d

.

This concludes the proof for the first part of the proposition. The second claim derives from the fact
that for x > 2, there exists a numerical constant k such that θ(x)≤ kx log x .

Example 2.8 improves slightly upon the result for the W1 metric in [8]. One may wonder whether
this order of magnitude is close to optimality. It is in fact not sharp, and we point out where better
results may be found.

In the case d = 1, W1(Ln,µ) is equal to the L1 norm of the difference Fn − F , where Fn and F
denote respectively the cumulative distribution functions (c.d.f.) of Ln and µ (see e.g. [10]), and it
is bounded above by the Kolmogorov-Smirnov divergence supx∈R |Fn(x)− F(x)|. As a consequence
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of the celebrated Dvorestky-Kiefer-Wolfowitz theorem (see [26], [32]), we have the following : if
µ ∈ P (R) has a continuous c.d.f., then

P(W1(Ln,µ)> t)≤ 2e−2nt2
.

The behaviour of the Wasserstein distance between empirical and true distribution in one dimension
has been very thoroughly studied by del Barrio, Giné, Matran, see [10].

In dimensions greater than 1, the result is also not sharp. Integrating (6), one recovers a bound of
the type E(W1(Ln,µ))≤ Cn−1/(d+2)(log n)c . Looking into the proof of our main result, one sees that
any improvement of this bound will automatically give a sharper result than (6). For the uniform
measure over the unit cube, results have been known for a while. The pioneering work in this
framework is the celebrated article of Ajtai, Komlos and Tusnády [1]. M.Talagrand [31] showed
that when µ is the uniform distribution on the unit cube (in which case it clearly satisfies a T1
inequality) and d ≥ 3, there exists cd ≤ Cd such that

cd n−1/d ≤ EW1(Ln,µ)≤ Cd n−1/d .

Sharp results for general measures are more recent. In general, under some polynomial moment
condition, one may get an estimate of the form EW1(Ln,µ) ≤ cn−1/d : see the article of Dobrić and
Yukich [13] for the compactly supported case, and the recent preprint by F. Barthe and C. Bordenave
[3] for the unbounded case. More precisely, these articles contain sharp asymptotic estimates of the
form

EW1(L
1
n, L2

n)∼ C(µ)n−1/d

where L1
n and L2

n are two independent copies of the empirical measure, that hold as soon as d > 2,
and it is possible to deduce from the proofs non-asymptotic bounds with explicit constants of the
form EW1(Ln,µ)≤ C ′(µ)n−1/d . Plugging such bounds into our proof would yield a bound on Ct of
the form

Ct ≤ exp[c/td−2]

for some c > 0 depending on the data. We do not develop this point in full here. We point out that
sharper results for spaces of finite-dimensional type may also be found in the preprint [6].

2.3.2 A first bound for Standard Brownian motion

We wish now to illustrate our results on an infinite-dimensional case. A first natural candidate is the
law of the standard Brownian motion, with the sup-norm as reference metric. The natural idea that
we put in place in this paragraph is to choose as large compact sets the α-Hölder balls, which are
compact for the sup-norm. However the remainder of this paragraph serves mainly an illustrative
purpose : we will obtain sharper results, valid for general Gaussian measures on (separable) Banach
spaces, in paragraph 2.3.4.

We consider the canonical Wiener space
�

C ([0,1],R),γ,‖.‖∞
�

, where γ denotes the Wiener mea-
sure, under which the coordinate process Bt :ω→ω(t) is a standard Brownian motion.
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Example 2.9. Denote by γ the Wiener measure on
�

C ([0,1],R),γ,‖.‖∞
�

, and for α < 1/2, define

Cα = 21+α 2(1−2α)/4

1− 24/(1−2α)
‖Z‖4/(1−2α)

where ‖Z‖p denotes the Lp norm of a N (0,1) variable Z. There exists k > 0 such that for every

t ≤ 144/
p

2 log2, γ satisfies

P(W1(Ln,γ)≥ t)≤Ct e
−nt2/64

with

Ct ≤ expexp(kCα

p

log 1/t

t
)1/α.

Proof. For 0< α≤ 1, define the α-Hölder semi-norm as

|x |α = sup
t,s∈[0,1]

|x(t)− x(s)|
|t − s|α

.

Let 0 < α ≤ 1 and denote by Cα the Banach space of α-Hölder continuous functions vanishing at
0, endowed with the norm ‖.‖α. It is a classical fact that the Wiener measure is concentrated on
Cα for all α ∈]0,1/2[. By Ascoli-Arzela’s theorem, Cα is compactly embedded in C ([0, 1],R), or
in other words the α-Hölder balls Bα,R = {x ∈ C ([0, 1],R), ‖x‖α ≤ R} are totally bounded for the
uniform norm. This makes B(α, R) good candidates for compact spaces of large measure. We need
to evaluate how big B(α, R) is w.r.t. γ.

To this end we use the fact that the Wiener measure is also a Gaussian measure on Cα (see [2]).
Therefore Lemma D.1 applies : denote

mα = E sup
t
‖Bt‖α, s2

α = E(sup
t
‖Bt‖α)2,

we have

γ(B(α, R)c)≤ 2e−(R−mα)2/2s2
α

for R≥ mα. Choosing

Rt ≥ mα+
�

2s2
α log 2(

32

at
log

32

at
−

32

at
+ 1)

�1/2

(7)

guarantees that

γ(B(α, Rt)
c)≤

�

32

at
log

32

at
−

32

at
+ 1
�−1

.
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On the other hand, according to Corollary C.2, mα and sα are bounded by Cα. And Lemma D.3
shows that choosing a =

p

2 log2/3 ensures Eea supt |Bt | ≤ 2.

Elementary computations show that for t ≤ 144/
p

2 log 2, we can pick

Rt = 3Cα

q

log(96/(
p

2 log2t))

to comply with the requirement in (7).

Bounds for the covering numbers in α-Hölder balls are computed in [7] :

N (B(α, R),δ)≤ 10
R

δ
exp



log(3)5
1
α

�

R

δ

�
1
α



 . (8)

We recover the (unpretty !) bound

Ct ≤ 2(1+ 96
Cα
t

q

log 96/(
p

2 log2t))exp

�

240 log 2
Cα
t

q

log 96/(
p

2 log 2t)

× exp log 3

�

120
Cα
t

q

log 96/(
p

2 log2t)

�1/α


 .

The final claim in the Proposition is obtained by elementary majorizations.

2.3.3 Paths of S.D.E.s

H.Djellout, A.Guillin and L.Wu established a T1 inequality for paths of S.D.E.s that allows us to work
as in the case of Brownian motion. We quote their result from [19].

Consider the S.D.E. on Rd

dX t = b(X t)d t +σ(X t)dBt , X0 = x0 ∈Rd (9)

with b : Rd → Rd , σ : Rd →Md×m and (Bt) is a standard m-dimensional Brownian motion. We
assume that b and σ are locally Lipschitz and that for all x , y ∈Rd ,

sup
x
|
p

trσ(x)tσ(x)| ≤ A, 〈y − x , b(y)− b(x)〉 ≤ B(1+ |y − x |2)

For each starting point x it has a unique non-explosive solution denoted (X t(x)t≥0 and we denote
its law on C ([0, 1],Rd) by Px .

Theorem 2.10 ([19]). Assume the conditions above. There exists C depending on A and B only such
that for every x ∈ Rd , Px satisfies a T1(C) inequality on the space C ([0, 1],Rd) endowed with the
sup-norm.
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We will now state our result. A word of caution : in order to balance readability, the following
computations are neither optimized nor made fully explicit. However it should be a simple, though
dull, task for the reader to track the dependence of the numerical constants on the parameters.

From now on we make the simplifying assumption that the drift coefficient is globally bounded by
B (this assumption is certainly not minimal).

Example 2.11. Let µ denote the law of the solution of the S.D.E. (9) on the Banach space C([0, 1],Rd)
endowed with the sup-norm. Let C be such that µ satisfies T1(C). For all 0 < α < 1/2 there exist Cα
and c depending only on A, B, α and d, and such that for t ≤ c,

P(W1(Ln,µ)≥ t)≤Ct e
−nt2/8C

and

Ct ≤ expexp

�

Cα

�

log
1

t

�−1+1/2α�1

t

�−1+3/2α
�

.

Proof. The proof goes along the same lines as the Brownian motion case, so we only outline the
important steps. First, there exists a depending explicitely on A, B, d such that EPx

ea‖X .‖∞ ≤ 2 : this
can be seen by checking that the proof of Djellout-Guillin-Wu actually gives the value of a Gaussian
moment for µ as a function of A, B, d, and using standard bounds.

Corollary C.3 applies for α < 1/2 and p such that 1/p = 1/2−α : there exists C ′ <+∞ depending
explicitely on A, B, α, d, such that E‖X .‖

p
α ≤ C ′. Consequently,

µ(B(α, R)c)≤ C ′/Rp.

So choosing

R=
�

C ′(
32

at
log

32

at
−

32

at
+ 1)

�1/p

guarantees that

µ(B(α, Rt)
c)≤

�

32

at
log

32

at
−

32

at
+ 1
�−1

.

For t ≤ c small enough, R ≤ C ′′
�

1
t

log 1
t

�1/p
with c, C ′′ depending on A, B, α, d. The conclusion is

reached again by using estimate (8) on the covering numbers of Hölder balls.

2.3.4 Gaussian r.v.s in Banach spaces

In this paragraph we apply Theorem 2.6 to the case where E is a separable Banach space with norm
‖.‖, and µ is a centered Gaussian random variable with values in E, meaning that the image of µ by
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every continuous linear functional f ∈ E∗ is a centered Gaussian variable in R. The couple (E,µ) is
said to be a Gaussian Banach space.

Let X be a E-valued r.v. with law µ, and define the weak variance of µ as

σ = sup
f ∈E∗, | f |≤1

�

E f 2(X )
�1/2

.

The small ball function of a Gaussian Banach space (E,µ) is the function

ψ(t) =− logµ(B(0, t)).

We can associate to the couple (E,µ) their Cameron-Martin Hilbert space H ⊂ E, see e.g. [22] for
a reference. It is known that the small ball function has deep links with the covering numbers of
the unit ball of H, see e.g. Kuelbs-Li [21] and Li-Linde [24], as well as with the approximation
of µ by measures with finite support in Wasserstein distance (the quantization or optimal quan-
tization problem), see Fehringer’s Ph.D. thesis [15], Dereich-Fehringer-Matoussi-Scheutzow [12],
Graf-Luschgy-Pagès [18]. It should thus come as no surprise that we can give a bound on the
constant Kt depending solely on ψ and σ. This is the content of the next example.

Example 2.12. Let (E,µ) be a Gaussian Banach space. Denote by ψ its small ball function and by σ
its weak variance. Assume that t is such that ψ(t/16)≥ log2 and t/σ ≤ 8

p

2 log 2. Then

P(W1(Ln,µ)≥ t)≤ Kt e
−nt2/16σ2

with

Kt = expexp
�

c(ψ(t/32) + log(σ/t))
�

for some universal constant c.

A bound for c may be tracked in the proof.

Proof. Step 1. Building an approximating measure of finite support.

Denote by K the unit ball of the Cameron-Martin space associated to E and µ, and by B the unit ball
of E. According to the Gaussian isoperimetric inequality (see [22]), for all λ > 0 and ε > 0,

µ(λK + εB)≥ Φ
�

λ+Φ−1(µ(εB))
�

where Φ(t) =
∫ t

−∞ e−u2/2du/
p

2π is the Gaussian c.d.f.. Note

µ′ =
1

µ(λK + εB)
1λK+εBµ

the restriction of µ to the enlarged ball. As proved in [6], Appendix 1, the Gaussian measure µ
satisfies a T2(2σ2) inequality, hence a T1 inequality with the same constant. We have
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W1(µ,µ′)≤
p

2σ2H(µ′|µ) =
p

−2σ2 logµ(λK + εB)

≤
p

−2σ2 logΦ(λ+Φ−1(µ(εB))).

On the other hand, denote k = N (λK ,ε) the covering number of λK (w.r.t. the norm of E). Let
x1, . . . , xk ∈ K be such that union of the balls B(x i ,ε) contains λK . From the triangle inequality we
get the inclusion

λK + εB ⊂
k
⋃

i=1

B(x i , 2ε).

Choose a measurable map T : λK + εB → {x1, . . . , xk} such that for all x , |x − T (x)| ≤ 2ε. The
push-forward measure µk = T#µ

′ has support in the finite set {x1, . . . , xk}, and clearly

W1(µ
′,µk)≤ 2ε.

Choose ε = t/16, and

λ= Φ−1(e−t2/(128σ2))−Φ−1(µ(εB)) (10)

=Υ−1(e−ψ(t/16)) +Φ−1(e−t2/(128σ2)) (11)

where Υ(t) =
∫ +∞

t
e−u2/2du/

p
2π is the tail of the Gaussian distribution (we have used the fact that

Φ−1+Υ−1 = 0, which comes from symmetry of the Gaussian distribution).

Altogether, this ensures that W1(µ,µk)≤ t/4.

Step 2. Bounding λ.

We can use the elementary bound Υ(t)≤ e−t2/2, t ≥ 0 to get

Υ−1(u)≤
p

−2 log u, 0< u≤ 1/2

which yields Υ−1(e−ψ(t/16))≤
p

ψ(t/16) as soon as ψ(t/16)≥ log2. Likewise,

Φ−1(e−t2/128σ2
) = Υ−1(1− e−t2/128σ2

)

≤

r

2 log
1

1− e−t2/128σ2

as soon as t2/128σ2 ≤ log 2. Moreover, for u ≤ log 2, we have 1/(1− e−u) ≤ 2 log2/u. Putting
everything together, we get

λ≤
p

ψ(t/16) + c
p

logσ/t (12)
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for some universal constant c > 0. Observe that the first term in (12) will usually be much larger
than the second one.

Step 3.

From Theorem 2.6 we know that

P(W2(µ, Ln)≥ t)≤ Kt e
−nt2/16σ2

with

Kt = exp
�

1

2σ2

k

2
(Diam {x1, . . . , xk})2

�

.

The diameter is bounded by Diam K = 2σλ≤ cσ(
p

ψ(t/16) + c
p

logσ/t).

We wish now to control k =N (λK , t/16) in terms of the small ball function ψ. The two quantities
are known to be connected : for example, Lemma 1 in [21] gives the bound

N (λK ,ε)≤ eλ
2/2+ψ(ε/2).

Thus

k ≤ exp
�

ψ(t/16) +ψ(t/32) + c logσ/t
�

.

With some elementary majorizations, this ends the proof.

We can now sharpen the results of Proposition 2.9. Let γ denote the Wiener measure on
C ([0, 1],Rd) endowed with the sup-norm, and denote by σ2 its weak variance. Let λ1 be the
first nonzero eigenvalue of the Laplacian operator on the ball of Rd with homogeneous Dirichlet
boundary conditions : it is well-known that the small ball function for the Brownian motion on Rd

is equivalent to λ1/t2 when t → 0.

As a consequence, there exists C = C(d) such that for small enough t > 0 we have

W1(Ln,γ)≤ exp
�

exp(Cλ1/t2)
�

exp
�

−nt2/16σ2
�

. (13)

2.4 Bounds in the dependent case : occupation measures of contractive Markov
chains

The results above can be extended to the convergence of the occupation measure for a Markov
process. As an example, we establish the following result.

Theorem 2.13. Let P(x , d y) be a Markov kernel on Rd such that

1. the measures P(x , .) satisfy a T1(C) inequality

2. W1(P(x , .), P(y, .))≤ r|x − y| for some r < 1.
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Let π denote its invariant measure. Let (X i)i≥0 denote the Markov chain associated with P under
X0 = 0. Let m1 =

∫

|x |dµ.

Set a = 2
C

�

p

4m2
1+ C log2− 2m1

�

. There exists Cd > 0 depending only on d such that for t ≤ 2/a,

P(W1(Ln,π)≥ t)≤ K(n, t)exp−n
(1− r)2

8C
t2

where

K(n, t) = exp
�

m1p
nC
+ Cd(

1

at
log

1

at
)

d
2

�2

.

Remark. The result is close to the one obtained in the independent case, and, as stressed in the
introduction, it holds interest from the perspective of numerical simulation, in cases where one
cannot sample uniformly from a given probability distribution π but may build a Markov chain that
admits π as its invariant measure.

Remark. We comment on the assumptions on the transition kernel. The first one ensures that the T1
inequality is propagated to the laws of Xn, n≥ 1. As for the second one, it has appeared several times
in the Markov chain literature (see e.g. [19], [28], [20]) as a particular variant of the Dobrushin
uniqueness condition for Gibbs measures. It has a nice geometric interpretation as a positive lower
bound on the Ricci curvature of the Markov chain, put forward for example in [28]. Heuristically,
this condition implies that the Markov chains started from two different points and suitably coupled
tend to get closer.

Remark. In the preprint [6], we put forward a different approach under the assumption that the
Markov transition kernel satisfies a discrete-time Poincaré inequality. This requirement is weaker
than the contractivity condition that we ask for here, as shown in [28], Corollary 30. On the
other hand, it only allows to obtain a control on the average distance E(W1(Ln,µ)), and it requires
more stringent regularity conditions on the initial law (it should have a density with respect to the
invariant measure of the Markov chain).

3 Proof of Theorem 2.3

The starting point is the following result, obtained by Gozlan and Leonard ([16], see Chapter 6) by
studying the tensorization properties of transportation inequalities.

Lemma 3.1. Suppose that µ ∈ P (E) verifies a α(Td) inequality. Define on En the metric

d⊕n((x1, . . . , xn), (y1, . . . , yn)) =
n
∑

i=1

d(x i , yi).

Then µ⊗n ∈ P (En) verifies a α′(Td⊕n) inequality, where α′(t) = 1
n
α(nt). Hence, for all Lipschitz

functionals Z : En→R (w.r.t. the distance d⊕n), we have the concentration inequality

µ⊗n(Z ≥
∫

Zdµ⊗n+ t)≤ exp−nα(
t

n‖Z‖Lip
) for all t ≥ 0.
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Let X i be an i.i.d. sample of µ. Recalling that

W1(Ln,µ) = sup
f 1−Lip

1

n

n
∑

i=1

f (X i)−
∫

f dµ

and that

(x1, . . . , xn) 7→ sup
f 1−Lip

1

n

n
∑

i=1

f (x i)−
∫

f dµ

is 1
n
-Lipschitz w.r.t. the distance d⊕n on En (as a supremum of 1

n
-Lipschitz functions), the following

ensues :

P(W1(Ln,µ)≥ E[W1(Ln,µ)] + t)≤ exp−nα(t). (14)

Therefore, we are led to seek a control on E[W1(Ln,µ)]. This is what we do in the next lemma.

Lemma 3.2. Let a > 0 be such that Ea,1 =
∫

ead(x ,x0)µ(d x)≤ 2.

Let δ > 0 and K ∈ E be a compact subset containing x0. Let Nδ denote the covering number of order δ
for the set FK of 1-Lipschitz functions on K vanishing at x0 (endowed with the uniform distance).

Also define σ : [0,+∞)→ [1,+∞) as the inverse function of x 7→ x ln x − x + 1 on [1,+∞).
The following holds :

E[W1(Ln,µ)]≤ 2δ+ 8
1

a

1

σ( 1
µ(K c))

+ Γ(Nδ, n)

where

Γ(Nδ, n) = inf
λ>0

1

λ
[logNδ + nα∗(

λ

n
)].

Proof. We denote by F the set of 1-Lipschitz functions f over E such that f (x0) = 0. Let us denote

Ψ( f ) =

∫

f dµ−
∫

f d Ln,

we have for f , g ∈ F :

|Ψ( f )−Ψ(g)| ≤
∫

| f − g|1K dµ+

∫

| f − g|1K d Ln

+

∫

(| f |+ |g|)1K c dµ+

∫

(| f |+ |g|)1K c d Ln

≤ 2‖ f − g‖L∞(K)+ 2

∫

d(x , x0)1K c dµ+ 2

∫

d(x , x0)1K c d Ln
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When f : E → R is a measurable function, denote by f |K its restriction to K . Notice that for every
g ∈ FK , there exists f ∈ F such that f |K = g. Indeed, one may set

f (x) =

(

g(x) if x ∈ K

infy∈K f (y) + d(x , y) otherwise

and check that f is 1-Lipschitz over E.

By definition ofNδ, there exist functions g1, . . . , gNδ ∈ FK such that the balls of center gi and radius
δ (for the uniform distance) cover FK . We can extend these functions to functions fi ∈ F as noted
above.

Consider f ∈ F and choose fi such that | f − fi| ≤ δ on K :

Ψ( f ) ≤ |Ψ( f )−Ψ( fi)|+Ψ( fi)

≤ Ψ( fi) + 2δ+ 2

∫

d(x , x0)1K c dµ+ 2

∫

d(x , x0)1K c d Ln

≤ max
j=1,...,Nδ

Ψ( f j) + 2δ+ 2

∫

d(x , x0)1K c dµ+ 2

∫

d(x , x0)1K c d Ln

The right-hand side in the last line does not depend on f , so it is also greater than W1(Ln,µ) =
supF Ψ( f ).

We pass to expectations, and bound the terms on the right. We use Orlicz-Hölder’s inequality with
the pair of conjugate Young functions

τ(x) =

(

0 if x ≤ 1

x log x − x + 1 otherwise

τ∗(x) = ex − 1

(for definitions and a proof of Orlicz-Hölder’s inequality, the reader may refer to [29], Chapter 10).
We get

∫

d(x , x0)1K c dµ≤ 2‖1K c‖τ‖d(x , x0)‖τ∗

where

‖1K c‖τ = inf{θ > 0,

∫

τ

�

1K c

θ

�

dµ≤ 1}

and

‖d(x , x0)‖τ∗ = inf{θ > 0,

∫

�

e
d(x ,x0)
θ − 1

�

dµ≤ 1}.
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It is easily seen that ‖1K c‖τ = 1/σ(1/µ(K c)). And we assumed that a is such that Ea,1 =
∫

exp ad(x , x0)dµ≤ 2, so ‖d(x , x0)‖τ∗ ≤ 1/a. Altogether, this yields

∫

d(x , x0)1K c dµ≤ 2
1

a

1

σ( 1
µ(K c))

.

Also, if X1, . . . , Xn are i.i.d. variables of law µ,

E[

∫

d(x , x0)1K c d Ln] = E[d(X1, x0)1K c (X1)]≤
2

a

1

σ(1/µ(K c))

as seen above. Putting this together yields the inequality

E[W1(Ln,µ)]≤ 2δ+
8

a

1

σ(1/µ(K c))
+E[ max

j=1,...,Nδ
Ψ( f j)].

The remaining term can be bounded by a form of maximal inequality. First fix some i and λ > 0 :
we have

E[expλΨ( fi)] = E[exp
λ

n

n
∑

j=1

( f (X j)−
∫

f dµ)]

= (E[exp
λ

n
( f (X1)−

∫

f dµ)])n

≤ enαþ(λ/n).

In the last line, we have used estimate (19). Using Jensen’s inequality, we may then write

E[ max
j=1,...,Nδ

Ψ( f j)] ≤
1

λ
logE[ max

j=1,...,Nδ
expλΨ( f j)]

≤
1

λ
log

Nδ
∑

j=1

E[expλΨ( f j)]

≤
1

λ
[logNδ + nα∗(

λ

n
)]

So minimizing in λ we have

E[ max
j=1,...,Nδ

Ψ( f j)]≤ Γ(Nδ, n).

Bringing it all together finishes the proof of the lemma.

We can now finish the proof of Theorem 2.3.
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Proof. Come back to the deviation bound (14). Choose δ = t/8, and choose K such that

µ(K c)≤
�

32

at
log

32

at
−

32

at
+ 1
�−1

.

We thus have 2δ+ 8[aσ(1/µ(K c))]−1 ≤ t/2, which implies

E(W1(Ln,µ))≤ t/2+Γ(Ct , n) (15)

and so

P(W1(Ln,µ)≥ t)≤ exp−nα(
t

2
−Γ(Nδ, n)),

with the convention α(y) = 0 if y < 0.

4 Proof of Theorem 2.6

In this section, we provide a different approach to our result in the independent case. As earlier we
first aim to get a bound on the speed of convergence on the average W1 distance between empirical
and true measure. The lemma below provides another way to obtain such an estimate.

Lemma 4.1. Let µk ∈ P (E) be a finitely supported measure such that |Supp µk| ≤ k. Let D(µk) =
Diam Supp µk be the diameter of Supp µk. The following holds :

EW1(µ, Ln)≤ 2W1(µ,µk) + D(µk)
p

k/n.

Proof. Let πopt be an optimal coupling of µ and µk (it exists : see e.g. Theorem 4.1 in [34]), and let
(X i , Yi), 1≤ i ≤ n, be i.i.d. variables on E × E with common law πopt.

Let Ln = 1/n
∑n

i=1δX i
and Lk

n = 1/n
∑n

i=1δYi
. By the triangle inequality, we have

W1(Ln,µ)≤W1(Ln, Lk
n) +W1(µ,µk) +W1(µ

k, Lk
n).

With our choice of coupling for Ln and Lk
n it is easily seen that

EW1(Ln, Lk
n)≤W1(µ,µk)

Let us take care of the last term. We use Lemma 4.2 below to obtain that
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EW1(L
k
n,µk)≤ D(µk)E

 

1−
k
∑

i=1

µk(x i)∧ Lk
n(x i)

!

= D(µk)
k
∑

i=1

E(µk(x i)−µk(x i)∧ Lk
n(x i))

≤ D(µk)
k
∑

i=1

E|µk(x i)− Lk
n(x i)|

≤
D(µk)

n

k
∑

i=1

Æ

E|nµk(x i)− nLk
n(x i)|2.

Observe that the variables nLk
n(x i) follow binomial laws with parameter µk(x i) and n. We get :

EW1(µ
k, Lk

n)≤
D(µk)

n

k
∑

i=1

p

nµk(x i)(1−µk(x i))≤ D(µk)
p

k/n

(the last inequality being a consequence of the Cauchy-Schwarz inequality).

Lemma 4.2. Let µ,ν be probability measures with support in a finite metric space {x1, . . . , xk} of
diameter bounded by D. Then

W1(µ,ν)≤ D

 

1−
k
∑

i=1

�

µ(x i)∧ ν(x i)
�

!

.

Proof. We build a coupling of µ and ν that leaves as much mass in place as possible, in the following
fashion : set fi = µ(x i)∧ ν(x i) and λ=

∑k
i1

fi . Define the measures

f =
k
∑

i=1

fiδx i
,

µ1 =
1

1−λ
(µ− f ),

ν1 =
1

1−λ
(ν − f ).

Finally, build independent random variables X1 ∼ µ1, Y1 ∼ ν1, Z ∼ q and B with Bernoulli law of
parameter λ. Define

X = (1− B)X1+ BZ , Y = (1− B)Y1+ BZ .

It is an easy check that X ∼ µ, Y ∼ ν .
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Thus we have the bound

W1(µ,ν)≤ E|X − Y |= (1−λ)E|X1− Y1| ≤ D(1−λ)

and this concludes the proof.

Proof of Theorem 2.6. As stated earlier, we have the concentration bound

P(Wp(Ln,µ)≥ t +EWp(Ln,µ))≤ e−nt2/C .

The proof is concluded by arguments similar to the ones used before, calling upon Lemma 4.1 to
bound the mean.

5 Proofs in the dependent case

Before proving Theorem 2.13, we establish a more general result in the spirit of Lemma 3.2.

As earlier, the first ingredient we need to apply our strategy of proof is a tensorization property for
the transport-entropy inequalities in the case of non-independent sequences. To this end, we restate
results from [19], where only T1 inequalities were investigated, in our framework.

For x = (x1, . . . , xn) ∈ En, and 1 ≤ i ≤ n, denote x i = (x1, . . . , x i). Endow En with the distance
d1(x , y) =

∑n
i1

d(x i , yi). Let ν ∈ P (En), the notation ν i(d x1, . . . , d x i) stands for the marginal

measure on E i , and ν i(.|x i−1) stands for the regular conditional law of x i knowing x i−1, or in other
words the conditional disintegration of ν i with respect to ν i−1 at x I−1(its existence is assumed
throughout).

The next theorem is a slight extension of Theorem 2.11 in [19]. Its proof can be adapted without
difficulty, and we omit it here.

Theorem 5.1. Let ν ∈ P (En) be a probability measure such that

1. For all i ≥ 1 and all x i−1 ∈ E i−1 (E0 = {x0}), ν i(.|x i−1) satisfies a α(Td) inequality, and

2. There exists S > 0 such that for every 1-Lipschitz function

f : (xk+1, . . . , xn)→ f (xk+1, . . . , xn),

for all xk−1 ∈ Ek−1 and xk, yk ∈ E, we have

�

�

�Eν
�

f (Xk+1, . . . , Xn)|X k = (xk−1, xk)
�

−Eν
�

f (Xk+1, . . . , Xn)|X k = (xk−1, yk)
�

�

�

�

≤ Sd(xk, yk)
(16)
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Then ν verifies the transportation inequality α̃(Td)≤ H with

α̃(t) = nα
�

1

n(1+ S)
t
�

.

In the case of a homogeneous Markov chain (Xn)n∈N with transition kernel P(x , d y), the next
proposition gives sufficient conditions on the transition probabilities for the laws of the variables Xn
and the path-level law of (X1, . . . , Xn) to satisfy some transportation inequalities. Once again the
statement and its proof are adaptations of the corresponding Proposition 2.10 of [19].

Proposition 5.2. Let P(x , d y) be a Markov kernel such that

1. the transition measures P(x , .) satisfies α(Td)≤ H for all x ∈ E, and

2. W1(P(x , .), P(y, .))≤ rd(x , y) for all x , y ∈ E and some r < 1.

Then there exists a unique invariant probability measure π for the Markov chain associated to P, and
the measures Pn(x , .) and π satisfy α′(Td)≤ H, where α′(t) = 1

1−r
α((1− r)t).

Moreover, under these hypotheses, the conditions of Theorem 5.1 are verified with S = r
1−r

so that the

law Pn of the n-uple (X1, . . . , Xn) under X0 = x0 ∈ E verifies α̃(Td)≤ H where α̃(t) = nα(1−r
n

t).

Proof. The first claim is obtained exactly as in the proof of Proposition 2.10 in [19], observing that
the contraction condition 2 is equivalent to

W1(ν1P,ν2P)≤ rW1(ν1,ν2) for all ν1,ν2 ∈ P1(E)

and also to

‖P f ‖Lip ≤ r‖ f ‖Lip for all f .

This entails that whenever f is 1-Lipschitz, Pn f is rn-Lipschitz. Now, by condition 1, we have

Pn(es f )≤ Pn−1
�

exp
�

sP f +αþ(s)
��

≤ Pn−2
��

sP2 f +αþ(s) +αþ(rs)
��

≤ . . .

≤ exp
��

sPn f +αþ(s) + . . .+αþ(rns)
��

.

As αþ is convex and vanishes at 0, we have αþ(r t)≤ rαþ(t) for all t ≥ 0. Thus,

Pn(es f ≤ exp

 

sPn f +
+∞
∑

k=0

rkαþ(s)

!

= exp
�

sPn f +
1

1− r
αþ(s)

�

It remains only to check that 1
1−r
αþ is the monotone conjugate of α′ and to invoke Proposition A.2.

Moving on to the final claim, since the process is homogeneous, to ensure that (16) is satisfied, we
need only show that for all k ≥ 1, for all f : Ek→R 1-Lipschitz w.r.t. d1, the function
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x 7→ E
�

f (X1, . . . , Xk)|X0 = x
�

is r
1−r

-Lipschitz. We show the following : if g : E2 → R is such that for all x1, x2 ∈ E the functions
g(., x2), resp. g(x1, .), are 1-Lipschitz, resp. λ-Lipschitz, then the function

x1 7→
∫

g(x1, x2)P(x1, d x2)

is (1+λr)-Lipschitz. Indeed,

|
∫

g(x1, x2)P(x1, d x2)−
∫

g(y1, x2)P(y1, d x2)|

≤
∫

|g(x1, x2)− g(y1, x2)|P(x1, d x2) + |
∫

g(y1, x2)(P(x1, d x2)− P(y1, d x2))|

≤ (1+λr)d(x1, y1).

It follows easily by induction that the function

fk : x1 7→
∫

f (x1, . . . , xk)P(xk−1, d xk) . . . P(x1, d x2)

has Lipschitz norm bounded by 1+ r + . . . rk ≤ 1
1−r

. Hence the function x 7→
∫

fk(x1)P(x , d x1) has
Lipschitz norm bounded by r

1−r
. But this function is precisely

x 7→ E
�

f (X1, . . . , Xk)|X0 = x
�

and the proof is complete.

We are in position to prove the analogue of Lemma 3.2 in the Markov case.

Lemma 5.3. Consider the Markov chain associated to a transition kernel P as in Proposition 5.2. Let Pn
denote the law of the Markov path (X1, . . . , Xn) associated to P under X0 = x0. Introduce the averaged
occupation measure πn = EPn

(Ln) and the invariant measure π. Let m1 =
∫

d(x , x0)π(d x).

Suppose that there exists a > 0 such that for all i ≥ 1 Ea,i =
∫

ead(x ,x0)P i(d x)≤ 2.

Let δ > 0 and K ∈ E be a compact subset containing x0. Let Nδ denote the metric entropy of order δ
for the set FK of 1-Lipschitz functions on K vanishing at x0 (endowed with the uniform distance). Also
define σ : [0,+∞)→ [1,+∞) as the inverse function of x 7→ x ln x − x + 1 on [1,+∞).
The following holds :

EPn
[W1(Ln,πn)]≤ 2δ+

8

a

1

n

n
∑

i=1

1

σ( 1
P i(K c))

+ Γ(Nδ, n)

W1(πn,π)≤
m1

n(1− r)
.
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where Γ(Nδ, n) = infλ>0
1
λ

h

logNδ + nαþ( λ
n(1−r))

i

Proof. Convergence to the equilibrium measure is dealt with using the contraction hypothesis. In-
deed, by convexity of the map µ 7→W1(µ,π), we first have

W1(πn,π)≤
1

n

n
∑

i=1

W1(P
i(x0, .),π).

Now, using that the contraction property (2) in Proposition 5.2 is equivalent to the inequality
W1(µ1P,µ2P)≤ rW1(µ1,µ2) for all µ1,µ2 ∈ P1(E), and using the fact that π is P-invariant,

W1(πn,π)≤
1

n

n
∑

i=1

r iW1(δx0
,π)≤

W1(δx0
,π)

n(1− r)
=

m1

n(1− r)
.

In order to take care of the second term, we will use the same strategy (and notations) as in the
independent case. Introduce once again a compact subset K ⊂ E and a covering of FK by functions
f1, . . . , fNδ suitably extendend to E. With the same arguments as before, we get

EPn
W1(Ln,πn)≤EPn

( max
j=1,...,Nδ

Ψ( f j)) + 2δ+ 2

∫

d(x , x0)1K c dπn

+ 2EPn
(

∫

d(x , x0)1K c d Ln)

Then,

∫

d(x0, y)πn(d y) =
1

n

n
∑

i=1

∫

d(x0, y)1K c P i(x0, d y).

As before we can use Orlicz-Hölder’s inequality to recover the bound

∫

d(x0, y)dπn ≤
2

a

1

n

n
∑

i=1

1

σ( 1
P i(K c))

.

And likewise,

E(

∫

d(x , x0)1K c d Ln) = E





1

n

n
∑

i=1

d(x0, X i)1K c





=
1

n

n
∑

i=1

∫

d(x0, y)1K c P i(x0, d y)

and we have the same bound as above.
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As for the last term remaining : it will be possible to use the maximal inequality techniques just as
in the proof of Theorem 2.3, provided that we can find bounds on the terms E

�

expλΨ( f j)
�

, where
this time

Ψ( f ) =

∫

f d Ln−
∫

f dπn.

Denote

F j(x1, . . . , xn) =
1

n

n
∑

i=1

f j(x i).

This is a 1
n
-Lipschitz function on En. Since Pn satisfies a α̃(Td)≤ H inequality, we have

∫

expλF jdPn ≤ exp

�

λ

∫

F jdPn+ nαþ(
λ

n(1− r)
)

�

.

But this is exactly the bound

E
�

expλΨ( f j)
�

≤ enαþ( λ
n(1−r) ).

We may then proceed as in the independent case and obtain

E[ max
j=1,...,Nδ

Ψ( f j)]≤ inf
λ>0

1

λ

�

logNδ + nαþ(
λ

n(1− r)
)
�

.

For any Lipschitz function f : En→R (w.r.t. d1), we have the concentration inequality

Pn(x ∈ En, f (x)≥
∫

f dPn+ t)≤ exp−nα

�

(1− r)t
n‖ f ‖Lip

�

.

Remembering that En 3 x 7→W1(L x
n ,πn) is 1

n
-Lipschitz, we get the bound

P(W1(Ln,πn)≥ EPn
[W1(Ln,πn)] + t)≤ exp−nα ((1− r)t) . (17)

Thanks to the triangular inequality W1(Ln,πn)≥W1(Ln,π)−W1(πn,π), it holds that

P(W1(Ln,π)≥W1(πn,π) +EPn
[W1(Ln,πn)] + t)≤ exp−nα ((1− r)t) . (18)

This in turn leads to an estimate on the deviations, under the condition that we may exhibit a
compact set with large measure for all the measures P i . We now move on to the proof of Theorem
2.13.
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Proof of Theorem 2.13. Fix δ = t/8. Set mi
1 =
∫

|x |P i(d x). We have

mi
1 ≤ m1+W1(P

i ,π)≤ m1+ r iW1(δ0,π)

≤ 2m1.

Thus

∫

ea|x |P i(d x)≤ eami
1+Ca2/4 ≤ e2m1a+Ca2/4.

With a as in the theorem, the above ensures that
∫

ea|x |P i(d x)≤ 2.

Let BR denote the ball of center 0 and radius R : we have P i(Bc
R)≤ 2e−aR. Let

R=
1

a
log2σ−1(

32

at
).

so that 2δ+ 8
a

1
n

∑n
i=1

1
σ( 1

Pi (Kc )
)
≤ t/2.

As α(t) = 1
C

t2 we can compute

Γ(Nδ, n) =
1

1− r

r

C

n

p

logNδ.

We have chosen K = BR and δ = t/8. Working as in the proof of Proposition 2.8, when t ≤ 2/a, we
can bound logNδ by

logNδ ≤ Cd(
1

at
log

1

at
)d

where Cd is a numerical constant depending on the dimension d. Plugging the above estimates in
(18) and using the inequality (u− v)2 ≥ u2/2− v2 gives the desired result.

A Some facts on transportation inequalities

A.1 Links with transportation inequalities

A crucial feature of transportation inequalities is that they imply the concentration of measure phe-
nomenon, a fact first discovered by Marton ([25]). The following proposition is obtained by a
straightforward adaptation of her famous argument :

Proposition A.1. If µ verifies a α(Td) inequality, then for all measurable sets A ⊂ E with µ(A) ≥ 1
2

and r ≥ r0 = α−1(log 2),

µ(Ar)≥ 1− e−α(r−r0)
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where Ar = {x ∈ E, d(x , A)≤ r}.
Moreover, let X be a r.v. with law µ. For all 1-Lipschitz functions f : E→R and all r ≥ r0, we have

P( f (X )≥ m f + r)≤ e−α(r−r0)

where m f denotes a median of f .

Bobkov and Götze ([5]) were the first to obtain an equivalent dual formulation of transportation
inequalities. We present it here in a more general form obtained by Gozlan and Leonard (see [17]),
in the case when the transportation cost function is the distance.

Proposition A.2 ([17]). Assume that d is a metric defining the topology of E, and that µ admits some
finite exponential moment.

Then µ satisfies the α(Td) inequality

α(Td(µ,ν))≤ H(ν |µ)

for all ν ∈ P (E) with finite first moment if and only if for all f : E→R 1-Lipschitz and all λ > 0,

∫

eλ( f (x)−
∫

f dµ)µ(d x)≤ eα
þ(λ). (19)

Recall that αþ is the monotone conjugate of α, see Definition 2.2.

In the case T1(C), Condition (19) becomes : for all 1-Lipschitz f : E→R and λ > 0,

∫

eλ( f−
∫

f dµ)µ(x)≤ eCλ2/4. (20)

Observe that finiteness of a single-exponential moment is a necessary condition for the existence of
a α(Td) inequality with α a convex increasing positive function. To see this, consider the statement
of Proposition A.1, and notice that α must be super-linear.

The next proposition is a straightforward application of the Bobkiv-Götze criterion.

Proposition A.3. Assume that µ satisfies a α(Td) inequality. Denote

m1 =

∫

d(x0, x)dµ.

As soon as λm1+αþ(λ)≤ log z, we have

Eλ,1 =

∫

eλd(x ,x0)dµ≤ z.
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A.2 Integral criteria

An interesting feature of transportation inequalities is that some of them are characterized by simple
moment conditions, making it tractable to obtain their existence. In [19], Djellout, Guillin and Wu
showed that µ satisfies a T1 inequality if and only if

∫

exp[a0d2(x0, y)]µ(d y) < +∞ for some a0
and some x0. They also connect the value of a0 and of the Gaussian moment with the value of the
constant C appearing in the transportation inequality. More generally, Gozlan and Leonard provide
in [16] a nice criterion to ensure that a α(Td) inequality holds. We only quote here one side of what
is actually an equivalence :

Theorem A.4. Let µ ∈ P (E). Suppose there exists a > 0 with
∫

ead(x0,x)µ(d x) ≤ 2 for some x0 ∈ E,
and a convex, increasing function γ on [0,+∞) vanishing at 0 and x1 ∈ E such that

∫

expγ(d(x1, x))µ(d x)≤ B <+∞.

Then µ satisfies the α(Td) inequality

α(W1(µ,ν))≤ H(ν |µ)

for all ν ∈ P (E) with finite first moment, with

α(x) =max
�

(
p

ax + 1− 1)2, 2γ(
x

2
− 2 log B)

�

.

One particular instance of the result above was first obtained by Bolley and Villani, with sharper
constants, in the case when µ only has a finite exponential moment ([9]), Corollary 2.6). Their
technique involves the study of weighted Pinsker inequalities, and encompasses more generally
costs of the form dp, p ≥ 1 (we give only the case p = 1 here).

Theorem A.5. Let a > 0 be such that Ea,1 =
∫

ead(x0,x)µ(d x)<+∞. Then for ν ∈ P1(E), we have

W1(µ,ν)≤ C
�

H(ν |µ) +
p

H(ν |µ)
�

where C = 2
a

�

3
2
+ log Ea,1

�

<+∞.

And in the case when µ admits a finite Gaussian moment, the following holds ([9], Corollary 2.4) :

Theorem A.6. Let a > 0 be such that Ea,2 =
∫

ead2(x0,x)µ(d x) < +∞. Then µ satisfies a T1(C)
inequality where C = 2

a

�

1+ log Ea,2

�

<+∞.

B Covering numbers of the set of 1-Lipschitz functions

In this section, we provide bounds for the covering numbers of the set of 1-Lipschitz functions over
a precompact space.

Note that these results are likely not new. However, we have been unable to find an original work,
so we provide proofs for completeness.
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Let (K , d) be a precompact metric space, and let N (K ,δ) denote the minimal number of balls of
radius δ necessary to cover K . Let x0 ∈ K be a fixed point, and let F denote the set of 1-Lipschitz
functions over K vanishing at x0. This is also a precompact space when endowed with the metric of
uniform convergence. We denote by N (F ,δ) the minimal number of balls of radius δ necessary to
cover F . Finally, we set R=maxx∈K d(x , x0).

Our first estimate is a fairly crude one.

Proposition B.1. We have

N (F ,ε)≤
�

2+ 2b
3R

ε
c
�N (K , ε

3
)

.

Proof. For simplicity, write n = N (K ,ε). Let x1, . . . , xn be the centers of a set of balls covering K .
For any f ∈ F and 1≤ i ≤ n, we have

| f (x i)|= | f (x i)− f (x0)| ≤ R.

For any n-uple of integers k = (k1, . . . , kn) such that −bR
ε
c − 1 ≤ ki ≤ b

R
ε
c, 1 ≤ i ≤ n, choose a

function fk ∈ F such that kiε ≤ fk(x i)≤ (ki + 1)ε if there exists one.

Consider f ∈ F . Let li = b
f (x i)
ε
c and l = (l1, . . . , ln). Then the function fl defined above exists

and | f (x i)− fl(x i)| ≤ ε for 1 ≤ i ≤ n. But then for any x ∈ K there exists i, 1 ≤ i ≤ n, such that
x ∈ B(x i ,ε), and thus

| f (x)− fl(x)| ≤ | f (x)− f (x i)|+ | f (x i)− fl(x i)|+ | fl(x i)− fl(x)| ≤ 3ε.

This implies thatF is covered by the balls of center fk and radius 3ε. As there are at most (2+2bR
ε
c)n

choices for k, this ends the proof.

However, this bound is quite weak : as one can see by considering the case of a segment, for most
choices of a n-uple, there will not exist a function in F satisfying the requirements in the proof.
With the extra assumption that K is connected, we can get a more refined result.

Proposition B.2. If K is connected, then

N (F ,ε)≤
�

2+ 2b
4R

ε
c
�

2
N (K ,

ε

16
)
. (21)

Remark. The simple idea in this proposition is first to bring the problem to a discrete metric space
(graph), and then to bound the number of Lipschitz functions on this graph by the number of
Lipschitz functions on a spanning tree of the graph.

Proof. In the following, we will denote n = N (K ,ε) for simplicity. Let x i , 1 ≤ i ≤ n be the centers
of a set of n balls B1, . . . Bn covering K . Consider the graph G built on the n vertices a1, . . . , an,
where vertices ai and a j are connected if and only if i 6= j and the balls Bi and B j have a non-empty
intersection.
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Lemma B.3. The graph G is connected. Moreover, there exists a subgraph G′ with the same set of
vertices and whose edges are edges of G, which is a tree.

Proof. Suppose that G were not connected . Upon exchanging the labels of the balls, there would
exist k, 1 ≤ k < n, such that for i ≤ k < j the balls Bi and B j have empty intersection. But then K

would be equal to the disjoint reunion of the sets
⋃k

i=1 Bi and
⋃n

j=k+1 B j , which are both closed and
non-empty, contradicting the connectedness of K .

The second part of the claim is obtained by an easy induction on the size of the graph.

Introduce the set A of functions g : {a1, . . . , an} → R such that g(a1) = 0 and |g(ai)− g(a j)| = 4ε
whenever ai and a j are connected in G′. Using the fact that G′ is a tree, it is easy to see that A
contains at most 2n elements.

Define a partition of K by setting C1 = B1, C2 = B2\C1, . . ., Cn = Bn\Cn−1 (remark that none of
the Ci is empty since the Bi are supposed to constitute a minimal covering). Also fix for each i,
1 ≤ i ≤ n, a point yi ∈ Ci (choosing y1 = x1). Notice that Ci is included in the ball of center yi and
radius 2ε, and that d(yi , y j)≤ 4ε whenever ai and a j are connected in G (and therefore in G′).

To every 1-Lipschitz function f : K →R we associate T ( f ) : {a1, . . . , an} →R defined by T ( f )(ai) =
f (yi). For any x ∈ K , and f1, f2 ∈ F , we have the following :

| f1(x)− f2(x)| ≤ | f1(x)− f1(yi)|+ | f1(yi)− f2(yi)|+ | f2(yi)− f2(x)|
≤ 4ε+ ‖T ( f1)− T ( f2)‖`∞(G′)

where i is such that x ∈ Ci . We now make the following claim :

Lemma B.4. For every 1-Lipschitz function f : K → R such that f (y1) = 0, there exists g ∈ A such
that ‖T ( f )− g‖`∞(G′) ≤ 4ε.

Assume for the moment that this holds. As there are at most 2n functions in A , it is possible
to choose at most 2n 1-Lipschitz functions f1, . . . , f2n vanishing at x1 such that for any 1-Lipschitz
function f vanishing at x1 there exists fi such that |T ( f )− T ( fi)| ≤ 8ε. Using the inequality above,
this implies that the balls of center fi and radius 12ε for the uniform distance cover the set of 1-
Lipschitz functions vanishing at x1.

Finally, consider f ∈ F . We may write

f = f − f (x1) + f (x1)

and observe that on the one hand, f − f (x1) is a 1-Lipschitz function vanishing at x1, and that on
the other hand, | f (x1)| ≤ R. Thus the set F is covered by the balls of center fi + 4kε and radius
16ε, where −b R

4ε
c − 1 ≤ k ≤ b R

4ε
c. There are at most (2+ 2b R

4ε
c)2n such balls, which proves the

desired result.

We now prove Lemma B.4.
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Proof. Let us use induction again. If K = B1 then T ( f ) = 0 and the property is straightforward.
Now if K = C1 ∪ . . . ∪ Cn, we may assume without loss of generality that an is a leaf in G′, that
is a vertex with exactly one neighbor, and that it is connected to an−1. By hypothesis there exists
g̃ : {a1, . . . , an−1} → R such that | g̃(ai)− g̃(a j)| = 4ε whenever ai and a j are connected in G′, and
| g̃(ai)− f (ai)| ≤ 4ε for 1≤ i < n. Set g = g̃ on {a1, . . . , an−1}, and

• g(an) = g(an−1) + 4ε if f (yn)− g(an−1)< 0,

• g(an) = g(an−1)− 4ε otherwise.

Since
| f (yn)− g(an−1)| ≤ | f (yn)− f (yn−1)|+ | f (yn−1)− g(an−1)| ≤ 8ε

it is easily checked that | f (yn)− g(an)| ≤ 4ε. The function g belongs toA and our claim is proved.

C Hölder moments of stochastic processes

We quote the following result from Revuz and Yor’s book [30] (actually the value of the constant is
not given in their statement but is easily tracked in the proof).

Theorem C.1. Let X t , t ∈ [0,1] be a Banach-valued process such that there exist γ,ε, c > 0 with

E
�

|X t − Xs|γ
�

≤ c|t − s|1+ε,

then there exists a modification X̃ of X such that

E

��

sup
s 6=t

|X̃ t − X̃s|
|t − s|α

�γ�1/γ

≤ 21+α(2c)1/γ
1

1− 2α−ε/γ

for all 0≤ α < ε/γ.

Corollary C.2. Let (Bt)0≤t≤1 denote the standard Brownian motion on [0,1]. Let mα = E supt ‖Bt‖α
and s2

α = E(supt ‖Bt‖α)2, then mα and sα are bounded by

Cα = 21+α 2(1−2α)/4

1− 2(2α−1)/4
‖Z‖4/(1−2α)

where ‖Z‖p denotes the Lp norm of a N (0, 1) variable Z.

Proof. Since the increments of the Brownian motion are Gaussian, we have for every p > 0

E[|Bt − Bs|2p] = Kp|t − s|p

with Kp =
p

2π
−1 ∫ +∞

−∞ |x |
2pe−x2/2d x . Choose p such that α < (p− 1)/2p, then
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�

E‖X‖2p
α

�1/2p
≤

21+α

1− 2α−1/2+1/2p
(2Kp)

1/2p.

A suitable choice is 1/p = 1/2−α, and the right-hand side becomes

Cα =
21+α

1− 2(α−1/2)/2
(2Gα)

(1/2−α)/2

with Gα =
p

2π
−1 ∫ +∞

−∞ |x |
4/(1−2α)e−x2/2d x . By Hölder’s inequality, the result follows.

Corollary C.3. Let X t be the solution on [0, T] of

dX t = σ(X t)dBt + b(X t)d t

with σ, b :R→R locally Lipschitz and satisfying the following hypotheses :

• supx |
p

trσ(x)tσ(x)| ≤ A,

• supx |b(x)| ≤ B.

Then for α < 1/2, for p such that α < (p− 1)/2p, there exists C < +∞ depending explicitely on A, B,
T , α ,p such that

E‖X‖p
α ≤ C .

Proof. We first apply Itô’s formula to the function |X t − Xs|2 : this yields

E|X t − Xs|2 ≤ 2B

∫ t

s

E|Xu− Xs|du+ A|t − s|.

Using the elementary inequality x ≤ 1/2(1+ x2), we get

E|X t − Xs|2 ≤ B

∫ t

s

E|Xu− Xs|2du+ (A+ B)|t − s|.

Gronwall’s lemma entails

E|X t − Xs|2 ≤ (A+ B)eBT |t − s|

Likewise, applying Itô’s formula to |X t − Xs|4, we get
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E|X t − Xs|4 ≤ 4B

∫ t

s

E|Xu− Xs|3ds+ 6A

∫ t

s

E|Xu− Xs|2du

≤ (6A+ 2B)

∫ t

s

E|Xu− Xs|2du+ 2B

∫ t

s

E|Xu− Xs|4du

≤
1

2
(6A+ 2B)(A+ B)eBT |t − s|2+ 2B

∫ t

s

E|Xu− Xs|4du

and by Gronwall’s lemma E|X t − Xs|4 ≤
1
2
(6A+ 2B)(A+ B)e3BT |t − s|2. By an easy recurrence,

following the above, one may show that

E|X t − Xs|2p ≤ C(A, B, T, p)|t − s|p.

To conclude it suffices to call on Theorem C.1.

D Transportation inequalities for Gaussian measures on a Banach
space

The next proposition is a bound on the size of the tail of a Gaussian measure. A proof may be found
e.g. in [22], Chapter 4.

Lemma D.1. Let (E,µ) be a Gaussian Banach space, and define m =
∫

‖x‖µ(d x). Also let σ2 denote
the weak variance of µ. The tail of µ is bounded as follows : for all R≥ 0,

µ{x ∈ E, ‖x‖ ≥ m+ R} ≤ e−R2/2σ2
.

Finally we collect some (loose) results on the Wiener measure on the Banach space
(C([0,1],R),‖.‖∞).

Lemma D.2. The Wiener measure satisfies a T2(8) inequality (and therefore a T1(8) inequality).

Proof. The Wiener measure satisfies the T2(2σ2) inequality, where

σ2 = sup
µ
E(

∫ 1

0

Bsdµ(s))
2

and the supremum runs over all Radon measures on [0,1] with total variation bounded by 1. Note
that the weak variance σ2 is bounded by the variance s2 defined as s2 = E(supt |Bt |)2 (here and
hereafter supt |Bt | refers to the supremum on [0,1]). In turn we can give a (quite crude) bound on s :
write supt |Bt | ≤ supt Bt−inft Bt , thus (supt |Bt |)2 ≤ (supt Bt−inft Bt)2 ≤ 2(supt Bt)2+2(− inft Bt)2.
Remember the well-known fact that supt Bt , − inft Bt and |B1| have the same law, so that
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E(sup
t
|Bt |)2 ≤ 4E|B1|2 = 4.

Lemma D.3. Let γ denote the Wiener measure. For a =
p

2 log 2/3, we have

∫

ea‖x‖∞γ(d x)≤ 2

.

Proof. We have

∫

ea‖x‖∞γ(d x) =

∫ +∞

0

P(ea‖x‖∞ ≥ t)d t

=

∫ +∞

0

P(‖x‖∞ ≥ u)aeaudu

=

∫ +∞

0

P(τu ≤ 1)aeaudu

where τu is the stopping time inf{t, |Bt |= u}. It is a simple exercise to compute

Ee−λ
2τu/2 = 1/ cosh(λu)≤ 2e−λu.

This yields

∫

ea‖x‖∞γ(d x)≤ 2aeλ
2/2

∫ +∞

0

e(a−λ)udu=
2aeλ

2/2

λ− a
.

We can choose λ= 3a to get
∫

ea‖x‖∞γ(d x)≤ e9a2/2. In turn it implies the desired result.
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