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Vertices of the least concave majorant of Brownian motion
with parabolic drift

Piet Groeneboom∗

Abstract

It was shown in [3] that the least concave majorant of one-sided Brownian motion without drift
can be characterized by a jump process with independent increments, which is the inverse of the
process of slopes of the least concave majorant. This result can be used to prove the result in
[20] that the number of vertices of the smallest concave majorant of the empirical distribution
function of a sample of size n from the uniform distribution on [0, 1] is asymptotically normal,
with an asymptotic expectation and variance which are both of order log n.
A similar (Markovian) inverse jump process was introduced in [6], in an analysis of the least
concave majorant of two-sided Brownian motion with a parabolic drift. This process is quite
different from the process for one-sided Brownian motion without drift: the number of vertices
in a (corresponding slopes) interval has an expectation proportional to the length of the interval
and the variance of the number of vertices in such an interval is about half the size of the expec-
tation, if the length of the interval tends to infinity. We prove an asymptotic normality result for
the number of vertices in an increasing interval, which translates into a corresponding result for
the least concave majorant of an empirical distribution function of a sample of size n, generated
by a strictly concave distribution function. In this case the number of vertices is of order cube
root n and the variance is again about half the size of the asymptotic expectation.
As a side result we obtain some interesting relations between the first moments of the number
of vertices, the square of the location of the maximum of Brownian motion minus a parabola,
the value of the maximum itself, the squared slope of the least concave majorant at zero, and
the value of the least concave majorant at zero .
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1 Introduction

It was shown in [3] that one-sided Brownian motion can be generated by a jump process with
independent increments (which is the inverse of the process of slopes of the least concave majorant)
together with Brownian excursions between successive vertices of the least concave majorant. This
decomposition of Brownian motion, using the inverse process, was also analyzed in [17], where
certain path decomposition results, introduced by David Williams, were applied.

The study of the (least) concave majorant of Brownian motion in [3] was actually motivated by the
wish to give an alternative derivation of the asymptotic distribution for certain statistics, studied in
[1] and [19], and first proved in [10], where the asymptotic distribution was found by analyzing
the spacings, induced by the least concave majorant of the empirical distribution function.

As a side effect, [3] also threw some new light on a result of [20], which is stated below. A straight-
forward proof of this result, using characteristic functions and the Poisson representation in [10], is
given in [9].

Theorem 1.1. [Sparre Andersen (1954)] Let Nn be the number of vertices of the least concave majo-
rant of the empirical distribution function of a sample of size n from the uniform distribution on [0,1].
Then

Nn− log n
p

log n

D−→ N(0, 1),

where
D−→ denotes convergence in distribution, and N(0,1) is the standard normal distribution.

The corresponding result for the Brownian bridge on [0,1], which follows from [3], is:

Theorem 1.2. Let C be the least concave majorant of the Brownian bridge on [0,1]. Then the number
of vertices Nn of C on the interval [1/n, 1− 1/n] satisfies:

Nn− log n
p

log n

D−→ N(0, 1).

If one studies more closely “where the action is", in the sense that the number of vertices increases
to infinity, it turns out that all the action is near 0 and 1: on an interval [ε, 1− ε], where ε > 0,
there will, with probability one, only be finitely many vertices.

The situation is strikingly different for the least concave majorant of two-sided Brownian motion
minus a parabola. Here the action is “the same everywhere", and the point process of locations of
vertices is stationary. The real purpose of the papers [4] and [6] was to analyze the (stationary)
process

{V (a)− a : a ∈R} , (1.1)

where
V (a) = argmaxt∈R

¦

W (t)− (t − a)2
©

, a ∈R,

and W is standard two-sided Brownian motion, originating from zero. The process V itself is a pure
jump process, which runs through the locations of the vertices of the least concave majorant. At
points where V (a) is not uniquely determined (which happens if a is a slope of the least concave
majorant), we take the largest value t at which W (t)− (t − a)2 is maximal. In this way the process
V becomes right-continuous.
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Figure 1: The least concave majorant of W (t)− t2.

The infinitesimal generator of the process (1.1) is given in Theorem 4.1 of [6], where it is expressed
in terms of Airy functions. However, most attention has been for the result on the distribution
of V (0), which gave an analytic expression for the limit distribution of a whole class of so-called
“isotonic estimators", for example the pointwise limit distribution of an estimator of the mode,
discussed in [2], and the pointwise limit behavior of the Grenander (maximum likelihood) estimator
of a decreasing density, see, e.g., [18] and [4].

For results on global functionals, however, like the L1 or L2 distance of the Grenander estimator to
the underlying density, or the number of its jumps, one needs information on the whole process V ,
and not only on its pointwise behavior. In this paper we will show how one can extract information
from Theorem 4.1 in [6] in the derivation of a central limit theorem for the number of points jump
of V in an increasing interval. The result has a rather large number of applications in statistics, but
we will only sketch one such result for the number of points of jump of the Grenander estimator
(which is equivalent to the corresponding result for the number of vertices of the least concave
majorant).

Our main result is the following central limit theorem, which is proved at the end of section 2.

Theorem 1.3. Let N[a, b] be the number of jumps of the process V in the interval [a, b]. Then

N[a, b]− k1(b− a)
p

k2(b− a)

D−→ N(0,1), as b− a→∞,

where k1 ≈ 2.10848 and k2 ≈ 1.029, and N(0, 1) is the standard normal distribution.

Perhaps somewhat remarkably, the difference between the results for the least concave majorants
of one-sided Brownian motion without drift and two-sided Brownian motion with a parabolic drift
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has its counterpart in the difference between the convex hulls of uniform samples of points from the
interior a convex polygon and from the interior of a convex figure with a smooth boundary, see [5].
In this case one also meets the rates log n and n1/3 for the number of vertices of the convex hulls of
the samples, with corresponding central limit results.

2 The number of jumps of the process V in an increasing interval

Although [6] has the simpler conceptual characterization, the characterization in [4]might be more
useful for numerical computations. It was also used in [11], where Chernoff’s density and its
moments were computed. Chernoff’s density is the density of V (0), which often occurs as limit
of isotonic estimators and in particular in the limit distribution of the Grenander estimator. Here,
however, we take [6] as our starting point.

The process (1.1) is completely characterized by Theorem 4.1 of [6]. As a corollary we have the
following result for the jump measure.

Theorem 2.1. We have, if y > x,

lim
h↓0

h−1P
�

V (a+ h) ∈ a+ d y|V (a) = a+ x
	

=
2(y − x)g(y)p(y − x)

g(x)
d y,

where g has Fourier transform

ĝ(u) =

∫

eiux g(x) d x =
21/3

Ai
�

i2−1/3u
� , u ∈R, (2.2)

and
p(u) = p0(u) +

�

2πu3
�−1/2

, u> 0,

where p0 has Laplace transform

p̂0(u) =
22/3Ai ′

�

2−1/3u
�

Ai
�

2−1/3u
� + 21/2pu.

Remark 2.1. Note that we define the Fourier transform in the “probabilistic way", in analogy with
the definition of the characteristic function of a probability distribution.

A picture of the function g, using the representation

g(x) =
1

22/3π

∫ ∞

−∞

e−iux

Ai(i2−1/3u)
du,

which follows from (2.2), is shown in Figure 2.

The function p has the representation

p(u) = 2
∞
∑

n=1

e21/3 ãnu, u> 0, (2.3)
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Figure 2: The function g.

where the ãn are the zeros of the Airy function Ai on the negative halfline, see (4.12) in [6]. This
expansion is divergent at zero, however, where we have:

p(u)∼ (2πu3)−1/2, u ↓ 0, (2.4)

see part (ii) of Lemma 4.2 in [6]. This is the reason for considering the regularization

p0(u) = p(u)− (2πu3)−1/2 ,

and for only using the representation (2.3) for u≥ 1. If u< 1 we use the representation given below
in (2.11) of Lemma 2.2. The function u 7→ u3/2p(u) is shown in Figure 3.

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

Figure 3: The function u 7→ u3/2p(u), u> 0.

For later purposes we summarize in the following lemma some properties of functions p and g and
the random variable V (0). This also gives still another regularization of the function p.

Lemma 2.1. Let the function p be defined as in Theorem 2.1. Then:

2239



(i) The function p1, defined by

p1(x) =

¨

x p(x) , x > 0,
0 , x < 0,

(2.5)

has Fourier transform

p̂1(u) = iu+
21/3Ai ′

�

−2−1/3iu
�2

Ai
�

−2−1/3iu
�2 . (2.6)

(ii) The function h, defined by

h(x) =

∫ ∞

u=0

g(x + u)up(u) du, x ∈R, (2.7)

has Fourier transform

ĥ(u) =−
21/3iu

Ai
�

2−1/3iu
� +

22/3Ai ′
�

2−1/3iu
�2

Ai
�

2−1/3iu
�3 . (2.8)

(iii) The random variable V (0) has characteristic function

Eei tV (0) =
2−2/3

2π

∫ ∞

u=−∞

du

Ai (iu)Ai (i(t + u))
, t ∈R. (2.9)

(iv) The random variable V (0) has expectation zero and second moment

EV (0)2 =−
2−2/3

6π

∫ ∞

u=−∞

iu

Ai (iu)2
du≈ 0.26355964. (2.10)

Proof. Part (i): this immediately follows from Theorem 2.1, noting that the function x 7→ 1/
p

2πx
has Laplace transform 1/

p
2u and by switching from Laplace transform to Fourier transform.

Part (ii): this follows from (i) and Theorem 2.1, by noting that the convolution turns into the product
of the Fourier transforms (with an added change of sign for the Fourier transform of p1).
Part (iii): this is the Fourier transform of the function

x 7→ 1
2

g(−x)g(x), x ∈R,

which turns into the convolution of the Fourier transform of x 7→ g(−x) and Fourier transform of
x 7→ g(x) times (4π)−1.
Part (iv) follows from the formula

EV (0)2 =−
2−2/3

2π

d2

d t2

∫ ∞

u=−∞

du

Ai (iu)Ai (i(t + u))

�

�

�

�

�

t=0

=−
2−2/3

2π

∫ ∞

u=−∞

¨

iu

Ai(iu)2
−

2Ai ′(iu)2

Ai(iu)4

«

du

=−
2−2/3

2π

∫ ∞

u=−∞

�

iu

Ai(iu)2
−

2iu

3Ai(iu)2

�

du=−
2−2/3

6π

∫ ∞

u=−∞

iu

Ai(iu)2
du,

where we use integration by parts and the Airy equation for the term involving Ai′. �
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Remark 2.2. The function p does not have the same meaning in [4]. If we denote the function p of
[4] by p̃, we have:

p(t) =
et3/6

p
2π

¦

p̃(t) + t−3/2
©

, t > 0.

The function p̃ has an expansion which converges at zero.

Lemma 2.2. The function p can be written

p(t) =
et3/6

p
2π

¦

p̃(t) + t−3/2
©

,

where

p̃(t) =−
Ç

π

2

∞
∑

k=0

ak t3k +
∞
∑

k=1

bk t3(k−1/2) , t > 0, (2.11)

and the coefficients ak and bk are recursively defined as follows. Set c0 = 1 and

cn =−2−4 (2n− 3)(2n+ 1)
n2(2n− 1)

cn−1 , n= 1, 2, . . . .

Then with a0 = 1, b1 = 2/3, and B(p, q)≡ Γ(p)Γ(q)/Γ(p+ q), the standard Beta function, set

an = cn−
n−1
∑

k=0

1

πk!(−2)k
bn−kB(3n− 2k− 1/2, k+ 3/2) , n= 1,2, . . . ; (2.12)

bn =
n−1
∑

k=0

1

k!(−2)k+1
an−k−1B(3n− 2k− 2, k+ 3/2) , n= 2,3, . . . . (2.13)

Proof. This follows from Remark 2.2 and Theorem 4.2 in [4]. �

Let u2 :R→R be defined by

u2(x) = 2x −
1
p

2π

∫ ∞

0

p̃(y) exp(−1
2

y(2x + y)2)d y

+
1
p

2π

∫ ∞

0

¦

4x2+ 8x y + 3y2
©

exp(−1
2

y(2x + y)2) y−1/2 d y (2.14)

if x ∈ [−1,∞), and

u2(x) = exp
�

2
3

x3
�

41/3
∞
∑

k=1

exp(−21/3ãk x)/Ai′(ãk) (2.15)

if x ∈ (−∞,−1]; here Ai′ is the derivative of the Airy function Ai.

The notation u2 is used because u2 has the interpretation

u2(t) = lim
x↑t2

∂

∂ x
u(t, x),
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where u(t, x) is the solution of the heat equation

∂

∂ t
u(t, x) =−1

2

∂ 2

∂ x2 u(t, x),

for x ≤ t2, under the boundary conditions

u(t, t2)
def
= lim

x↑t2
u(t, x) = 1, lim

x↓−∞
u(t, x) = 0, t ∈R.

This function occurred in the paper [2], where the density of the location of the maximum of
Brownian motion minus a parabola was first characterized.

The following result summarizes the correspondence between the results in [4] and [6].

Theorem 2.2. (i) We have, if y > x,

lim
h↓0

h−1P
�

V (a+ h) ∈ a+ d y|V (a) = a+ x
	

=
2(y − x)u2(y)e

−1
2
(y−x)(x+y)2 ¦p̃(y − x) + (y − x)−3/2

©

u2(x)
p

2π
d y,

where u2 is defined by (2.14) and (2.15) and p̃ by (2.11).

(ii)

u2(x) = e
2
3

x3

g(x), x ∈R and p̃(t) =
p

2πe−t3/6p(t)− t−3/2, t > 0,

where the functions g and p are defined as in Theorem 2.1.

(iii) The density of V (0) is given by

fV (0)(x) =
1
2
u2(x)u2(−x) = 1

2
g(x)g(−x), x ∈R,

where g is defined as in Theorem 2.1.

Remark 2.3. In [11] part (iii) of Theorem 2.2 was used in the computation of the Chernoff dis-
tribution. The function u2 corresponds to the function k1 in [6] and part (i) of of Theorem 2.2
corresponds to the first version of the infinitesimal generator of the process V (a)− a, given in The-
orem 4.1 of that paper.

It is seen from Theorem 2.2 and (2.14) that the function p (or alternatively, the regularization p̃) is
the fundamental function; both the jump measure and the density of V (0) are expressed in terms of
p.

We are now ready to compute the expectation of the number of jumps of the process V in an
interval (of slopes) [a, b], where we use similar techniques as in [5], which dealt with convex hulls
of samples of points from the interior of a convex set in the plane.

Let the function φ be defined by

φ(x) = 2

∫ ∞

0

g(x + u)up(u)
g(x)

du, x ∈R, (2.16)
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φ(x) is the integrated jump measure, starting from position x . Moreover, let N[a, b] denote the
number of jumps of the process V in the interval [a, b]. Then Theorem 2.1 tells us that

b 7→ N[a, b]−
∫ b

a

φ(V (c)− c) dc, b ≥ a, (2.17)

is a martingale w.r.t. the filtration, generated by V (b), b ≥ a. As a consequence, we have the
following result.

Lemma 2.3. Let N[a, b] be the number of jumps of the process V in the interval [a, b]. Then

EN[a, b] = k1(b− a),

where

k1 =

∫ ∞

−∞
g(−x) d x

∫ ∞

y=x

g(y)(y − x)p(y − x) d y ≈ 2.10848. (2.18)

Proof. We get from Theorem 2.1:

EN[a, b] =

∫ b

a

Eφ(V (c)− c) dc.

Using the stationarity of the process c 7→ V (c)− c we get:
∫ b

a

Eφ(V (c)− c) dc =

∫ b

a

Eφ(V (0)) dc

= (b− a)

∫ ∞

−∞
fV (0)(x) d x

∫ ∞

x

2g(y)(y − x)p(y − x)
g(x)

d y

= (b− a)

∫ ∞

−∞

1
2

g(x)g(−x) d x

∫ ∞

x

2(y − x)g(y)p(y − x)
g(x)

d y

= (b− a)

∫ ∞

−∞
g(−x) d x

∫ ∞

x

g(y)(y − x)p(y − x) d y,

and the result follows. The constant k1 was determined numerically by using Theorem 2.2. �

Remark 2.4. As one of the referees remarks, Fourier analysis, applied on the right-hand side of
(2.18), gives:

k1 =−
25/3

6π

∫ ∞

u=−∞

iu

Ai
�

2−1/3iu
�2 du=−

27/3

6π

∫ ∞

u=−∞

iu

Ai
�

iu
�2 du

= 8EV (0)2 = 8
3

E max
t∈R

�

W (t)− t2
�

, (2.19)

where W is standard two-sided Brownian motion, originating from zero, and V (0) is defined as in
(1.1), for a = 0. This follows from Lemma 2.1, since we get by Parseval’s formula:

∫ ∞

−∞
g(−x) d x

∫ ∞

y=x

g(y)(y − x)p(y − x) d y =
1

2π

∫ ∞

u=−∞
ĝ(−u)ĥ(u) du

=
1

2π

∫ ∞

u=−∞

(

2Ai′
�

2−1/3iu
�2

Ai
�

2−1/3iu
�4 −

i22/3u

Ai
�

2−1/3iu
�2

)

du=−
25/3

6π

∫ ∞

u=−∞

iu

Ai
�

2−1/3iu
�2 du,
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where we use integration by parts and the Airy equation for the term involving Ai′ as in the proof of
part (iv) of Lemma 2.1.

This also gives an interesting relation between the moments of the location of the maximum and
moments of the maximum itself. By [13] we get:

E max
t∈R

�

W (t)− t2
�

= 2−1/3EM = 0.790679,

where M is the maximum of W (t)− 1
2

t2, see (1.7) and (2.5) of their paper, which is in accordance
with the value, given in Lemma 2.3. The integral representation for the maximum of W (t)− t2 of
type (2.19) above corresponds to (2.1) in their paper (after replacing W (t)− t2 by W (t)− 1

2
t2, see

also Remark 2.5 below). The value EV (0)2 was computed in [11], where it is given by 0.26355964
(note that this is also given in part (iv) of Lemma 2.1), and this gives k1 = 2.10848 again. For
convenience, we state this in a separate lemma.

Lemma 2.4. The constant k1 in Lemma 2.3 has the representation

k1 = 8EV (0)2 = 8
3

E max
t∈R

�

W (t)− t2
�

≈ 2.10848. (2.20)

Remark 2.5. Note that

argmaxt∈R
¦

W (t)− c t2
© D
= argmaxt∈R

�

c−1/3
n

W (c2/3 t)−
�

c2/3 t
�2
o�

= argmaxt∈R

n

W (c2/3 t)−
�

c2/3 t
�2
o

= c−2/3argmaxu∈R
¦

W (u)− u2
©

,

which implies that, if we define k1(1) = k1 and k2(1) = k2, and denote the corresponding constants
for the process t 7→W (t)− c t2 by k1(c) and k2(c):

ki(c) = c2/3ki , i = 1, 2.

Relation (2.19) changes into:

k1(c) = 8c2EVc(0)
2 =

8c

3
E max

t∈R

�

W (t)− c t2
�

, (2.21)

where a 7→ Vc(a) is the process of locations of maxima of t 7→W (t)− c(t − a)2.

Remark 2.6. As also pointed out by one of the referees, [15] represent the constant k1(1/2), where
k1(1/2) is defined as in Remark 2.5, in their Corollary 4 as the sum of two constants:

k1(1/2) = EX̃ (0) + EX̃ ′(0)2, (2.22)

where X (t) =W (t)− 1
2

t2 and X̃ is the greatest concave majorant of X , with slope X̃ ′(0) at zero. (I
switch from the convex minorants of Brownian motion plus a parabola to the concave majorants of
Brownian motion minus this parabola here; this gives the same k1). [15] give simulation results for
X (t) =W (t)− 1

2
t2, which would imply that k1(1/2)≈ 1.289. We get from Remark 2.5:

k1(1/2) = 2−2/3k1(1)≈ 1.32826,
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which is larger than the value arising out of the simulations in [15], indicating that it is very hard
to obtain precise values of these constants by direct simulation of Brownian motion.

Denoting the least concave majorant of the process t 7→ W (t) − c t2 by X̃ c , and using a notation
similar to the notation of Remark 2.5, we would get the relation

k1(c) = 2cEX̃ c(0) + EX̃ ′c(0)
2, (2.23)

which indeed is compatible with the relation:

k1(c) = c2/3k1(1).

Remark 2.7. There exists a simple relation between Vc(0) and X̃ ′c(0), where Vc is defined as in
Remark 2.5 and X̃ ′c(0) is defined as in Remark 2.6. This follows from the so-called “switch relation":

X̃ ′c(0)≤ 2ca ⇐⇒ Vc(a)≥ 0.

Since
P
�

Vc(a)≥ 0
	

= P
�

Vc(a)− a ≥−a
	

= P
�

Vc(0)≥−a
	

= P
�

2cVc(0)≤ 2ca
	

,

we get that X̃ ′c(0) and 2cVc(0) have the same distribution, and hence:

EX̃ ′c(0)
2 = 4c2EVc(0)

2.

Combining the preceding remarks, and in particular assuming that (2.23) (or (2.22)) holds, we
obtain:

k1(c) = 2cEX̃ c(0) + 4c2EVc(0)
2 = 8c2EVc(0)

2,

which implies
EX̃ c(0) = 2cEVc(0)

2 = 2
3

E max
t∈R

¦

W (t)− c t2
©

.

The asymptotic behavior of the functions p and φ is given in the following lemma.

Lemma 2.5. We have:

(i)
p(t)∼ 2e21/3 ã1 t , t →∞,

where ã1 is the first zero of the Airy function Ai on the negative halfline.

(ii)
p(t)∼ (2πt3)−1/2, t ↓ 0.

(iii)

φ(t)∼ 2t2, t →−∞, φ(t)∼
1

t
, t →∞.
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Proof. (i) follows from (2.3) and (ii) is the same as (2.4), which follows from (4.17) of Theorem
4.1 in [6].
(iii). The function g is denoted by g1 in [6], and hence, according to part (i) of Corollary 3.4, [6]:

g(t) = 41/3
∞
∑

n=1

e−21/3 ãn|t|

Ai′(ãn)
, t < 0,

where the ãn are the zeros of the Airy function on the negative halfline.

We now have, using part (i) of Corollary 3.4 and part (ii) of Lemma 4.2, [6], if t < 0,

∫ |t|

0

2up(u)g(t + u)
g(t)

du= 4

∫ |t|

0

∑∞
n=1 e21/3 ãn|t+u|/Ai′(ãn)
∑∞

n=1 e21/3 ãn|t|/Ai′(ãn)

∞
∑

n=1

e21/3 ãnuu du

∼ 4

∫ |t|

0

∑∞
n=1 e21/3{ã1−ãn}(t+u)/Ai′(ãn)
∑∞

n=1 e21/3{ã1−ãn}t/Ai′(ãn)

∞
∑

n=1

e−21/3{ã1−ãn}uu du

∼ 4Ai′(ã1)

∫ |t|

0

∞
∑

n=1

e21/3{ã1−ãn}(t+u)

Ai′(ãn)

∞
∑

n=1

e−21/3{ã1−ãn}uu du

= 4

∫ |t|

0

(

1+
∞
∑

n=2

e21/3{ã1−ãn}(t+u)Ai′(ã1)
Ai′(ãn)

)(

1+
∞
∑

n=2

e−21/3{ã1−ãn}u

)

u du

∼ 4

∫ |t|

0

u

(

1+
∞
∑

n=2

e−21/3{ã1−ãn}u

)

du+ 4

∫ |t|

0

u
∞
∑

n=2

e21/3{ã1−ãn}(t+u)Ai′(ã1)
Ai′(ãn)

du

∼ 4

∫ |t|

0

u du= 2t2, t →−∞.

Furthermore,
∫ ∞

|t|

2up(u)g(t + u)
g(t)

du=

∫ ∞

0

2(|t|+ u)p(|t|+ u)g(u)
g(t)

du

∼ 42/3Ai′(ã1)

∫ ∞

0

e−21/3 ã1|t|
∞
∑

n=1

e21/3 ãn{|t|+u} {|t|+ u} g(u) du= O(|t|), t →−∞,

and the first part of (iii) now follows.
Using Laplace’s method and part (ii) of Corollary 3.4, [6], we find:

∫ ∞

0

2up(u)g(t + u)
g(t)

du∼ 2

∫ ∞

0

up(u)(t + u)exp
¦

−2
3
(t + u)3

©

t exp
¦

−2
3

t3
© du

∼
2
p

2π

∫ ∞

0

u−1/2(t + u)exp
¦

−2t2u− 2tu2− 2
3
u3
©

t
du

∼
2
p

2π

∫ ∞

0

u−1/2(t + u)exp
¦

−2t2u
©

t
du∼

1

t
, t →∞.
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Figure 4: The function φ.

�

For the variance of N[a, b] we get the following result.

Theorem 2.3. Let N[a, b] be the number of jumps of the process V in the interval [a, b]. Then:

var
�

N[a, b]
�

= EN[a, b] + 2

∫

a<c1<c2<b

covar
�

φ(−V
�

c1) + c1
�

,φ
�

V (c2)− c2
��

dc1dc2. (2.24)

Proof. We have:

EN(a, b+ h)2− EN[a, b]2 = EN(b, b+ h)2+ 2EN(b, b+ h)N[a, b]

∼ EN(b, b+ h) + 2EN(b, b+ h)N[a, b]

∼ hEφ(V (b)) + 2hEN[a, b]φ(V (b)− b), h ↓ 0,

and hence:

EN[a, b]2 = EN[a, b] + 2E

∫ b

a

N[a, c]φ(V (c)− c) dc.

Moreover, using an obvious time reversal argument, also used in [5], we get:

E

∫ b

a

N[a, c]φ(V (c)− c) dc = E

∫ b

a

¨
∫ c

a

φ(−V (c1) + c1) dc1

«

φ(V (c)− c) dc

=

∫

a<c1<c2<b

E
�

φ(−V (c1) + c1)φ(V (c2)− c2)
	

dc1dc2.

2247



Note:
∫

a<c1<c2<b

E
�

φ(−V (c1) + c1)φ(V (c2)− c2)
	

dc1dc2

=

∫

a<c1<c2<b

cov
�

φ(−V
�

c1) + c1
�

,φ
�

V (c2)− c2
��

dc1dc2

+

∫

a<c1<c2<b

Eφ(−V (c1) + c1)Eφ(V (c2)− c2) dc1dc2

=

∫

a<c1<c2<b

cov
�

φ(−V
�

c1) + c1
�

,φ
�

V (c2)− c2
��

dc1dc2

+
�

Eφ(V (0))
�2
∫

a<c1<c2<b

dc1dc2

=

∫

a<c1<c2<b

cov
�

φ(−V
�

c1) + c1
�

,φ
�

V (c2)− c2
��

dc1dc2+
1
2
k2

1(b− a)2,

so we get:

var
�

N[a, b]
�

= EN[a, b] + 2

∫

a<c1<c2<b

cov
�

φ(−V
�

c1) + c1
�

,φ
�

V (c2)− c2
��

dc1dc2.

�

We prove in the sequel that the dependence between φ(−V
�

c1) + c1
�

and φ
�

V (c2)− c2
�

dies out
exponentially fast, as c2 − c1 → ∞, which, together with part (iii) of Lemma 2.5, gives that the
covariance of φ(−V

�

c1) + c1
�

and φ
�

V (c2)− c2
�

dies out exponentially fast, as c2 − c1 → ∞.
Hence we get:

var
�

N[a, b]
�

∼ k2(b− a), b− a→∞,

for a constant k2 ≥ 0.

There are several ways in which one could try to determine the constant k2. One possible approach
is to use an integro-differential equation to determine the constant k2, following a suggestion on p.
546 of [4]. Let the function k(a, t) be defined by

k(a, t) = E
¦

φ(V (0))
�

� V (a) = t
©

, a ≤ 0.

Then we have, for a < 0,

k(a, t) = E
¦

φ(V (0))
�

� V (a) = t
©

= E
¦

E
¦

φ(V (0))
�

� V (a+ h)
© �

� V (a) = t
©

= h

∫ ∞

u=0

k(a, t + u)
2up(u)g(t − a+ u)

g(t − a)
du

+ k(a+ h, t)

¨

1− h

∫ ∞

u=0

2up(u)g(t − a+ u)
g(t − a)

du

«

+ o(h)

= k(a+ h, t) + h

∫ ∞

u=0

{k(a, t + u)− k(a, t)}
2up(u)g(t − a+ u)

g(t − a)
du+ o(h), h ↓ 0.
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Hence we get:

∂

∂ a
k(a, t) =−

∫ ∞

u=0

{k(a, t + u)− k(a, t)}
2up(u)g(t − a+ u)

g(t − a)
du,

which leads to the integral equation

k(a, t) = k(0, t) +

∫ 0

a

d b

∫ ∞

u=0

{k(b, t + u)− k(b, t)}
2up(u)g(t − b+ u)

g(t − b)
du, a ≤ 0.

Note that
E
¦

φ(V (0))
�

� V (a)− a = t
©

= k(a, t + a).

Using this approach, the constant k2 was approximated numerically, on a grid with stepsize 10−3 in
both coordinates on the interval [−10,10], using the boundary condition

k(0, t) = φ(t), t ∈R,

and replacing integrals by Riemann sums. In this way we obtained:

2

∫ ∞

0

cov
�

φ(V (0)),φ(−V (a) + a)
�

da ≈−1.11891,

which would give: k2 ≈ 0.986. However, since the numerical computations seemed somewhat
unstable, we have more trust in the value obtained by simulating the vertex process directly, without
first generating Brownian motion, in the way described below.

One could also try to determine an approximate value of the constant k2 by simulating Brownian
motion directly. However, since one needs very long intervals (or, alternatively, a rescaling which
also leads to very computation-intensive simulation), it is doubtful that we get a good approximation
in this way. See also the discussion in Remark 2.6 on the constant k1(1/2), obtained by simulating
Brownian motion directly in [15], which gave the value 1.289, while the analytically determined
value is 1.32826.

We can use Theorem 2.1 to generate the process {V (a) : a ∈ R} without first generating Brownian
motion. This method of generating the vertices was also used in [16] and [7], for generating the
vertices of convex hulls of Poisson processes of points in the plane, and seemed to work rather well
in that situation.

We start the process at time zero, by generating V (0) according to the “Chernoffian" distribution
fV (0), given by:

fV (0)(x) =
1
2

g(−x)g(x), x ∈R,

where g is defined as in Theorem 2.1. Suppose this gives V (0) = x . Next we generate the waiting
time until a jump according to the distribution function

Fx(a) = 1− exp

¨

−
∫ a

b=0

φ(x − b) d b

«

= 1− exp

¨

−
∫ x

u=x−a

φ(u) du

«

, a > 0.

where φ(u) is the integrated jump measure, starting from position u. Suppose that this gives the
jump time a > 0. Then we generate a jump according to the jump density

u 7→
2g(x − a+ u)up(u)
g(x − a)φ(x − a)

, u> 0.
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This gives a new position y from which we generate a waiting time, according to the distribution
function

Fy−a(b− a) = 1− exp

(

−
∫ y−a

u=y−b

φ(u) du

)

, b− a > 0,

which gives a new jump time b > a, from which we generate a jump according to the jump density

u 7→
2g(y − b+ u)up(u)
g(y − b)φ(y − b)

, u> 0,

and so on. Defining

Φ(x) =







∫ x

u=0
φ(u) du , x ≥ 0,

−
∫ 0

u=x
φ(u) du , x < 0,

we can write:
Fy−a(b− a) = 1− exp

�

−
�

Φ(y − a)−Φ(y − b)
		

.

We indeed used this procedure to generate the process V . Instead of the jumps lengths themselves
we generated the square roots of the jump lengths, which have a bounded density, in contrast with
the jump lengths, which have a density which is unbounded near zero. This enabled us to generate
the square roots of the jump lengths by rejection sampling, since we can compute the density from
the theory above (but note that this density depends on the value of x − a, so we get a family of
densities, parametrized by x − a).

The waiting times between jumps can be generated using the following observations. Note that, for
a uniform random variable U:

Fx(u) = P
�

U ≤ Fx(u)
	

= P
�

− log{1− U} ≤ − log{1− Fx(u)}
	

= P
�

− log{1− U} ≤ Φ(x)−Φ(x − u)
	

= P
¦

Φ−1
x (W )≤ u

©

,

where W is standard exponentially distributed and Φ−1
x is the inverse of the function

u 7→ Φ(x)−Φ(x − u), u≥ 0.

Hence the waiting times between jumps can be generated by generating the random variables
Φ−1

x−a(W ), where W has a standard exponential distribution; Φ−1
x−a was computed on a equidis-

tant grid, with distance 10−3 between successive points of the grid, and with linear interpolation
between points of the grid. In this way we found in 10, 000 simulations, where a ran through the
interval [0,104]: k1 ≈ 2.1082 (note that this is very close to the analytically determined value
2.10484) and k2 ≈ 1.029.

The alternative characterization of the jump process, used in the simulations, is given in the follow-
ing theorem.

Theorem 2.4. The process {V (a) : a ∈ R} is a Markovian pure jump process, where the jump density
at time a is given by

u 7→
2g(x − a+ u)up(u)
g(x − a)φ(x − a)

, u> 0. (2.25)
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given V (a−) = x, and where the distribution function of the waiting time till the next jump is given by

Fx−a(b− a) = 1− exp

(

−
∫ x−a

u=x−b

φ(u) du

)

, b− a > 0, (2.26)

given V (a) = x.

Remark 2.8. By part (iii) of Lemma 2.5, we have:

φ(−u)∼ 2u2, u→∞.

This yields, for fixed x , a ∈R,

∫ x−a

u=x−b

φ(u) du∼ 2
3
(b− x)3 ∼ 2

3
b3, b→∞,

implying
log
�

1− Fx−a(b− a)
	

∼−2
3

b3, b→∞.

This is in accordance with:

log (1−P {|V (a)− a|> t})∼−2
3

t3, t →∞

see Corollary 3.4, part (iii), in [6].

We summarize our findings on the variance in the following lemma.

Lemma 2.6. Let N[a, b] be the number of jumps of the process V in the interval [a, b]. Then

var
�

N[a, b]
�

∼ k2(b− a), as b− a→∞,

where

k2 = k1+ 2

∫ 0

−∞
cov
�

φ(−V (b) + b),φ(V (0)
�

d b ≈ 1.029,

and φ is defined by (2.16). The value of the constant k2 was determined by simulating the vertex
process directly in the way described above, using Theorem 2.4, by 104 runs on the interval [0, 104].

For the central limit result, we also need the following lemma.

Lemma 2.7. The process V (a) : a ∈R} is strongly mixing with strong mixing function

α(d) = c exp
¦

− 1
12

d3
©

,

for a constant c > 0. More specifically, for arbitrary a ∈R we have:

sup |P(A∩ B)−P(A)P(B)| ≤ c exp
¦

− 1
12

d3
©

,

for all A∈ σ{V (b) : b ≤ a} and B ∈ σ{V (b) : b ≥ a+ d}.
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Proof. The proof proceeds along similar lines as the proof of Theorem 3.3 in [8]. Consider, for
a1, . . . , ak ≤ a and b` ≥ . . . b1 ≥ a+ d, the events

E1 =
�

V (a1) ∈ A1 . . . , V (ak) ∈ Ak
	

, E1 =
�

V (b1) ∈ B1 . . . , V (b`) ∈ B`
	

,

for Borel sets A1, . . . , Ak and B1, . . . , B`. Define

M = 1
2
d, V M (b) = argmax|t−b|≤M

¦

W (t)− (t − b)2
©

,

and consider the events

E′1 = E1 ∩
¦

V (a) = V M (a)
©

, E′2 = E2 ∩
¦

V (a+ d) = V M (a+ d)
©

.

By monotonicity, the event E′1 only depends on the increments of Brownian motion before time
a+M , and the event E′2 only depends on the increments of Brownian motion after time a+ d −M .
By the definition of M and the independent increments property of Brownian motion, this implies
that the events E′1 and E′2 are independent, and hence

P
�

E′1 ∩ E′2
�

= P(E′1)P(E
′
2). (2.27)

Furthermore, by Corollary 3.4 of [6] we get:

P
¦

E′1 6= E1

©

≤ P
¦

V (a) 6= V M (a)
©

≤ 2P{V (a)> a+M}

= 2P{V (0)> M} ∼
28/3

Ai′(ã1)

∫ ∞

M

|t|exp
¦

−2
3
|t|3+ 21/3ã1|t|

©

d t

≤
28/3

Ai′(ã1)

∫ ∞

M

|t|exp
¦

−2
3
|t|3
©

d t ∼
25/3

MAi′(ã1)
e−

2
3

M3

≤ 6e−
2
3

M3

, M →∞.

where, as before, Ai is the Airy function Ai and ã1 its largest zero on the negative halfline. The
probability P{E2 6= E′2} can be handled in a similar way.

Hence we get:

�

�P
�

E1 ∩ E2
�

−P(E1)P(E2)
�

�≤ P
¦

E′1 6= E1

©

+P
¦

E′2 6= E2

©

≤ ce−
2
3

M3

,

for a constant c > 0, and the result follows. �

The following lemma shows that all moments of N[a, b] exist, for all b > a.

Lemma 2.8. We have:
EeλN[a,b] <∞,

for all λ > 0 and all b > a.

Proof. By the stationarity it is sufficient to prove this for N[0, a]. For λ > 0, the process

a 7→ exp

¨

λN[0, a]−
∫ a

0

¦

eλ− 1
©

φ(V (b)− b) d b

«

, a ≥ 0,
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is a martingale w.r.t. the filtration {Fa : a ≥ 0}, where

Fa = σ{V (b), b ∈ [0, a]}, a ≥ 0.

So we find

E exp

¨

λN[0, a]−
∫ a

0

¦

eλ− 1
©

φ(V (b)− b) d b+ 4a
¦

eλ− 1
©

V (0)2
«

= Ee4a{eλ−1}V (0)2 ,

for each a ≥ 0. Moreover, since, according to part (iii) of Lemma 2.5,

φ(t)∼ 2t2, t →−∞, φ(t)∼ t−1, t →∞,

we have that

4a
¦

eλ− 1
©

V (0)2−
∫ a

0

¦

eλ− 1
©

φ(V (b)− b) d b

=

∫ a

0

¦

eλ− 1
©¦

4V (0)2−φ(V (b)− b)
©

d b

is bounded below, say by −M , where M ≥ 0, using V (0)≤ V (b), for b ≥ 0. Hence:

E exp {λN[0, a]} ≤ E exp
¦

M + 4a
¦

eλ− 1
©

V (0)2
©

<∞,

for all positive a and λ, since, by part (iii) of Corollary 3.4 of [6],
∫

eαx2
fV (0)(x) d x <∞,

for all α > 0. �

We are now ready to prove our main result.

Proof of Theorem 1.3. By stationarity, we only have to prove the result for the interval [0, n]. We
have:

N[0, n] =
n
∑

k=1

N[k− 1, k],

where the N[k − 1, k], k = 1, 2, . . . form a stationary sequence. By Lemma 2.8, all moments of
N[0,1] exist. This fact, together with the mixing condition of Lemma 2.7 imply the result, using,
e.g., Theorem 18.5.3 of [12]. �

3 The jumps of the Grenander estimator

As an application of the results in section 2 we now discuss the use of these results in deriving the
asymptotic normality of the number of jumps of the Grenander estimator f̂n of a strictly decreasing
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density f0 on [0, M], M > 0. Note that the number of jumps of the Grenander estimator is the same
as the number of segments of the least concave majorant of the empirical distribution function,
which, in turn, is the same as the number of vertices of the least concave majorant minus one. To
keep the length of the present paper within reasonable bounds, we only give a sketch of the proof.
Full details will be given elsewhere.

We have the following result.

Lemma 3.1. Let Nn the number of jumps of f̂n, where f̂n is the Grenander estimator, based on a sample
of size n from f0, where f0 is a decreasing continuous density which stays away from zero on its support
[0, M], with a continuous derivative f ′0 , which also stays away from zero on [0, M], where one-sided
derivatives are taken at the endpoints. Then:

ENn ∼ k1n1/3

∫ M

0

�

� f ′0(x)
2/(4 f0(x))

�

�

1/3
d x , n→∞,

and

var(Nn)∼ k2n1/3

∫ M

0

�

� f ′0(x)
2/(4 f0(x))

�

�

1/3
d x , n→∞,

where the constants k1 and k2 are defined as in Theorem 1.3, that is:

k1 ≈ 2.10848 and k2 ≈ 1.029.

Sketch of proof. Note that, as in [4], p. 542, we can introduce locally a process Vn, defined by

Vn(s) = c2n1/3 sup
¦

u : Fn(t + u)−Fn(t)− (a+ n−1/3c1s)u is maximal
©

,

where

c1 = 2{1
2
a| f ′0(g0(a))|

	1/3 = {4a| f ′0(g0(a))|
	1/3 and c2 =

¨

f ′0(g0(a))2

4a

«1/3

,

and g0 is the inverse of f0. Here Fn is the empirical df and a = f0(t) for an interior point t of the
support of f0. The process Vn is the (local) inverse of the slope process. As noted in [4], the process
Vn converges in distribution in the Skorohod topology to the process V , where V is the process of
locations of maxima, discussed in section 2 (where c1 has an extra factor 2, to obtain V (s) instead
of V (1

2
s) in the limit).

The jumps of the limiting process are a stationary locally finite point process, implying that the
number of jumps of the process Vn on an interval [b, c] converges in distribution to the number of
jumps of V on the same interval. Hence, defining

Ṽn(s) = Vn(c
−1
1 s),

we get that the number of jumps of Ṽn on an interval [b, c] converges in distribution to the number
of jumps of V on an interval of length c−1

1 (c− b).

Now note that

Ṽn(s) = c2n1/3 sup
¦

u : Fn(t + u)−Fn(t)− (a+ n−1/3s)u is maximal
©

,
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which has, on an interval [b, c], the same number of jumps as the process Un, defined by

Un(α) = sup
�

x ≥ 0 : Fn(x)−αx is maximal
	

, α > 0.

on the interval [a+ bn−1/3, a+ cn−1/3].

We can strengthen this argument somewhat (full details will be given elsewhere), using a Poissoniza-
tion argument together with a strong approximation result of [14], to show that the expectation and
variance of the number of jumps of Un on an interval

[a− n−1/3 log n, a+ n−1/3 log n],

are of order
2k1c−1

1 n1/3 log n and 2k2c−1
1 n1/3 log n,

respectively, where k1 and k2 are defined as in Theorem 1.3.

Partitioning the interval [ f0(M), f0(0)] into Kn intervals of length of order 2n−1/3 log n, with mid-
points a j , we get:

ENn ∼ k1n1/3
Kn
∑

j=1

�

4a j| f ′0(g0(a j))|
	−1/3 2n−1/3 log n

∼ k1n1/3

∫ f0(0)

f0(M)

¦

4a| f ′0(g0(a))|
©−1/3

da = k1n1/3

∫ M

0

¦

4 f0(x)| f ′0(x)|
©−1/3 �

� f ′0(x)
�

� d x

= k1n1/3

∫ M

0

¨

f ′0(x)
2

4 f0(x)

«1/3

d x .

A similar argument, again using Riemann sums approximating the corresponding integral, gives the
result for the variance. �

The conditions in Lemma 3.1 are probably stronger than needed, and we give two examples below
which may also satisfy the result, but do not satisfy the conditions of the lemma. In the first example
f0 does not stay away from zero on [0, M], and in the second example f0 has infinite support.

If f0(x) = 2(1− x) on [0, 1], we get:
∫ 1

0

�

� f ′0(x)
2/(4 f0(x))

�

�

1/3
d x = 3 · 4−2/3 ≈ 1.19055,

and hence:
ENn ∼ 2.51 n1/3, var(Nn)∼ 1.225 n1/3, n→∞.

A simulation of 1000 samples with n = 1000 gave as mean number of the number of jumps Nn,k,
k = 1, . . . , 1000,

N̄n =

∑1000
k=1 Nn,k

1000
= 2.5026 n1/3.

and as variance
∑1000

k=1

�

Nn,k − N̄n

�2

999
= 1.238 n1/3.
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If f0 is the standard exponential density, we get:
∫ 1

0

�

� f ′0(x)
2/(4 f0(x))

�

�

1/3
d x = 3 · 2−2/3 ≈ 1.88988,

and hence:
ENn ∼ 3.98477 n1/3, var(Nn)∼ 1.945 n1/3, n→∞,

whereas 1000 samples of size n= 1000 yielded:

N̄n =

∑1000
k=1 Nn,k

1000
= 3.64544 n1/3.

and as variance
∑1000

k=1

�

Nn,k − N̄n

�2

999
= 1.86570 n1/3.

Analogously to the result for Brownian motion, we have:

Theorem 3.1. Let Nn the number of jumps of f̂n, where f̂n is the Grenander estimator, based on a
sample of size n from f0, where f0 satisfies the conditions of Lemma 3.1. Moreover, let the constants k1
and k2 be defined as in Theorem 1.3. Then:

n−1/6

(

Nn− k1n1/3

∫ M

0

¦

f ′0(x)
2/(4 f0(x))

�

�

1/3
d x

)

D−→ N(0,σ2),

where N(0,σ2) is a normal distribution with expectation zero and variance

σ2 = k2

∫ M

0

�

� f ′0(x)
2/(4 f0(x))

�

�

1/3
d x .

Although the proof proceeds along similar lines as the proof of Theorem 1.3 in section 2, the em-
bedding into Brownian motion needs some careful attention, and therefore the details of the proof
will be given elsewhere.

4 Concluding remarks

In the preceding, a central limit result was proved for the number of vertices in an increasing interval
of the concave majorant of the process {W (t)− t2, t ∈R}, where W is two-sided standard Brownian
motion, originating from zero. The central limit result involves two constants k1 and k2 for the
mean and variance, respectively, see Theorem 1.3. The constant k1 has several representations, for
example

k1 = 8EV (0)2 = 8
3

E max
t∈R

�

W (t)− t2
�

≈ 2.10848,

see (2.19), where a 7→ V (a) is the process of locations of maxima of W (t)− (t − a)2, as a function
of a. From [15] we get:

k1 = 2EX̃ (0) + EX̃ ′(0)2 = 2EX̃ (0) + 4EV (0)2

2256



where X̃ is the concave majorant of the process {W (t)− t2, t ∈R}. This implies as a side result the
relation

EX̃ (0) = 2
3

E max
t∈R

¦

W (t)− t2
©

,

see Remark 2.7.

Much less is known about the constant k2. We used a direct simulation of the vertex process to
determine this constant, but there is room for improvement here. The approximate value we found
is close to 1, and our preliminary value is: k2 = 1.029. The basis for the simulation of the vertex
process directly, without first generating Brownian motion, is given in Theorem 2.4, which gives the
distribution of the (non-exponential) waiting times between jumps of the process V , as a function
of a and x , where V (a) = x , and the density of the size of the jumps. The square roots of the jump
lengths were generated by rejection sampling, and the waiting times between jumps by generat-
ing standard exponential random variables, and by applying the inverse of the cumulative hazard
function of the waiting time distribution (again parametrized by x and a) on these.

A similar technique of generating vertices of a convex hull was used in [16] and [7], where convex
hulls of random points in the plane were studied. The behavior of the least concave majorant
of Brownian motion minus a parabola has some remarkable analogies with the behavior of the
convex hulls of points chosen uniformly from the interior of a circle, where we also get central limit
theorems for the number of vertices, with an expectation and variance which are also both of order
n1/3, if n is the number of points chosen. On the other hand, the behavior of the concave majorant
of one-sided Brownian motion without drift has analogies with the behavior of the convex hulls of
points drawn uniformly from a convex polygon, where we get central limit theorems for the number
of vertices with an asymptotic expectation and variance which are both of order log n, if n is the
number of points chosen, as shown in [5].

Acknowledgements I am grateful to the referees for their careful reading and useful comments.
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