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Abstract

Using an approach based, amongst other things, on Proposition 1 of Kaluza (1928), Goldie
(1967) and, using a different approach based especially on zeros of polynomials, Steutel (1967)
have proved that each nondegenerate distribution function (d.f.) F (on R, the real line), satis-
fying F(0−) = 0 and F(x) = F(0) + (1− F(0))G(x), x > 0, where G is the d.f. corresponding
to a mixture of exponential distributions, is infinitely divisible. Indeed, Proposition 1 of Kaluza
(1928) implies that any nondegenerate discrete probability distribution {px : x = 0, 1, . . .} that is
log-convex or, in particular, completely monotone, is compound geometric, and, hence, infinitely
divisible. Steutel (1970), Shanbhag & Sreehari (1977) and Steutel & van Harn (2004, Chapter
VI) have given certain extensions or variations of one or more of these results. Following a
modified version of the C.R. Rao et al. (2009, Section 4) approach based on the Wiener-Hopf
factorization, we establish some further results of significance to the literature on infinite divisi-
bility.
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1 Introduction

Several papers, including those of Goldie (1967) and Steutel (1967), address the preservation of
infinite divisibility property under mixing. Steutel (1970) and Steutel & van Harn (2004) have
reviewed and unified most of the literature in this respect. This consists of, amongst other things,
the result, due to both Goldie (1967) and Steutel (1967), that each nondegenerate d.f. F (on R,
the real line), satisfying F(0−) = 0 and F(x) = F(0) + (1 − F(0))G(x), x > 0, where G is the
d.f. corresponding to a mixture of exponential distributions (or, in other words, corresponding
to a density with its restriction to (0,∞) completely monotone), is infinitely divisible (i.d.), and
some of its extensions and variations. It may be worth pointing out here that the result relative to
exponential distributions mentioned above is usually referred to as the Goldie-Steutel theorem or
Goldie-Steutel result; to be short, we refer henceforth to this simply as GSR.

Proposition 1 of Kaluza (1928), a renewal theoretic result, implies clearly that any log-convex or, in
particular, completely monotone, nondegenerate discrete probability distribution {px : x = 0,1, . . .}
is compound geometric, and, hence, i.d. In view of the information in Steutel (1970, p. 89) (and the
closure property of the class of i.d. distributions), one can then see that, as a corollary to Kaluza’s
result, any nondegenerate d.f., F (concentrated) on [0,∞), that is differentiable, with log-convex
derivative, on (0,∞), is i.d. (In Section 2 to follow, we are to discuss some basic properties of
log-convex sequences and log-convex functions, of relevance to this study.) The two results men-
tioned here obviously extend GSR and its discrete version (respectively, in the reverse order). In his
argument to obtain GSR, Goldie (1967) also uses the proposition referred to, but, he does so in con-
junction with a certain characteristic property of the i.d. distributions on [0,∞), based, essentially,
on mixtures of Poisson distributions. (We view here the degenerate distribution at the origin as
Poisson with mean zero.) Incidentally, the characterization, just referred to, shows especially, that
GSR implies its discrete version and vice versa (and that this is also so for Theorems VI.3.10 and
VI.7.9 of Steutel & van Harn (2004), respectively).

Shanbhag & Sreehari (1977, Theorem 5) and Steutel & van Harn (2004, Theorems VI.3.13 and
VI.7.10) provide us with extended versions and variations of GSR; in these contributions, Theorem
2.3.1 of Steutel (1970) has implicitly played an important role or provided a motivation. Also, it
may be noted here that Theorem VI.3.13 of Steutel & van Harn (2004) is a corollary to Theorem 5
of Shanbhag & Sreehari (1977), and that some applications of GSR and its extensions have appeared
especially in Shanbhag & Sreehari (1977) and Shanbhag et al. (1977). The main theme of the
arguments used by Steutel (1967, 1970) and Steutel & van Harn (2004) to obtain the results implied
is obviously based on zeros of polynomials, but, more recently, C.R. Rao et al. (2009, Section 4)
have, effectively, shown that these results are also by-products of the Wiener-Hopf factorization met
in the theory of random walk, thanks to Kaluza (1928, Proposition 1).

Obviously, GSR asserts that if W and X are independent random variables (r.v.’s) with W nonnegative
and X exponential, then W X is i.d., while each of Theorem 5 of Shanbhag & Sreehari (1977) and
Theorem VI.3.13 of Steutel & van Harn (2004) asserts that the result in question remains valid
irrespectively of whether or not the r.v. W is nonnegative. Moreover, the discrete version of GSR is
extended by Theorem VI.7.10 of Steutel & van Harn (2004), which, in turn, states, implicitly, that if
X is an integer-valued r.v. with P{X = 0}> 0 and the conditional distributions of X given, that X is
nonnegative and of−X given that−X is nonnegative, are both completely monotone (on {0, 1, . . .}),
then X is i.d.

In this article, in Section 2, we present two auxiliary lemmas and, in Section 3, we extend the
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argument based on the Wiener-Hopf factorization, met in C.R. Rao et al. (2009), to establish certain
results based on log-convex sequences and log-convex functions, respectively, and demonstrate, also,
that Theorems VI.7.10 and VI.3.10 of Steutel & van Harn (2004) are their corollaries. Besides, we
include, in both of these sections, various remarks with comments, comprising examples in some
cases, on our main findings as well as on results in the existing literature, that are of relevance to
the present investigation.

2 Auxiliary lemmas and related observations

We may start this section by stating first the following crucial definition:

Definition 2.1. Let B ⊆ R such that B = {a, a + b, a + 2b, . . .} or B = (a,∞) with a ∈ R and
b ∈ (0,∞). Then, any function g : B 7→ [0,∞), such that

g2(x + y)≤ g(x) g(x + 2y), for each x ∈ B and y ∈ C , (1)

where

C =

¨

{b} if B = {a, a+ b, a+ 2b, . . .},
(0, 1) if B = (a,∞),

will be referred to as a log-convex function (on B).

(Note that, for notational convenience, in Definition 2.1, we allow g, that is identically equal to 0,
to be also called log-convex, and that Zygmund (2002, p. 25) has used the same convention in his
definition of a log-convex function.)

Obviously, by Definition 2.1, a log-convex function g that is not identically equal to 0 on B \ {a}
is non-vanishing, and, implicitly, by (an observation in) Loève (1963, p. 159), in the case of B =
(a,∞), a log-convex function (on B), as defined in Definition 2.1, is either continuous or not a
Borel function; for the literature supporting Loève (1963, p. 159), one may consult, e.g., Hardy
et al. (1952, p. 96) or Donoghue (1969, Section 1.3). It may also be pointed out that, if g is a
log-convex function, then given any x and y as in (1), we get the restriction to {x , x+ y, x+2y, . . .}
as log-convex on that set, and we refer to the sequence {g(x + ny) : n = 0,1, . . .} as a log-convex
sequence.

In what follows, in this section, we give the auxiliary lemmas and remarks of relevance to these.

Lemma 2.1. Let B be as in Definition 2.1, let (Ω,E ,µ) be a measure space, and let {gx : x ∈ B} be
a family of integrable functions on the measure space so that, for almost all (for short, a.a.) ω ∈ Ω,
gx(ω), x ∈ B, are log-convex. Define (in the notation of Loève (1963, p. 119)),

h(x) =

∫

gx , x ∈ B.

Then, h is a log-convex function (on B). (We do not impose here the restriction that h be continuous if
B = (a,∞).)
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Proof. If α,β ,γ ∈ (0,∞), then, for instance, by the first statement in the last paragraph of Kingman
(1972, p. 18), we have

β2 ≤ αγ (2)

to be equivalent to that
αλ2− 2βλ+ γ≥ 0, for all λ > 0. (3)

In view of the assumptions of the lemma and the criterion of (1) for a function to be log-convex,
it follows that if x ∈ B and y ∈ C (as in (1)), we have (3) to be valid with α, β and γ replaced,
respectively, by gx(ω), gx+y(ω) and gx+2y(ω) for a.a. ω ∈ Ω, and, hence, to be valid with α, β and
γ replaced, respectively, by h(x), h(x+ y) and h(x+2y). This, in turn, shows, since (3) implies (2),
that (1) holds with h in place of g, and, consequently, that the lemma holds. �

Lemma 2.2. Let G be a Lebesgue-Stieltjes measure function (i.e., a nondecreasing, right-continuous,
real-valued function) on R, so that, for some a ∈R, G(x) = 0 if x < a and G(x) is differentiable with
log-convex derivative if x > a. Define the sequence {Gn : n = 1,2, . . .} of Lebesgue-Stieltjes measure
functions on R, so that, for each m, n ∈ {1, 2, . . .},

Gn(x) =

¨

G(a+m/n) if x ∈ [a+ (m− 1)/n, a+m/n),
0 if x ∈ (−∞, a).

Then, {Gn : n = 1, 2, . . .} converges weakly to G and, for each n ∈ {1,2, . . .}, Gn is concentrated on Bn
with Gn(x)− Gn(x−), x ∈ Bn, log-convex, where Bn = {a, a+ 1/n, a+ 2/n, . . .}.

Proof. That {Gn : n = 1,2, . . .} converges weakly to G is obvious, since, by assumptions, for each
n ∈ {1,2, . . .},

|Gn(x)− G(x)|= Gn(x)− G(x)

¨

≤ G(x + 1/n)− G(x) if x ∈ [a,∞),
= 0 if x ∈ (−∞, a).

It is also obvious, by assumptions, that, for each n ∈ {1, 2, . . .}, Gn is concentrated on Bn and, in
view of the observation below 11.82 in Titchmarsh (1978, p. 368), that

Gn(x)− Gn(x−) = G(a)S(x) +

∫ 1/n

0

G′(x + y) d y if x ∈ Bn, (4)

where S(a) = 1 and S(x) = 0 if x > a. Clearly, we have in (4), the function G(a)S(x), x ∈ Bn, to
be log-convex, and, in view of the log-convexity of G′ on (a,∞), for each y ∈ (0,∞), the function
G′(x + y), x ∈ Bn, to be log-convex. Consequently, by Lemma 2.1, it follows that Gn(x)− Gn(x−),
x ∈ Bn, is log-convex, and, thus, the lemma holds. �

Remark 2.1. In the literature, usually, a log-convex sequence {un}, with u0 = 1 and 0 < un ≤ 1
if n > 0, is called a Kaluza sequence, especially, in recognition of the findings on such sequences
given in Kaluza (1928); to be short, we refer to this as a KS. Indeed, Proposition 1 of Kaluza (1928)
establishes that each KS is renewal. Kingman (1972, Section 1.5), in particular, and Shanbhag
(1977) amongst others, have made some further observations on these sequences. [Incidentally,
the statement in Kingman (1972, p. 18) that the class of KS’s is a closed convex subset of the class
of renewal sequences requires the convention of the sequence {un}, with u0 = 1 and un = 0 if
n> 0, being Kaluza, adopted. A similar blemish, also, exists in the KS-related proof, given by Goldie
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(1967) for his Theorem 2, since it assumes, implicitly (in the notation used in it) that P{Z = 0}< 1,
without stating that this is so.] If g is a non-vanishing log-convex function on B, then (1) implies
that, for each pair x and y as in (1), the sequence {g(x + ny)/g(x + (n− 1)y) : n = 1,2, . . .}, is
nondecreasing, and, hence, for n ∈ {1, 2, . . .},

g(x + ny)
g(x)

=
n
∏

m=1

g(x +my)
g(x + (m− 1)y)

≤
2n
∏

m=n+1

g(x +my)
g(x + (m− 1)y)

=
g(x + 2ny)
g(x + ny)

,

implying that
g2(x + ny)≤ g(x) g(x + 2ny). (5)

In view of (5), it follows that (1) is equivalent to its version with C replaced by C∗, where C∗ =
{b, 2b, . . .} in the discrete case, and C∗ = (0,∞) otherwise. Obviously, there are several other
equivalent formulations for (1).

Remark 2.2. In view of the result of Titchmarsh (1978) met in the proof of Lemma 2.2, it follows,
by Lemma 2.1, that {n(G(x + (1/n)) − G(x)), x > a : n = 1,2, . . .}, with G as in Lemma 2.2, is
a sequence of continuous log-convex functions; since the sequence converges (pointwise) to the
function G′(x) , x > a, it is seen, by (10.4) and (10.7) in Volume I, Chapter 1, of Zygmund (2002),
that this latter function is indeed a continuous log-convex function. That G′ is continuous, follows,
also, from Loève (1963, p. 159), since it is a log-convex Borel function; we could have, obviously,
used this information, in place of that in Titchmarsh (1978), in the proof of Lemma 2.2. It may be
noted, in this connection, that Loève (1963) and Zygmund (2002) use different approaches to define
convex functions, though, these turn out, in view of (10.7) of Zygmund (2002), to be equivalent
in the case of continuous functions defined on open intervals, and we follow (in Definition 2.1)
implicitly Loève (1963) to define a log-convex function g in the case of B = (a,∞).

Remark 2.3. (i) If B = {a, a+ b, a+ 2b, . . .} with a ∈ R and b ∈ (0,∞), then, by Lemma 2.1, any
nonnegative real function h on B, of the form

h(x) =
∞
∑

n=0

g(x + nb)νn, x ∈ B, (6)

where g is a log-convex function on B and {νn : n = 0,1, 2, . . .} is a sequence of nonnegative reals,
is log-convex.

(ii) Suppose B = (a,∞) with a ∈R, and g is a continuous log-convex function on B. Then, in view
of Lemma 2.1, by Loève (1963, p. 159), it follows that (since it is a Borel function) any nonnegative
real function on B, satisfying

h(x) =

∫

[0,∞)
g(x + y)dν(y), x ∈ B, (7)

with ν as a Lebesgue-Stieltjes measure, is a continuous log-convex function. Similarly, if a nonnega-
tive, using the relevant information (i.e., relative to C∗) appearing in Remark 2.1, it can be seen that
any nonnegative real function h on B, satisfying (7), with “x + y” replaced by “x y” and “[0,∞)”
replaced, respectively, by “(0,∞)” if a = 0 and “[1,∞)” otherwise, is also a continuous log-convex
function. (Since, in each case, {hn : n= 1, 2, . . .}, where, for each n, hn satisfies the relevant version
of (7), with ν(· ∩ [0, n]) in place of ν , is a sequence of continuous functions converging, by the
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monotone convergence theorem, to h, that h has the stated property is implied, in view of Lemma
2.1 and the last observation in Remark 2.2, also, by Zygmund (2002; Theorem 10.4).)

(iii) If a is nonnegative and H is a Lebesgue- Stieltjes measure function on R, such that

H(x) =

¨

E(G(xV )) if x ≥ a,
0 otherwise,

(8)

where G is as in Lemma 2.2 and V is a nonnegative real r.v. meeting, if a > 0, a further condition of
P{V ≥ 1}= 1, it follows (on reading, for convenience, 0 G′(0) = 0), by Fubini’s theorem, that

H(x)−H(a) =

∫

(a,x)
E(V G′(yV ))d y, x ∈ (a,∞). (9)

Clearly, then, in view of the properties of G′ referred to in Remark 2.2 and our observation on
the latter version of h in (ii) above, we have that H is differentiable on (a,∞) with continuous
log-convex derivative (E(V G′(xV )) for x > a).

Remark 2.4. Proposition 1 of Kaluza (1928) obviously implies that any nondegenerate log-convex
probability function on {a, a + b, a + 2b, . . .}, with a ∈ R and b ∈ (0,∞), corresponds to an r.v.
a+ bX , where X is an r.v. with compound geometric distribution, and, hence, is i.d. In view of this,
Lemma 2.2 implies that if G in it is a d.f. or H of Remark 2.3 (iii) is a d.f., then it is i.d.; this latter
result is an extension of Theorem 4.2.6 of Steutel (1970) (or of Theorem III. 8.4 in Steutel and van
Harn (2004)). The two results based on Kaluza’s proposition, met here, clearly extend (respectively,
in the reverse order) GSR and its discrete analogue. We have already given some information to this
effect in the introduction. In view of this, C.R. Rao et al. (2009, Section 4), tells us that Theorem
VI.3.13 and Theorem VI.7.10 of Steutel & van Harn (2004) have alternative proofs based, at least
partly, on KS’s or, in particular, completely monotone sequences.

3 Results based on log-convex sequences and log-convex functions

To recall partially the information already implied, in our discussion so far, especially in Remark 2.4,
applying the Wiener-Hopf factorization relative to a random walk, C.R. Rao et al. (2009, Section
4) effectively proved Theorems VI.3.13 and VI.7.10 of Steutel & van Harn (2004). As hinted in the
remark referred to, this approach relies also upon certain properties of log-convex sequences, or,
in particular, of KS’s. Included in the following two subsections, viz., Subsections 3.1 and 3.2, of
the present section, are some further KS-related results and remarks. In Subsection 3.1, modifying
the relevant arguments in C.R. Rao et al. (2009) appropriately, we establish a key theorem, viz.,
Theorem 3.1, with assertion in it based on log-convex sequences, and, then, give four of its important
corollaries and, in Subsection 3.2, make some pertinent observations through remarks on the results
obtained. From the presentation of Subsection 3.1, it is clear that Corollaries 3.1 and 3.3, with
assertions based on log-convex sequences and log-convex functions, respectively, imply Corollaries
3.2 and 3.4, respectively, and, also, that the latter corollaries are respective rephrased versions of
the aforementioned Steutel & van Harn (2004) theorems.
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3.1 The key theorem and its corollaries

We now present in this subsection our main result, viz., Theorem 3.1 and four of its corollaries,
referred to above.

Theorem 3.1. Let F be a d.f. relative to a probability distribution {px : x = 0,±1,±2, . . .} such that,
for some constant K > 0,

Kpx =







∑∞
j=|x |+1 v− j if x =−1,−2, . . . ,

∑∞
j=x+1 v j if x = 1, 2, . . . ,

max
�
∑∞

j=1 v− j ,
∑∞

j=1 v j
	

if x = 0,
(10)

with {v j : j = ±1,±2, . . .} as a sequence of nonnegative reals for which {v− j : j = 1, 2, . . .} and
{v j : j = 1, 2, . . .} are log-convex. Then, F is i.d.

Proof. We may assume, without loss of generality, that {v j : j = 0,±1,±2, . . .}, with v0 denoting

some nonnegative real number, is so that
∑∞

j=1 v− j =
∑∞

j=1 v j and
∑1

j=−1 v j = 1; this follows since

if
∑∞

j=1 v− j 6=
∑∞

j=1 v j , then, taking, without loss of generality,
∑∞

j=1 v− j >
∑∞

j=1 v j , we can replace

v1 by v1 +
∑∞

j=1 v− j −
∑∞

j=1 v j and verify that the normalized version of the resulting v-sequence
is as required and (10) (possibly, with different K) holds with the original v-sequence replaced by
this. Now, since we need a proof for the theorem only when the distribution (satisfying (10)) is
nondegenerate, we can assume, again, without loss of generality, that v j > 0 for all j > 0, and

define, for each positive integer k, a sequence {v(k)j : j = 0,±1,±2, . . .} satisfying

v(k)j =







v j if j = 0,−1,±2, . . . ,±k,−(k+ 1),−(k+ 2), . . . ,
vk
� vk+1

vk

� j−k if j = k+ 1, k+ 2, . . . ,

v1+
∑∞

i=2

�

vi − v(k)i

�

if j = 1.

Kingman (1972, p. 18) involves the idea that we have used in the construction of {v(k)j } from {v j}
and implies, in view of (10), that 0 < vk+1/vk < 1; note, in particular, that, in the present case,
{v1+ j/v1 : j = 0,1, 2, . . .} and {v−1− j/v−1 : j = 0, 1,2, . . .} are such that the first one is a strictly
decreasing KS and, unless it is the sequence {1, 0,0, . . .}, so also is the second one. Obviously,
for each positive integer k, {(v(k)−1 + v(k)0 + v(k)1 )

−1v(k)j : j = 0,±1,±2, . . .} is a sequence possessing

the properties sought of {v j : j = 0,±1,±2, . . .} above and provides us with a distribution {p(k)x }
satisfying the version of (10) (possibly, with different K and) with v j ’s replaced by v(k)j ’s. Denoting
the d.f. relative to this latter distribution by Fk, it is easily seen that {Fk : k = 1, 2, . . .} converges
weakly to F , and hence, in view of the closure property of the class of i.d. distributions under weak
convergence, it is sufficient if we prove that, for each positive integer k, Fk is i.d.

Consequently, it follows that to prove that F is i.d., there is no loss of generality if we assume that
for some j0 ∈ {1, 2, . . .} and b ∈ (0, 1), v j ∝ b j , j ≥ j0. Assume then that {v j : j = 0,±1,±2, . . .}
meets this additional condition and define c = − ln b. Also, define now the sequence {w j : j =
0,±1,±2, . . .} so that

w j =







v j − v j−1 if j =−1,−2, . . . ,
v j − v j+1 if j = 1,2, . . . ,
v0 if j = 0,

(11)
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and observe that this is a distribution with mean 0, having an m.g.f. with its domain of definition
as a superset of [0, c). Obviously, in the present case, {px} has the same property as {w j} that it
has an m.g.f. with [0, c) as a subset of its domain of definition; denote then the m.g.f.’s of {px} and
{w j} by M and M∗, respectively. Following the relevant approach of C.R. Rao et al. (2009, Section
4.2) (involving Theorem XII.2.2 of Feller (1971) or otherwise), we can now conclude that the weak
descending and the ascending ladder height measures associated with the random walk relative to
{w j} are indeed probability measures with m.g.f.’s having domains of definitions as supersets of
[0, c), and that

KM(t) =
(1−M∗(t))

(1− e−t)(1− et)
=

�

1−M∗1(t)

1− e−t

��

1−M∗2(t)
1− et

�

, t ∈ (0, c), (12)

where M∗1 and M∗2 are, respectively, the m.g.f.’s of the weak descending and the ascending lad-
der height measures referred to. (For a simple argument to see that the first equation in (12)
holds, refer to Remark 3.2 (i), given below.) In view of (XII.3.7a) in Feller (1971) corresponding
to the distribution of a weak descending ladder height and its analogue corresponding to an as-
cending ladder height, it follows that, in our case, the distributions referred to are of the forms
{
∑∞

n=0 wi−nν
(1)
n : i = 0,−1,−2, . . .} and {

∑∞
n=0 wi+nν

(2)
n : i = 1,2, . . .}, with ν (1)n and ν (2)n nonnega-

tive for all n, respectively. Since for any nonnegative integer-valued random variable Z , we have a
standard result that, for each t 6= 0 for which E(etZ)<∞,

(1−E(etZ))/(1− et) =
∞
∑

j=0

et jP{Z > j},

on appealing to (12), especially, in view of Fubini’s theorem, Remark 2.3 (i) and the log-convexity
properties of {v− j : j = 1, 2, . . .} and {v j : j = 1, 2, . . .}, it is clear that there exist sequences {v∗1 j : j =
0,1, 2, . . .} and {v∗2 j : j = 0,1, 2, . . .} of nonnegative reals and of positive reals, respectively, that are
log-convex such that

KM(t) =

� ∞
∑

j=0

v∗1 je
−t j

�� ∞
∑

j=0

v∗2 je
t j

�

, t ∈ [0, c). (13)

(Note that we have assumed in this proof, without loss of generality, that v j > 0 for all j > 0.) We
have, obviously, {v∗1 j : j = 0, 1,2, . . .} and {v∗2 j : j = 0,1, 2, . . .} in (13) to be, in view of the related
information in Remark 2.1, proportional to renewal sequences and, hence, to appropriate discrete
i.d. distributions (with the first one as degenerate at the origin or compound geometric, and the
second one as compound geometric). We have then that F is i.d., implying that the theorem holds.
�

Corollary 3.1. For each α ∈ [0, 1], let F (α) denote a d.f. so that

F (α)(x) = αF1(x) + (1−α)F2(x), x ∈R, (14)

where F1 is the d.f. relative to the degenerate distribution at the origin and F2 is the d.f. of a nondegen-
erate distribution satisfying (10). Then, each F (α) is i.d.

Proof. We need a proof only when α ∈ (0, 1). Note now that, in this case, for each α, the probability
function (on {0,±1,±2, . . .}) relative to F (α) satisfies (10), with K unaltered and {v j} replaced by

{v(α)j }, where
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v(α)j =

¨

Kα+ (1−α)v j if j =−1, 1,
(1−α)v j otherwise.

Consequently, we have the corollary. �

Corollary 3.2. Each probability distribution {px : x = 0,±1,±2, . . .}, with p0 > 0 and {p−x : x =
0,1, 2, . . .} and {px : x = 0,1, 2, . . .} completely monotone, is i.d.

Proof. In view of Hausdorff’s theorem, referred to, e.g., in Theorem VII.3.1 of Feller (1971), it
follows that

px =







p0m(1)|x | if x =−1,−2, . . . ,

p0m(2)x if x = 1, 2, . . . ,
p0m(1)0 (= p0m(2)0 ) if x = 0,

where {m(1)x : x = 0, 1,2, . . .} and {m(2)x : x = 0,1, 2, . . .} (with, obviously, m(1)0 = m(2)0 = 1) are
moment sequences relative to probability distributions concentrated on [0,1). Defining {v j : j =
±1,±2, . . .} for which

v j+1 =

¨

p j+2− p j+1 if j =−2,−3,−4, . . . ,
p j − p j+1 if j = 0, 1,2, . . . ,

it is then seen that {px} satisfies (10) with v j ’s meeting the required condition and K = 1. Hence,
we have the corollary. �

Corollary 3.3. For each α ∈ [0, 1], let F (α) be so that (14) is met but for that F2, now, instead of
that in the statement of Corollary 3.1, is the d.f. relative to an absolutely continuous distribution with
density f2 satisfying

f2(x) =

(
∫∞
|x | v1(y)d y if x < 0,
∫∞

x
v2(y)d y if x > 0,

(15)

with v1 and v2 as (nonnegative) log-convex functions on (0,∞). Then, each F (α) is i.d.

Proof. For each n ∈ {1, 2, . . .}, define the d.f. F (n)2 such that it is concentrated on {0,± 1
n
,± 2

n
, . . .},

having {F (n)2 ((x + 1)/n)− F (n)2 (x/n) : x = 0,±1,±2, . . .} to be of the form of {px} of Theorem 3.1,

satisfying (10) with Kn > 0 (where Kn→ 1 as n→∞) in place of K > 0 and {v j} replaced by {v(n)j },
where

v(n)j =







∫ 1/n

0

∫ 1/n

0
v1((| j+ 1|/n) + y + z)d ydz if j =−1,−2, . . . ,

∫ 1/n

0

∫ 1/n

0
v2((( j− 1)/n) + y + z)d ydz if j = 1, 2, . . . .

(16)

Note that, for each n, given y, z,∈ 0,1/n), {vr((m/n)+ y+z) : m= 0, 1, . . .}, r = 1,2, are log-convex
sequences. Hence, by Lemma 2.1, it follows that, for each n, {v(n)j } meets the requirements of the

theorem. Since F (n)2 can easily be seen to be so that it converges to F2 weakly, essentially, in view
of Corollary 3.1 and the closure property of the class of i.d. distributions, we can conclude that, for
each α ∈ [0,1], F (α) is i.d., and, thus, we have the corollary. �
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Corollary 3.4. For each α ∈ [0, 1], let F (α) be so that (14) is met but for that F2, now, instead of
that in the statement of Corollary 3.1, is the d.f. relative to an absolutely continuous distribution with
density f2 for which, for each r ∈ {1, 2}, the function f2((−1)r t), t ∈ (0,∞), is completely monotone.
Then, each F (α) is i.d.

Proof. In view of the conditions to be met by f2, essentially, appealing to a version of Bernstein’s
theorem appearing as Theorem XIII.4.1a of Feller (1971), it follows that, in this case, (14) holds for
each α ∈ [0,1], with vr ’s in (15) so that

vr(y) =

∫

(0,∞)
λ2e−λy dµr(λ), y ∈ (0,∞), r = 1, 2,

where µr , r = 1, 2, are measures so that µ1 + µ2 is a probability measure concentrated on (0,∞).
Clearly, v1 and v2 in this case are log-convex on (0,∞), satisfying (in obvious notation) vr(.)v

′′

r (.)−
(v
′

r)
2(.)≥ 0, r = 1, 2. Hence, we have the corollary from Corollary 3.3. �

3.2 Some relevant remarks

We devote the present subsection, as implied before, to making specific observations on our findings
through remarks:

Remark 3.1. The equation (10) in the statement of Theorem 3.1 can be also expressed, with a
minor notational adjustment, so as to have K = 1. However, to have the options such as that in
which {v−1− j : j = 0,1, 2, . . .} and {v1+ j : j = 0,1, 2, . . .} are moment sequences open to us, and to
avoid unnecessary notational complications in the arguments used to prove Theorem 3.1, we have
decided to retain K in the equation referred to. Also, in view, especially, of the relevant information
in Remarks 2.3 (i), 2.3 (ii) and 2.4, it is obvious that if v j = 0 for some (and hence all) j > 1 or
j < −1, Theorem 3.1 and Corollary 3.1, and, if g1(y) or g2(y) = 0 for some (and hence all) y > 0,
Corollary 3.3, follow as simple consequences of Proposition 1 of Kaluza (1928). To illustrate that
Corollaries 3.2 and 3.4 are more restrictive versions of Corollaries 3.1 and 3.3, respectively, we now
give the following simple example:

Example 3.1. Let g be a function defined on (0,∞), such that

g(x) = e−x+h(x), x > 0, (17)

where h(x) = (1− x)2 if x ∈ (0,1) and h(x) = 0 if x ≥ 1. Then, g and
∫∞

x
g(y)d y , x > 0, are

log-convex but not completely monotone; the log-convexity of the first function is obvious and of the
second function follows by the relevant information in Remark 2.3 (ii), and that the functions are
not completely monotone follows, since these are not differentiable twice and thrice, respectively,
at the point x = 1. Also, if we now define {vn : n = 0,1, 2, . . .} such that v0 = e and, for each n > 0,
vn = g(n/2), where g is as in (17), then, by the Hausdorff theorem, neither of the sequences {vn}
and {

∑∞
m=n+1 vm−1 : n = 0, 1,2 . . .} is completely monotone; note that the cited theorem implies

that a real sequence {v∗n : n= 0, 1,2, . . .}, for which e v∗n+2−2e1/2v∗n+1+ v∗n = 0 for some n> 1, turns
out to be completely monotone, only if e v∗3 − 2e1/2v∗2 + v∗1 = 0 (and this criterion is not met for the
two sequences). However, it is easily seen now that these sequences are indeed log-convex.
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Remark 3.2. (i) A simple argument to show that the first equation in (12) is valid, is as follows:
Clearly, in view of the assumptions in the statement of Theorem 3.1 in conjunction with those that
we added in the proof of the theorem claiming that there was no loss of generality in doing so we
have from (10) (in obvious notation)

K(1− e−t)(1− et)M(t) = K(2− et − e−t)M(t)

=
∞
∑

x=−∞
et x[K(2px − px−1− px+1)]

= 1−
∞
∑

x=−∞
et x wx = (1−M∗(t)), t ∈ [0, c).

This is obvious on noting, in particular, that the last but one equation holds since

K(2px − px−1− px+1) =







vx−1− vx =−wx if x =−1,−2, . . . ,
vx+1− vx =−wx if x = 1,2, . . . ,
v−1+ v1 = 1− v0 = 1−w0 if x = 0.

(ii) The argument that we have used in the proof of Theorem 3.1 remains valid with v0 = 0.
However, to make the link between our approach in this case and that appearing in Section 4.2 of
C.R. Rao et al. (2009) more transparent, we have allowed here also the case v0 6= 0. To illustrate
this, we now consider the following example.

Example 3.2. Let n ∈ {1, 2, . . . , } and {px : x = 0,±1,±2, . . .} be a probability distribution, discussed
implicitly in Section 4.2 of C.R. Rao et al. (2009), so that

px =







∑n
s=1 c1sp

−x
1s if x =−1,−2, . . . ,

∑n
s=1 c2sp

x
2s if x = 1,2, . . . ,

max{c∗1, c∗2} if x = 0,

where c∗r =
∑n

s=1 crs, r = 1,2, crs > 0 and prs ∈ (0,1) for each r ∈ {1, 2} and s ∈ {1, 2, . . . , n}.
Then, by Corollary 3.2, it is immediate that {px} is i.d. (Note that, in this case, the m.g.f. for the
distribution exists, with domain of definition having 0 as an interior point, and hence there are
obvious advantages.) However, we may stress here that the specific construction that C.R. Rao et al.
(2009) have given to get M∗ from M assumes (in our notation) v0 = w0 > 0 (as implied by (4.4) of
the cited paper).

Remark 3.3. From the proofs that we have given above, especially for Theorem 3.1 and Corollary
3.3, it is obvious that, for each of Theorem 3.1 and Corollaries 3.1-3.4, there exists a sequence
{X1,n− X2,n : n= 1, 2, . . .}, with, for each n, X1,n and X2,n as independent discrete nonnegative r.v.’s
having log-convex distributions (on {0, bn, 2bn, . . .}, for some bn > 0), converging in distribution
to an r.v., with distribution, that is claimed to be i.d., in the respective assertion; from C.R. Rao et
al. (2009, Section 4), it follows further that, in the case of Corollaries 3.2 and 3.4, the observation
remains valid with “log-convex distributions” replaced by “completely monotone distributions or
their scale variations”.
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Remark 3.4. It follows easily that the classes of the mixtures met in the statements of Corollaries
3.1, 3.3 and 3.4, and the class of the distributions in the statement of Corollary 3.2, are all convex
(with members that are i.d). In view of this, it is obvious, amongst other things, that if X is an
r.v. with distribution as a member of the class of mixtures in the statement of Corollary 3.3 (or, in
particular, in the statement of Corollary 3.4) and W is an r.v. independent of X , then, by the closure
property of the class of i.d. distributions, W X and W |X | are i.d. (Moreover, in view of the relevant
information in Remark 2.3 (ii) or in the proof of Corollary 3.4, respectively, Fubini’s theorem implies
that the distributions of W X and W |X | lie in the class relative to the distribution of X , referred to.)
It may be worth pointing out in this place that if X ∗ is an r.v. with its d.f. as G of Remark 2.4, but
with a = 0, and W is a nonnegative r.v. independent of X ∗, then, by (the related information in)
Remarks 2.3 (iii) and 2.4, W X ∗ is i.d, since, there is no loss of generality in assuming W > 0 and
we have the d.f. of W X ∗, in this case, to be a specialized version of H of Remarks 2.3 (iii), with
V = 1/W .

Remark 3.5. In the previous remark, we came across some cases of independent r.v.’s W and X
with W X i.d. One may now raise a question as to whether discrete versions of these relative to
integer-valued r.v.’s are valid. That the answer to this question is in the negative is shown by the
following example.

Example 3.3. Let W and X be independent r.v.’s with X geometric and W a nondegenerate r.v.
whose distribution is concentrated on {2,3}. Then, since W X is a nonnegative integer-valued r.v.
with support of its distribution so that it includes the points 0, 2 and 3, but not the point 5, Theorem
4.2.3 of Steutel (1970) or Theorem II.8.2 of Steutel & van Harn (2004) implies that this latter r.v. is
non-i.d. (In view of the closure property of the class of i.d. distributions, one can, obviously, obtain
more general examples to illustrate that this is so.) Incidentally, the present example illustrates also
that there exist non-i.d. mixtures of compound geometric distributions.

Remark 3.6. Let X and X ∗ be r.v.’s as in Remark 3.4. Also, let φ :R 7→R and φ∗ : [0,∞) 7→ [0,∞)
be one-to-one and onto (i.e., bijective) functions with φ(0) = φ∗(0) = 0, for which their inverses
φ−1 and (φ∗)−1 are such that

φ−1(x) =

(

−
∫ |x |

0
ψ1(y)d y if x < 0,

∫ x

0
ψ2(y)d y if x > 0,

where ψr , r = 1, 2, are decreasing log-convex functions on (0,∞) with (in standard notation for
derivatives) −ψ

′

r(y), y ∈ (0,∞), also as log-convex for r = 1, 2, and

(φ∗)−1(x) =

∫ x

0

ψ∗(y)d y if x > 0,

where ψ∗ is a decreasing log-convex function on (0,∞). Then, denoting respectively by H and H∗

the d.f.ćs of φ(X ) and φ∗(X ∗), it is seen, for example, that, for x > 0, (in standard notation for
derivatives) −H ′′(x) and (H∗)′(x) are both (nonincreasing) continuous log-convex functions. (To
understand this last claim properly, note that if g is proportional to a log-convex density on (0,∞),
then, by Remark 2.3 (ii), g((φ)−1(x)), x > 0, g((φ∗)−1(x)), x > 0, and

∫∞
0

g(y+φ−1(x)) d y , x >
0, are (nonincreasing) continuous log-convex functions, and, also, that the products (by Definition
2.1) and the sums (by Lemma 2.1) of finitely many log-convex functions on B are log-convex on
B.) Hence, in view of what we have already pointed out in Remark 3.4, it follows in particular
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(appealing to the underlying symmetry in the case of H) that if W1 and W2, with W2 nonnegative,
are r.v.’s, independent of X and X ∗, respectively, then, for all n ∈ {1,2, . . .}, W1X n and, for all
β ∈ [1,∞), W1|X |β and W2(X ∗)β are i.d. (Clearly, there exist several other possibilities here.)

Remark 3.7. If {px : x = 0,1, . . .} is a probability distribution so that px = ux − ux+1, x = 0,1, . . .,
with {ux : x = 0,1, . . .} completely monotone, then, by Corollary 3.2, it is i.d. However, that this
assertion does not remain valid, if we replace the condition that {ux} is completely monotone by
that it is a KS, is shown by the following example.

Example 3.4. Let b, c ∈ (0, 1) with b ≤ c, and {ux : x = 0, 1, . . .} be so that

ux =

¨

bx if x = 0,1,
b2c x−2 if x = 2,3, . . . .

Also, let px = ux − ux+1, x = 0,1, . . ., and f be the corresponding probability generating function
(p.g.f.) . Observe now that {ux} considered is a Kaluza sequence and if we choose c sufficiently
close to 1 (with b fixed), then, {px}, in this case, turns out to be non-i.d., since, in spite of that
0< f (0)< 1, we cannot have here f (·) = e−λ+λg(·) with λ > 0 and g as a p.g.f. satisfying g(0) = 0.
(To see the validity of the claim on {px}, it is sufficient if we verify that ln f (s) has its second
derivative at s = 0 to be negative.)

Remark 3.8. One may now raise a question as to whether Theorem 3.1 remains valid if we take
in place of (10) its version, obtained from it, replacing the four summations, on its right hand side,
respectively, by v−|x |−1, vx+1, v−1 and v1. Taking a hint from Example 3.4, we can now construct the
following example to show that the answer to the question is in the negative.

Example 3.5. Let {px : x = 0,±1,±2, . . .} be a probability distribution satisfying

Kpx =







c|x | if x = 0,−1,−2, . . . ,
b2c x−2 if x = 2, 3, . . . ,
b if x = 1,

(18)

with K > 0 and b, c ∈ (0, 1) so that b ≤ c. Clearly, (18) may, now, be viewed as the version of (10),
that is sought, with, e.g., v1 = v−1 = 1 and v j ’s for j 6= −1, 1 defined in obvious way. Consequently,
if X is an r.v. whose distribution is {px} then (with t complex)

KE(etX ) =
�

1− ce−t�−1+ bet + b2e2t�1− cet�−1,

= (1− bc)
�

1− ce−t�−1 g(et), Re(t) ∈ (ln c,− ln c), (19)

with g(s) = 1+ bs+ b2s2(1− c2)(1− bc)−1(1− cs)−1, for each s = et , Re(t) ∈ (ln c,− ln c). Suppose
now that we specialize to the case with b+ b2(1+ c)(1− bc)−1 < 1 and (1− c2)(1− bc)−1 < 1/2
(which subsumes, e.g., the case with b = 1/3 and c = 8/9). On applying the standard power-series
expansion for ln(1+ z), |z| < 1, by minor manipulation, (19) implies then that, in this special case,
there exists a sequence {qx : x = 0,±1,±2, . . .} of reals, with q0 = 0, q2 < 0, qx = c|x |/|x | if x < 0,
and

∑∞
x=2 |qx |<∞, such that

ln(E(etX )) =
∞
∑

x=−∞
(et x − 1)qx , Re(t) ∈ (ln c, 0],
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asserting, in view of Lukacs (1970, Remark 1, p.118) or Blum & Rosenblatt (1959, Theorem 1), that
{px} is non-i.d. (Incidentally, Blum & Rosenblatt (1959, Theorem 1) tells us that any nondegenerate
i.d. distribution with at least one discontinuity is so that its characteristic function (ch.f.) has a
unique representation as the product of a degenerate ch.f. and a ch.f. that is of the form e−λ+λϕ(·)

with λ > 0 and ϕ as the ch.f. of a d.f. G satisfying G(0) − G(0−) = 0; note that if the i.d.
distribution corresponds to an integer-valued r.v., then the degenerate ch.f. and G referred to here
also correspond to such r.v.’s.)

Remark 3.9. A further example, i.e., Example 3.6, that appears below, tells us that Corollary 3.3
does not remain valid if “

∫∞
|x | v1(y)d y” and “

∫∞
x

v2(y)d y” in (15) are replaced by “v1(|x |)” and
“v2(x)”, respectively. (Incidentally, as a by-product of this, the argument used in the proof of Corol-
lary 3.3, with obvious alterations, then implies that the answer to the question in Remark 3.8 is in
the negative, thus, supporting the conclusion of Example 3.5.)

Example 3.6. Let F be an absolutely continuous d.f. with p.d.f. f such that, for an appropriate
constant K > 0,

K f (x) =

¨

e−δ|x | if x ≤ 0,
αe−δx+h(x) if x > 0,

(20)

with 0 < α < e−1, δ > 0 and h as in Example 3.1. If X is an r.v. with d.f. F , we see then, using, in
particular, Fubini’s theorem or the method of integration by parts, that (with t complex)

KE(etX ) = (δ+ t)−1
n

1+α(δ+ t)

∫ ∞

0

et x−δx+h(x)d x
o

= (δ+ t)−1
n

1−αe+α

∫ ∞

0

e(δ+t)x−2δx+h(x)(2δ− h′(x))d x
o

= (1−αe)(δ+ t)−1 g∗(t), Re(t) ∈ (−δ,δ), (21)

where

g∗(t) = 1+α(1−αe)−1

∫ ∞

0

et x−δx+h(x)(2δ− h′(x))d x , Re(t) ∈ (−δ,δ).

Suppose we now take, for convenience, α(1− αe)−1 < 1/4 and δ = α2, and assume that F is i.d.
with Lévy measure ν . Clearly, in this case, 0 < g∗(0)− 1 < α(1−αe)−1(δ(e− 1) + e+ 1) < 1, and
the function φ, defined by φ(s) = (g∗(is)− 1)/(g∗(0)− 1), s ∈ R, is a ch.f.; denote by G the d.f.
relative to φ. (The inequalities for g∗(0)− 1, an integral over (0,∞), are obvious, in view of the
assumptions for α and δ, on expressing it as the sum of the appropriate integrals over (0,1) and
[1,∞), respectively.) The table on spectral measures for certain i.d. distributions given by Lukacs
(1970, p. 120), and the power-series expansion for ln(1 + z) with z = (g∗(0) − 1)φ(s), s ∈ R,
in conjunction with the uniqueness theorem for the Fourier transform of a finite signed measure
(given, e.g., as Corollary 1.1.2 in Rao & Shanbhag (1994, p. 2)), imply then, by (21), that

ν((−∞, x)) =

∫ x

−∞
|y|−1eδ y d y, if x ∈ (−∞, 0),

and

ν((0, x]) =
∞
∑

n=1

n−1(−1)n−1(g∗(0)− 1)nGn∗(x), if x ∈ (0,∞), (22)
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where, for each n ∈ {1,2, . . .}, Gn∗ is the n-fold convolution of G with itself. From (22), we see that
there exists a function o : (0,∞) 7→R with limy→0+(o(y)/y) = 0, so that, for sufficiently small α,

ν((1,2]) = (1/2)α2

∫ 1

0

(eh(1−y)− 1)eh(y)h′(y)d y + o(α2)< 0,

leading us to a contradiction, and, hence, supporting the claim made in Remark 3.9.

Remark 3.10. To shed further light on the conclusions of Examples 3.5 and 3.6, we may give the
following relevant information: Extending g and g∗ appearing in these examples appropriately with
notation, for convenience, for the extensions respectively as gc and g∗δ, so that their domains of
definition are the sets of complex numbers, respectively, with moduli lying in (0,1/c) and with real
parts lying in (−∞,δ), it is seen that, for some (real) t∗ ∈ (−∞, 0), gc(exp{is + t∗})/gc(exp{t∗}),
s ∈ R, and g∗δ(is + t∗)/g∗δ(t

∗), s ∈ R, are ch.f.’s. (The extensions referred to here can be assumed
to be analytic continuations of their original versions.) If we now allow c and δ to vary as (distinct)
members of a c-sequence tending to 1 and a δ-sequence tending to 0, respectively, then the resulting
sequences of ch.f.’s converge to the ch.f.’s of certain nondegenerate bounded r.v.’s. Clearly, the
limiting distributions in the two cases referred to are non-i.d., explaining indirectly, as to why we
have the contradictions in the two examples.
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