# THE LAW OF LARGE NUMBERS FOR U-STATISTICS UNDER ABSOLUTE REGULARITY 

MIGUEL A. ARCONES<br>Department of Mathematics<br>University of Texas<br>Austin, TX 78712-1082.<br>email: arcones@math.utexas.edu<br>web: http://www.ma.utexas.edu/users/arcones/

submitted September 15, 1997; revised March 4, 1998.
AMS 1991 Subject classification: 60F15.
Keywords and phrases: Law of large numbers, U-statistics, absolute regularity.

## Abstract

We prove the law of large numbers for $U$-statistics whose underlying sequence of random variables satisfies an absolute regularity condition ( $\beta-$ mixing condition) under suboptimal conditions.

## 1 Introduction.

We consider the law of large numbers for U -statistics whose underlying sequence of random variables satisfies a $\beta$-mixing condition. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of random variables with values in a measurable space $(S, \mathcal{S})$. Given a kernel $h$, i.e. given a function $h$ from $S^{m}$ into $\mathbb{R}$, symmetric in its arguments, the U-statistic with kernel $h$ is defined by

$$
\begin{equation*}
U_{n}(h):=\frac{(n-m)!}{n!} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) . \tag{1.1}
\end{equation*}
$$

We refer to Serfling (1980), Lee (1990), and Koroljuk and Borovskich (1994) for more in Ustatistics. For i.i.d.r.v.'s, assuming that $E\left[\left|h\left(X_{1}, \ldots, X_{m}\right)\right|\right]<\infty$, Hoeffding (1961; see also Berk, 1966) proved the law of large numbers for U-statistics:

$$
\begin{equation*}
\frac{(n-m)!}{n!} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n}\left(h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)-E\left[h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right]\right) \rightarrow 0 \text { a.s. } \tag{1.2}
\end{equation*}
$$

Several authors have studied limit theorems for U-statistics under different dependence conditions. Sen (1972), Yoshihara (1976) and Denker and Keller (1983) proved a central limit theorem and a law of the iterated logarithm for U-statistics under different types of dependence conditions. Qiying (1995) and Aaronson, Burton, Dehling, Gilat, Hill, and Weiss (1996) studied the law of large numbers for U-statistics for stationary sequences of dependent r.v.'s.

Aaronson, Burton, Dehling, Gilat, Hill, and Weiss (1996) gave several sufficient conditions for the law of large numbers over a ergodic stationary sequence of r.v.'s. It is shown in this paper (Example 4.1) that even the weak law of large numbers for U-statistics is not true just assuming finite first moment and ergodicity, that is the ergodic theorem is not true for U-statistics. Thus further conditions must be imposed.
Qiying (1995) considered the law of large numbers under $\phi^{*}$-mixing. But, there is a gap in his proofs. In Equation (11), he claims that

$$
\sum_{k=1}^{\infty} 2^{-2 k} \sup _{m \geq 2} E\left|h\left(X_{1}, X_{m}\right)\right|^{2} I_{\left(\left|h\left(X_{1}, X_{m}\right)\right| \leq 2^{2 k}\right)} \leq A \sup _{m \geq 2} E\left|h\left(X_{1}, X_{m}\right)\right|
$$

where $A$ is an arbitrary constant. Qiying is using that there exist a universal constant $A$ such that for any sequence of r.v.'s $\left\{\xi_{m}\right\}$,

$$
\sum_{k=1}^{\infty} 2^{-2 k} \sup _{m \geq 2} E \xi_{m}^{2} I_{\left(\left|\xi_{m}\right| \leq 2^{2 k}\right)} \leq A \sup _{m \geq 2} E\left|\xi_{m}\right|
$$

This claim is not true. Let us take $\xi_{m}$ such that $\operatorname{Pr}\left(\xi_{m}=2^{2 m}\right)=2^{-2 m}$ and $\operatorname{Pr}\left(\xi_{m}=0\right)=$ $1-2^{-2 m}$. Then,

$$
\sup _{m \geq 2} E\left|\xi_{m}\right|=1
$$

and

$$
\sum_{k=1}^{\infty} 2^{-2 k} \sup _{m \geq 2} E \xi_{m}^{2} I_{\left(\xi_{m} \leq 2^{2 k}\right)} \geq \sum_{k=1}^{\infty} 2^{-2 k} E \xi_{k}^{2} I_{\left(\xi_{k} \leq 2^{2 k}\right)}=\infty
$$

A similar comment applies to Equation (11) in Qiying (1995).
Instead of using $\phi^{*}$-mixing, we use $\beta$-mixing. $\phi^{*}-$ mixing is one of the stronger mixing conditions. The $\phi^{*}-$ mixing coefficient is bigger than the $\beta$-mixing. The dependence condition we will consider is known as absolute regularity. Given a strictly stationary sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$ with values in a measurable space $(S, \mathcal{S})$, let $\sigma_{1}^{l}=\sigma\left(X_{1}, \ldots, X_{l}\right)$ and let $\sigma_{l}^{\infty}=\sigma\left(X_{l}, X_{l+1}, \ldots\right)$, the $\beta$-mixing sequence is defined by

$$
\begin{gather*}
\beta_{k}:=2^{-1} \sup \left\{\sum_{i=1}^{I} \sum_{j=1}^{J}\left|\operatorname{Pr}\left(A_{i} \cap B_{j}\right)-\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(B_{j}\right)\right|:\left\{A_{i}\right\}_{i=1}^{I} \text { is a partition in } \sigma_{1}^{l}\right.  \tag{1.3}\\
\text { and } \left.\left\{B_{j}\right\}_{j=1}^{J} \text { is a partition in } \sigma_{k+l}^{\infty}, l \geq 1\right\} .
\end{gather*}
$$

We refer to Ibragimov and Linnik (1971) and Doukhan (1994) for more information in this type of dependence condition.
We present the following theorem:
Theorem 1. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a strictly stationary sequence of random variables with values in a measurable space $(S, \mathcal{S})$. Let $h: S^{m} \rightarrow \mathbb{R}$ be a symmetric function. Suppose that at least one of the following conditions is satisfied:
(i) For some $\delta>2$, $\sup _{1 \leq i_{1}<\cdots<i_{m}<\infty} E\left[\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|^{\delta}\right]<\infty$ and $\beta_{n} \rightarrow 0$.
(ii) For some $0<\delta \leq 1$ and some $r>2 \delta^{-1}$, $\sup _{1 \leq i_{1}<\cdots<i_{m}<\infty} E\left[\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|^{1+\delta}\right]<\infty$ and $\beta_{n}=O\left((\log n)^{-r}\right)$
(iii) For some $0<\delta \leq 1$ and some $r>0$,
$\sup _{1 \leq i_{1}<\cdots<i_{m}<\infty} E\left[\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|\left(\log ^{+}\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|\right)^{1+\delta}\right]<\infty$ and $\beta_{n}=O\left(n^{-r}\right)$.
Then,

$$
n^{-m} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n}\left(h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)-E\left[h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right]\right) \rightarrow 0 \text { a.s. }
$$

Observe that the conditions in the previous theorem are very close to being optimal.

## 2 Proofs.

$c$ will denote an arbitrary constant that may change from line to line. Given a r.v. $Y$, we define $\|Y\|_{p}=(E[|Y|])^{1 / p}$, for and $1 \leq p<\infty$; and we define $\|Y\|_{\infty}=\inf \{t>0:|Y| \leq t$ a.s. $\}$.
We need to recall some notation on U-statistics. We define

$$
\begin{equation*}
\pi_{k, m} h\left(x_{1}, \ldots, x_{k}\right)=\left(\delta_{x_{1}}-P\right) \cdots\left(\delta_{x_{k}}-P\right) P^{m-k} h \tag{2.1}
\end{equation*}
$$

where $Q_{1} \cdots Q_{m} h=\int \cdots \int h\left(x_{1}, \ldots, x_{m}\right) d Q_{1}\left(x_{1}\right) \cdots d Q_{m}\left(x_{m}\right)$. We say that a kernel $h$ is $P$-canonical if it is symmetric and

$$
\begin{equation*}
E\left[h\left(x_{1}, \ldots, x_{m-1}, X_{m}\right)\right]=0 \quad \text { a.s. } \tag{2.2}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
U_{n}(h)=\sum_{k=0}^{m}\binom{m}{k} U_{n}\left(\pi_{k, m} h\right) \tag{2.3}
\end{equation*}
$$

Previous inequality is known as the Hoeffding decomposition (Hoeffding, 1948, Section 5). Observe that the Hoeffding decomposition is a decomposition in U-statistics of canonical kernels ( $\pi_{k, m} h$ is a canonical kernel).
The $\beta$-mixing condition allows to compare probabilities of the initial sequence with respect to a sequence of r.v.'s with independent blocks. Explicitly, we have the following lemma:

Lemma 2. Let $\left\{X_{j}\right\}_{j=1}^{\infty}$ be a stationary sequence of r.v.'s with values in a measurable space


$$
m(1,1)<\cdots<m\left(1, r_{1}\right)<m(2,1)<\cdots<m\left(2, r_{2}\right)<\cdots<m(k, 1)<\cdots<m\left(k, r_{k}\right)
$$

Let $r=\sum_{i=1}^{k} r_{i}$. Let $\left\{\xi_{j}\right\}_{j=1}^{r}$ be a sequence of identically distributed r.v.'s with the distribution of $X_{1}$ such that

$$
\begin{gathered}
\mathcal{L}\left(\xi_{m(1,1)}, \ldots, \xi_{m\left(1, r_{1}\right)}, \xi_{m(2,1)}, \ldots, \xi_{m\left(2, r_{2}\right)}, \cdots, \xi_{m(k, 1)}, \ldots, \xi_{m\left(k, r_{k}\right)}\right) \\
\quad=\mathcal{L}\left(X_{m(1,1)}, \ldots, X_{m\left(1, r_{1}\right)}\right) \otimes \cdots \otimes \mathcal{L}\left(X_{m(k, 1)}, \ldots, X_{m\left(k, r_{k}\right)}\right)
\end{gathered}
$$

Then,
(i)
$\left|E\left[f\left(X_{m(1,1)}, \ldots, X_{m\left(k, r_{k}\right)}\right)\right]-E\left[f\left(\xi_{m(1,1)}, \ldots, \xi_{m\left(k, r_{k}\right)}\right)\right]\right| \leq 2 \sum_{i=1}^{k-1} \beta\left(m(i+1,1)-m\left(i, r_{i}\right)\right)\|f\|_{\infty}$.
(ii) If $1<p<\infty$,

$$
\begin{gathered}
\left|E\left[f\left(X_{m(1,1)}, \ldots, X_{m\left(k, r_{k}\right)}\right)\right]-E\left[f\left(\xi_{m(1,1)}, \ldots, \xi_{m\left(k, r_{k}\right)}\right)\right]\right| \\
\leq 4\left(\sum_{i=1}^{k-1} \beta\left(m(i+1,1)-m\left(i, r_{i}\right)\right)\right)^{(p-1) / p} \\
\times \max \left(\left\|f\left(X_{m(1,1)}, \ldots, X_{m\left(k, r_{k}\right)}\right)\right\|_{p},\left\|f\left(\xi_{m(1,1)}, \ldots, \xi_{m\left(k, r_{k}\right)}\right)\right\|_{p}\right)
\end{gathered}
$$

Part (i) in previous lemma follows directly from the definition of $\beta$ mixing (see the characterization of $\beta$-mixing on page 193 in Volkonskii and Rozanov, 1961) and induction (see Lemma 2 in Eberlein, 1984). Part (ii) follows directly from part (i) (see for example Lemma 2 in Arcones, 1995).

The following lemma gives a bound on the second moment of a U-statistic over a degenerated kernel.

Lemma 3. There is a universal constant $c$, depending only on $m$, such that for each canonical kernel $h$ and each $p>2$,

$$
E\left[\left(\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right)^{2}\right] \leq c n^{m} M^{2}\left(1+\sum_{j=1}^{n-1} j^{m-1} \beta_{j}^{(p-2) / p}\right)
$$

where

$$
M:=\sup _{1 \leq i_{1}<\cdots<i_{m}<\infty}\left(E\left[\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|^{p}\right]^{1 / p}\right.
$$

Proof. We have that

$$
\begin{aligned}
& E\left[\left(\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right)^{2}\right] \\
\leq & \sum_{\sigma \in \Gamma(2 m)} \sum_{1 \leq i_{1} \leq \cdots \leq i_{2 m} \leq n} \mid E\left[h\left(X_{i_{\sigma(1)}}, \ldots, X_{i_{\sigma(m)}}\right) h\left(X_{i_{\sigma(m+1)}}, \ldots, X_{\left.i_{\sigma(2 m)}\right)}\right)\right]
\end{aligned}
$$

where $\Gamma(2 m)$ is the collection of all permutations of $2 m$ elements. Let $j_{1}=i_{2}-i_{1}$, let $j_{l}=\min \left(i_{2 l-1}-i_{2 l-2}, i_{2 l}-i_{2 l-1}\right)$ for $2 \leq l \leq m-1$, and let $j_{m}=i_{2 m}-i_{2 m-1}$. If $j_{1}=\max \left(j_{1}, \ldots, j_{m}\right)$, we compare the initial sequence $\left\{X_{1}, \ldots, X_{n}\right\}$ with the one having the independent blocks $\left\{i_{1}\right\},\left\{i_{2}, \ldots, i_{2 m}\right\}$ and the same block distribution. We claim that by Lemma 2, we get that

$$
\begin{aligned}
& \sum_{\substack{1 \leq i_{1} \leq \cdots \leq i_{2 m} \leq n \\
j_{1} \geq j_{2}, \ldots, j_{m}}}\left|E\left[h\left(X_{i_{\sigma(1)}}, \ldots, X_{\left.i_{\sigma(m)}\right)}\right) h\left(X_{i_{\sigma(m+1)}}, \ldots, X_{i_{\sigma(2 m)}}\right)\right]\right| \\
& \leq c n^{m} M^{2}\left(1+\sum_{k=1}^{n-1} k^{m-1} \beta_{k}^{(p-2) / p}\right) .
\end{aligned}
$$

Observe that if $i_{2}=i_{1}+k, i_{1}$ can take at most $n$ different values. Assume that $i_{3}-i_{2} \leq i_{4}-i_{3}$, then $i_{3}-i_{2} \leq k$, so $i_{3}$ can take at most $k$ values and $i_{4}$ can take at most $n$ values. If $i_{4}-i_{3} \leq i_{3}-i_{2}$, then $i_{3}$ can take at most $n$ values and $i_{4}$ can take at most $k$ values. Proceeding in this way we obtain that the possible values for the variables $i_{1} \leq \cdots \leq i_{2 m}$ (under the assumptions $1 \leq i_{1} \leq \ldots \leq i_{2 m} \leq n$ and $k=j_{1} \geq j_{2}, \ldots, j_{m}$ ) is bounded by $n^{m} k^{m-1}$.
If $j_{l}=\max \left(j_{1}, \ldots, j_{m}\right)$, for some $2 \leq l \leq m-1$, we compare the initial sequence with the one with the independent blocks $\left\{i_{1}, \ldots, i_{2 l-2}\right\},\left\{i_{2 l-1}\right\}$ and $\left\{i_{2 l}, \ldots, i_{2 m}\right\}$. A similar argument applies to this case.
If $j_{m}=\max \left(j_{1}, \ldots, j_{m}\right)$, we compare the initial sequence with the one with the independent blocks $\left\{i_{1}, \ldots, i_{2 m-1}\right\}$ and $\left\{i_{2 m}\right\}$.

Now, we are ready to prove Theorem 1.
Proof of Theorem 1. First, we consider the case (iii). We may assume that $0<r<m$. A standard argument gives that it suffices to show that for each $\alpha>1$,

$$
\begin{equation*}
n_{k}^{-m} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n_{k}} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \rightarrow E\left[h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right] \text { a.s. } \tag{2.4}
\end{equation*}
$$

where $n_{k}=\left[\alpha^{k}\right]$. Now, by the Hoeffding decomposition, it suffices to prove (2.4) for canonical kernels. We are going to prove (2.4) by induction on $m$. The case $m=1$ is the ergodic theorem (see for example Theorem 6.21 in Breiman, 1992). It is easy to see that it suffices to show that

$$
n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \rightarrow 0 \text { a.s. }
$$

Take $p>2$ and $\tau>0$ such that

$$
\begin{equation*}
2 \tau(p-1)<r(p-2) \tag{2.5}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) I_{\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right| \geq n_{k}^{\tau}} \rightarrow 0 \text { a.s. } \tag{2.6}
\end{equation*}
$$

We have that

$$
\begin{gather*}
E\left[\sum_{k=1}^{\infty} n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1}\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right| I_{\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right| \geq n_{k}^{\tau}}\right]  \tag{2.7}\\
\leq c \sum_{k=1}^{\infty}\left(\log n_{k}^{\tau}\right)^{-\delta-1}<\infty .
\end{gather*}
$$

Therefore, (2.6) follows.
Thus, we must prove that

$$
\begin{equation*}
n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1}\left(h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) I_{\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|<n_{k}^{\tau}}\right. \tag{2.8}
\end{equation*}
$$

$$
-E\left[h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) I_{\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|<n_{k}^{\tau}}\right] \rightarrow 0 \text { a.s. }
$$

Using that

$$
\begin{gathered}
\delta_{x_{1}} \cdots \delta_{x_{m}}-P^{m} \\
=\left(\delta_{x_{1}}-P\right) P^{m-1}+P\left(\delta_{x_{2}}-P\right) P^{m-2}+\cdots+P^{m-1}\left(\delta_{x_{m}}-P\right) \\
+\left(\delta_{x_{1}}-P\right)\left(\delta_{x_{2}}-P\right) P^{m-2}+\cdots+\left(\delta_{x_{1}}-P\right) \cdots\left(\delta_{x_{m}}-P\right),
\end{gathered}
$$

we get that (2.8) decomposes in sums of terms of the form

$$
\begin{equation*}
n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1} P^{j_{0}}\left(\delta_{x_{i_{\alpha_{1}}}}-P\right) P^{j_{1}} \cdots\left(\delta_{x_{i_{\alpha_{l}}}}-P\right) P^{j_{l}} h I\left(|h|<n_{k}^{\tau}\right) \tag{2.9}
\end{equation*}
$$

where $1 \leq \alpha_{1}<\cdots<\alpha_{l} \leq m, 1 \leq l \leq m, 0 \leq j_{0}, \ldots, j_{l}$ and $l+j_{0}+\cdots+j_{l}=m$. For $1 \leq l \leq m-1$, using that $h$ is canonical,

$$
\begin{aligned}
& P^{j_{0}}\left(\delta_{x_{i_{\alpha_{1}}}}-P\right) P^{j_{1}} \cdots\left(\delta_{x_{i_{\alpha_{l}}}}-P\right) P^{j_{1}} h I\left(|h|<n_{k}^{\tau}\right) \\
= & P^{j_{0}}\left(\delta_{x_{i_{\alpha_{1}}}}-P\right) P^{j_{1}} \cdots\left(\delta_{x_{i_{\alpha_{l}}}}-P\right) P^{j_{l}} h I\left(|h| \geq n_{k}^{\tau}\right) .
\end{aligned}
$$

Thus, (2.9) is bounded in absolute value by

$$
n_{k}^{-m} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n_{k}} P^{j_{0}}\left(\delta_{x_{i_{\alpha_{1}}}}+P\right) P^{j_{1}} \cdots\left(\delta_{x_{i_{\alpha_{l}}}}+P\right) P^{j_{l}}|h| I\left(|h| \geq n_{k}^{\tau}\right) .
$$

Again, decomposing terms, we get that we have to deal with

$$
\begin{aligned}
& n_{k}^{-m} \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n_{k}} P^{j_{0}} \delta_{x_{i_{\alpha_{1}}}} P^{j_{1}} \cdots \delta_{x_{i_{\alpha_{l}}}} P^{j_{l}}|h| I\left(|h| \geq n_{k}^{\tau}\right) \\
& \leq c n_{k}^{-l} \sum_{1 \leq i_{1}<\cdots<i_{l} \leq n_{k}} P^{j_{0}} \delta_{x_{i_{1}}} P^{j_{1}} \cdots \delta_{x_{i_{l}}} P^{j_{l}}|h| I\left(|h| \geq n_{k}^{\tau}\right),
\end{aligned}
$$

which goes to zero a.s. by the induction hypothesis.
To get the case $l=m$,

$$
\begin{equation*}
n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1} \pi_{m, m}\left(h I\left(|h|<n_{k}^{\tau}\right)\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \rightarrow 0\right. \text { a.s. } \tag{2.10}
\end{equation*}
$$

By Lemma 3,

$$
\begin{gather*}
E\left[\left(n_{k}^{-m} \sum_{i_{m}=n_{k-1}+1}^{n_{k}} \sum_{1 \leq i_{1}<\cdots<i_{m-1}}^{i_{m}-1} \pi_{m, m}\left(h I\left(|h|<n_{k}^{\tau}\right)\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right)^{2}\right]\right.  \tag{2.11}\\
\leq c n_{k}^{-m}\left(1+\sum_{j=1}^{n_{k}} j^{m-1} \beta_{j}^{(p-2) / p}\right)\left(\sup _{i_{1}<\cdots<i_{m}} E\left[\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|^{p} I\left(|h|<n_{k}^{\tau}\right)\right]\right)^{2 / p} \\
\leq c n_{k}^{-r(p-2) p^{-1}+\tau(p-1) 2 p^{-1}}
\end{gather*}
$$

which by (2.5) implies (2.10).

The proof in the case (ii) follows similarly, instead of truncating at $n_{k}^{\tau}$ we truncate at $k^{(1+\epsilon) / \delta}$, where $2^{-1} \delta r-1>\epsilon>0$. We take $p>2$ such that $r>2(p-1-\delta)(1+\epsilon) \delta^{-1}(p-2)^{-1}$. It is easy to see that (2.7) and (2.11) hold.
In the case (iii), we truncate at $n_{k}$ and we take $p=\delta$. It is easy to see that (2.11) is bounded by

$$
c n_{k}^{-m}\left(1+\sum_{j=1}^{n_{k}} j^{m-1} \beta_{j}^{(p-2) / p}\right),
$$

which goes to zero.

## References

[1] Aaronson, J.; Burton, R.; Dehling, H.; Gilat, D.; Hill, T. and Weiss, B. (1996). Strong laws for $L$ - and $U$-statistics. Trans. Amer. Math. Soc. 348 2845-2866.
[2] Arcones, M. A. (1995). On the central limit theorem for U-statistics under absolute regularity. Statist. Probab. Lett. 24 245-249.
[3] Berk, R.H. (1966). Limiting behavior of posterior distributions where the model is incorrect. Ann. Math. Statis. 37 51-58.
[4] Breiman, L. (1992). Probability. SIAM, Philadelphia.
[5] Denker, M. and Keller, G. (1983). On U-statistics and v. Mises' statistics for weakly dependent processes. Z. Wahsrsch. verw. Geb. 64 505-522.
[6] Doukhan, P. (1994). Mixing: Properties and Examples. Lectures Notes in Statistics, 85. Springer-Verlag, New York.
[7] Eberlein, E. (1984). Weak rates of convergence of partial sums of absolute regular sequences. Statist. Probab. Lett. 2 291-293.
[8] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 293-325.
[9] Hoeffding, W. (1961). The strong law of large numbers for U-statistics. Inst. Statist. Univ. of North Carolina, Mimeo Report, No. 302.
[10] Ibragimov, I. A. and Linnik, Yu. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen, The Netherlands.
[11] Koroljuk, V. S. and Borovskich, Yu. V. (1994). Theory of U-statistics. Kluwer Academic Publishers, Dordrecht, The Netherlands.
[12] Lee, A. J. (1990). U-statistics, Theory and Practice. Marcel Dekker, Inc., New York.
[13] Qiying, W. (1995). The strong law of U-statistics with $\phi^{*}$-mixing samples. Stat. Probab. Lett. 23 151-155.
[14] SEn, P. K. (1974) Limiting behavior of regular functionals of empirical distributions for stationary $*-$ mixing processes. Z. Wahrsch. verw. Gebiete 25 71-82.
[15] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
[16] Volkonski, V. A. and Rozanov, Y. A. (1961). Some limit theorems for random functions II. Theor. Prob. Appl. 6 186-198.
[17] Yoshihara, K. (1976). Limiting behavior of U-statistics for stationary, absolute regular processes. Z. Wahrsch. verw. Geb. 35 237-252.

