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Abstract

Consider the events {Fn ∩
⋃n−1
k=1 Fk = ∅}, n ∈ N, where (Fn)

∞
n=1 is an i.i.d. sequence of

stationary random subsets of a compact group G. A plausible conjecture is that these events
will not occur infinitely often with positive probability if P{Fi ∩Fj 6= ∅ |Fj} > 0 a.s. for i 6= j.
We present a counterexample to show that this condition is not sufficient, and give one that
is. The sufficient condition always holds when Fn = {Xn

t : 0 ≤ t ≤ T} is the range of a
Lévy process Xn on the d-dimensional torus with uniformly distributed initial position and
P{∃0 ≤ s, t ≤ T : Xi

s = Xj
t } > 0 for i 6= j. We also establish an analogous result for the

sequence of graphs {(t, Xn
t ) : 0 ≤ t ≤ T}.

1. Introduction

Let G be a (not necessarily abelian) second countable, compact group. Consider an i.i.d.
sequence (Fn)

∞
n=1 of random closed subsets of G. Suppose each Fn is stationary in the sense

that xFn has the same distribution as Fn for all x ∈ G. We are interested in conditions under
which “Fn doesn’t keep slipping through the cracks left by F1, . . .Fn−1”, by which we mean

P

(
Fn ∩

n−1⋃
k=1

Fk = ∅ i.o.

)
= 0(1)

(observe that the probability of the event on the left–hand side is either 0 or 1 by the Hewitt–
Savage zero–one law). A necessary condition for (1) is that

P {Fi ∩ Fj 6= ∅ |Fj} > 0 a.s. for i 6= j .(2)

In fact, (2) is equivalent to

lim
n→∞

P{Fn ∩
n−1⋃
k=1

Fk = ∅} = 0
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(see the beginning of the proof of Proposition 3.1), and it is tempting to conjecture that this
condition is also sufficient for (1) to hold.
We present a counterexample to this conjecture in §2, and establish a valid sufficient condition
for (1) in §3.
The main application we have in mind is to the sample path properties of Lévy processes on
the d-dimensional torus Td, where T is the circle of circumference 2π. Let (Y n)∞n=1 be an i.i.d.
sequence of Lévy processes on Td with Y n0 = 0. Write ` for the normalised Lebesgue measure
on Td. Let (Un)∞n=1 be i.i.d. random variables on Td independent of (Y n)∞n=1 and distributed
according to `. Put Xn

t = Un + Y nt . Recall that Y n is said to have resolvent densities if the
measure

∫∞
0
e−αtP{Y nt ∈ ·} dt is absolutely continuous with respect to ` for each α > 0.

Theorem 1.1. Suppose that Y n has resolvent densities. The following two statements are
equivalent.

(a) For all T > 0,

P
{
∃0 ≤ s, t ≤ T : Xi

s = Xj
t

}
> 0 for i 6= j.

(b) For all T > 0,

P
({
6 ∃0 ≤ s, t ≤ T, 1 ≤ k ≤ n− 1 : Xk

s = Xn
t

}
i.o.
)

= 0.

We prove Theorem 1.1 in §4. Using similar ideas, we prove the following in §5.

Theorem 1.2. The following two statements are equivalent.

(a) For all T > 0,

P{∃0 ≤ t ≤ T : Xi
t = Xj

t } > 0 for i 6= j.

(b) For all T > 0,

P
({
6 ∃0 ≤ t ≤ T, 1 ≤ k ≤ n− 1 : Xk

t = Xn
t

}
i.o.
)

= 0.

In the final section, we describe a related unsolved problem concerning coalescing Lévy pro-
cesses that motivated our interest in this topic.

2. A counterexample

The following counterexample shows that (2) is not sufficient for (1) to hold.
TakeG = T. Take En = cl{Un+Znt : t ∈ [0, 1]}, where (Zn)∞n=1 is an i.i.d. sequence of α-stable
processes on T with 1

2 < α < 1, Zn0 = 0, and (Un)∞n=1 is an independent i.i.d. sequence of T–
valued r.v. with common distribution `. Note that En ∩ [Un, Un + c] has Hausdorff dimension
α almost surely for all 0 < c < 2π. Also, if G is any fixed set with Hausdorff dimension greater
than 1− α, then P{(En ∩ [Un, Un + c]) ∩G} > 0 for all 0 < c < 2π. Therefore,

P {(Ei ∩ [Ui, Ui + c]) ∩ (Ej ∩ [Uj, Uj + d]) 6= ∅ |Ej, Uj} > 0,

a.s. for i 6= j and 0 < c, d < 2π.
(3)

If H is any closed, `-null subset of T, then limc↓0 `({x : [x, x+ c] ∩H 6= ∅}) = 0 by bounded
convergence. It is therefore possible to find a sequence 2π > c1 > c2 > . . . of positive constants
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such that
∑∞
n=1 P{[Un, Un + cn] ∩

⋃n−1
k=1 Ek 6= ∅} <∞, and hence

P

(
[Un, Un + cn] ∩

n−1⋃
k=1

Ek 6= ∅ i.o.

)
= 0.(4)

Let µ be a probability measure on ]0, 2π[ such that
∑∞
n=1 µ(]0, cn]) = ∞, so that if (Vn)∞n=1

are i.i.d. with common distribution µ, then

P (Vn ≤ cn i.o.) = 1.(5)

Choose (Vn)∞n=1 to be independent of ((En, Un))∞n=1 and put Fn = En ∩ [Un, Un + Vn].
It is clear that x+Fn has the same law as Fn for all x ∈ T. It follows from (3) that (2) holds.
Now, {

Fn ∩
n−1⋃
k=1

Fk = ∅
}
⊇ {Vn ≤ cn} ∩

{
[Un, Un + cn] ∩

n−1⋃
k=1

Ek = ∅
}
,

and it follows from (4) and (5) that the probability on the left–hand side of (1) is 1 in this
case.

3. A sufficient condition

Given two finite Borel measures µ and ν on G and x ∈ G, define finite measures µ ∗ ν, µ̃, σxµ,
and τxµ by µ ∗ ν(f) =

∫∫
f(yz)µ(dy) ν(dz), µ̃(f) =

∫
f(y−1)µ(dy), σxµ(f) =

∫
f(xy)µ(dy),

and τxµ(f) =
∫
f(yx)µ(dy), respectively. As usual, write suppµ for the closed support of

a finite Borel measure µ. Recall that G is unimodular. That is, there is a unique Borel
probability measure λ (the Haar measure) such that σxλ = λ for all x ∈ G and the measure λ
also has the property that τxλ = λ for all x ∈ G.

Proposition 3.1. Let (Mn)∞n=1 be an i.i.d. sequence of random probability measures on G
such that σxMn has the same distribution as Mn for all x ∈ G and Mi ∗ M̃j is almost surely
absolutely continuous with respect to λ for i 6= j with a density that is in L2(λ⊗P). Then (1)
holds for Fn = suppMn.

Proof. We want to show that P(An i.o.) = 0, where An is the event that Fn does not intersect⋃n−1
k=1 Fk. Observe that

P(An) = E

[
n−1∏
k=1

1{Fk ∩ Fn = ∅}
]

= E

[
n−1∏
k=1

P{Fk ∩ Fn = ∅ |Mn}
]

= E
[
(P{F1 ∩ F2 = ∅ |M2})n−1

]
.

It therefore suffices by Borel–Cantelli to show that

E

[ ∞∑
n=1

(P{F1 ∩ F2 = ∅ |M2})n−1

]
= E

[
1

1− P{F1 ∩ F2 = ∅ |M2}

]
= E

[
1

P{F1 ∩ F2 6= ∅ |M2}

]
<∞.

(6)
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Let ν be a fixed probability measure and put S = suppν. Let B(ε), ε > 0, be the ε ball around
the identity in some metric that generates the topology on G. Put βε = λ(B(ε))−1. By a
simple consequence of the Cauchy–Schwarz inequality (see Inequality II in Ch. 1 of [9]) we
have

P {F1 ∩ S 6= ∅} = lim
ε↓0
P
{∫ ∫

1B(ε)(yz
−1)M1(dy) ν(dz) > 0

}
≥ lim sup

ε↓0

(E [βεM1 ∗ ν̃(B(ε))])
2

E
[
(βεM1 ∗ ν̃(B(ε)))

2
]

=

(
lim inf
ε↓0

E
[
(βεM1 ∗ ν̃(B(ε)))

2
])−1

.

(note that E[M1∗ ν̃(·)] = λ by the assumption that σxM1 has the same law as M1 for all x ∈ G
and the uniqueness of Haar measure).
Thus, by Fatou’s lemma and Jensen’s inequality we have (writing Λ for the density ofM1∗M̃2)

E
[

1

P{F1 ∩ F2 6= ∅ | M2}

]
≤ E

[
lim inf
ε↓0

E
[(
βεM1 ∗ M̃2(B(ε))

)2

|M2

]]
≤ lim inf

ε↓0
E
[(
βεM1 ∗ M̃2(B(ε))

)2
]

= lim inf
ε↓0

E

[(
βε

∫
1B(ε)(y)Λ(y)λ(dy)

)2
]

= lim inf
ε↓0

E

[∫ (
βε

∫
1B(ε)(xy)Λ(y)λ(dy)

)2

λ(dx)

]

≤ lim inf
ε↓0

E
[∫

βε

∫
1B(ε)(xy)Λ(y)2 λ(dy)λ(dx)

]
≤ lim inf

ε↓0
E
[
βε

∫ (∫
1B(ε)(xy)λ(dx)

)
Λ(y)2 λ(dy)

]
= E

[∫
Λ(y)2 λ(dy)

]
<∞,

and (6) holds as required.

4. Proof of Theorem 1.1

We need only show that (a) implies (b). Let Ψ denote the characteristic exponent of Y n; that is,
E[exp(iz ·Y nt )] = exp(−tΨ(z)) for t ≥ 0, z ∈ Zd. Write v for the density of

∫∞
0
e−tP{Y nt ∈ ·} dt

with respect to `. By the same argument as in the proof of Theorem 5.4 of [7] we have∫
Td v(x)

2 `(dx) < ∞. Note that v has Fourier transform (1 + Ψ)−1 and so, by Parseval’s
theorem, ∑

z∈Zd

∣∣(1 + Ψ(z))−1
∣∣2 <∞.(7)
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Let Y̌ n be the process Y n killed at an independent mean 1 exponential time. Put Qn =∫∞
0

1{Y̌ nt ∈ ·} dt and write Q̂n for the Fourier transform of Qn. It is easy to check that

E
[
|Q̂n(z)|2

]
= 2<

(
(1 + Ψ(z))−1

)
(see, for example, the proof of Theorem 2.2 in [4]). Therefore, by (7) and Parseval’s theorem
the random finite measure Qi ∗ Q̃j is absolutely continuous with respect to ` for i 6= j with

a density that is in L2(`⊗ P). Now put Mn = T−1
∫ T

0
1{Xi

t ∈ ·} dt. It is straightforward to

conclude that Mi ∗ M̃j is absolutely continuous with respect to ` for i 6= j with a density that
is in L2(`⊗ P).
An application of Proposition 3.1 completes the proof once it is noted that suppMn is the
closure of {Xn

t : 0 ≤ t ≤ T} and that {Xn
t : 0 ≤ t ≤ T} differs from its closure by at most a

countable set.

5. Proof of Theorem 1.2

We need only show that (a) implies (b). We begin with some observations. Write Ȳt = Y 1
t −Y 2

t ,
so that Ȳ is a symmetric Lévy process with characteristic exponent 2<Ψ, where Ψ, as above, is
the characteristic exponent of Y n. Statement (a) just says that points are not essentially polar
for Ȳ , and by Kesten’s condition (see, for example, Theorem II.16 of [3]) this is equivalent to
d = 1 and ∑

z∈Z

1

1 + 2<Ψ(z)
<∞(8)

(the result in [3] is stated for Rd, but the same argument holds for Td).
By the same argument as in Theorem V.1 of [3], we see that if (8) holds, then for every

t > 0 the occupation measure
∫ t

0 1{Ȳs ∈ ·} ds is absolutely continuous with respect to ` with
a density Lt that is in L2(`⊗ P).
Put Gn = {(t, Xn

t ) : 0 ≤ t ≤ T}. We want to show that P(An i.o.) = 0, where An is the event

that Gn does not intersect
⋃n−1
k=1 Gk. Arguing as in the initial part of the proof of Proposition

3.1 that leads up to (6), it is sufficient to establish

E
[

1

P{G1 ∩G2 6= ∅ | X2}

]
<∞.(9)

Observe by the quasi–left–continuity of X1 and X2 that

{∃0 ≤ t ≤ T : X1
t = X2

t } = {sup
ε>0

γε(X
1, X2) ≤ T} a.s.,

where for two càdlàg paths h1, h2 we set

γε(h
1, h2) = inf{t ≥ 0 : |h1(t) − h2(t)| ≤ ε}
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(with the usual convention that inf ∅ =∞). Let h be a fixed càdlàg path. By Cauchy–Schwarz
we have

P
{

sup
ε≥0

γε(X
1, h) ≤ T

}
= lim

ε↓0
P
{
∃0 ≤ t ≤ T : |X1

t − h(t)| ≤ ε
}

≥ lim sup
ε↓0

P

{∫ T

0

1{|X1
t − h(t)| ≤ ε} dt > 0

}

≥ lim sup
ε↓0

(
E
[
(εT/π)−1

∫ T
0

1{|X1
t − h(t)| ≤ ε} dt

])2

E
[(

(εT/π)−1
∫ T

0 1{|X1
t − h(t)| ≤ ε} dt

)2
]

=

lim inf
ε↓0

E

((εT/π)−1

∫ T

0

1{|X1
t − h(t)| ≤ ε} dt

)2
−1

.

Therefore, by Fatou’s lemma and Jensen’s inequality,

E
[

1

P {G1 ∩G2 6= ∅ | X2}

]

≤ E

lim inf
ε↓0

E

((εT/π)−1

∫ T

0

1{|X1
t −X2

t | ≤ ε} dt
)2

| X2


≤ lim inf

ε↓0
E

((εT/π)−1

∫ T

0

1{|X1
t −X2

t | ≤ ε} dt
)2


= lim inf
ε↓0

E

∫
T

(
(εT/π)−1

∫ T

0

1{|x+ Ȳt| ≤ ε} dt
)2

`(dx)


= lim inf

ε↓0
E

T−2

∫
T

(
`([x− ε, x+ ε])−1

∫
[x−ε,x+ε]

LT (y) `(dy)

)2

`(dx)


≤ E

[
T−2

∫
T
LT (x)2 `(dx)

]
<∞,

and (9) holds as required.

6. Coalescing Lévy processes: a problem

Our interest in the questions considered in this paper was sparked by a related, but apparently
more difficult, problem concerning coalescing Lévy processes on the circle that arises in the
analysis of the continuous sites stepping–stone models discussed in [6] and [5]. It would take
us too far afield to describe these models and their genetic interpretation. However, we can
briefly sketch the resulting Lévy process question.
Let (Xn)∞n=1 be as in the introduction. For n = 1, 2, . . . define a process (Int )t≥0 taking values
in the collection of subsets of {1, . . . , n} and stopping times Tn0 ≤ Tn1 ≤ . . . as follows. Put
In0 = {1, . . . , n} and Tn0 = 0. Suppose that Tn0 , . . . , T

n
k and Int for t ∈ [0, Tnk ] have already
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been defined. Put

Tnk+1 = inf{t > Tnk : Xi
t = Xj

t for some i, j ∈ InTnk , i 6= j}.
Set

H = min{i ∈ InTnk : Xi
Tnk+1

= Xj
Tnk+1

for some j ∈ InTnk , i 6= j}

and

L = {j ∈ InTnk : XH
Tnk+1

= Xj
Tnk+1
}

(for clarity of notation, we don’t record the dependence of H and L on k and n). Put

Int = InTnk
, Tnk ≤ t < Tnk+1, and InTnk+1

= InTnk
\(L\{H}).

The process Zn = ({Xi
t : i ∈ Int })t≥0, which takes values in the collection of finite subsets of

Td with n or fewer points, is the usual system of n coalescing Lévy processes: we have particles
that move as independent copies of some Lévy process, except that when particles collide they
are merged into a single particle.
Note that Int = In+1

t ∩ {1, . . . , n} for all n and so Z1
t ⊆ Z2

t ⊆ . . . . Put Z∞t =
⋃
nZ

n
t . The

question arising from [6] and [5] is the following: Does the condition in part (a) of Theorem
1.2 imply that Z∞t is almost surely finite for all t > 0? That is, if the Lévy particles can
collide, then is it the case that the coalescing system starting with infinitely many particles
instantaneously collapses down to only finitely many particles? It is clear that if this was the
case, then part (b) of Theorem 1.2 would certainly hold, but the converse is not true a priori.
The case when the underlying Lévy process is Brownian motion on T can be answered in the
affirmative using the ideas in [1] or [2] (see, also, [8]). Some further remarks on the general
case and a somewhat different approach to the Brownian case will appear in forthcoming joint
work of the first author with Klaus Fleischmann, Tom Kurtz and Xiaowen Zhou.
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