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Abstract

Let {P,}1>0 be the transition semigroup of a diffusion process. It is known that P, sends
continuous functions into differentiable functions so we can write DP;f. But what happens
with this derivative when t — 0 and Pyf = f is only continuous ?. We give estimates for
the supremum norm of the Fréchet derivative of the semigroups associated with the operators
A+V and A+ Z -V where A is the generator of a diffusion process, V is a potential and Z
is a vector field.

1 Introduction
Consider the following stochastic differential equation on R™

dX, = X(X,)dB, +A(X,)dt,
Xo = x€ Rn,

for t > 0, where the first integral is an It6 stochastic integral and the second is a Riemann
integral. Here {B;}:>0 is Brownian motion on R™ and the equality holds almost everywhere.
The coefficients of this equation are the mapping X: R® — L(R™;R") and the vector field
A: R™ — R™. Assume standard regularity conditions on these coefficients so that there exists
a strong solution {X;};>0 to our equation. We write X7 for X; when we want to make clear
its dependence on the initial value z. It is known that under further assumptions on the
coefficients of our equation, the mapping « — X7 is differentiable ( see for instance [1] ).
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Assume coefficients X and A are smooth enough and consider the associated derivative equation

avi DX(Xy)(Vz) dBy + DA(X:)(Vh) dt,
Vo = veR",

whose solution {V;};>¢ is the derivative of the mapping z — X at  in the direction v. We
will assume that there exists a smooth map Y: R" — L(R™;R™) such that Y(z) is the right
inverse of X(x). That is, X(z)Y(x) = Ig~ for all z in R”. We shall also assume that the process
{Y(X+)(Vz)}+>0 belongs to L2([0,¢]) for each ¢t > 0, that is, fot [Y(X,)(Vs)|? ds < oo and thus
we can write fot Y(Xs)(Vs) dBs.

With all above assumptions, we have from [6], the following result (see Appendix for a proof)

Theorem 1 For every t > 0 there exist positive constants k and a such that
t
B [ YO0V dB. < ke 1. W
0

We are interested in small values for ¢. Thus, since v/e® — 1 = O(+/t) as t — 0, we have that
there exist a positive constant N such that Ve —1 < N \/t for small t. Hence for sufficiently
small ¢, we have the following estimate

E| / WX (V) dB. < oV, @)

where c is a positive constant.

Let now BC"(R™) be the Banach space of bounded measurable functions on R™ which are
r-times continuously differentiable with bounded derivatives. The norm of this space is given
by the supremum norm of the function plus the supremum norm of each of its 7 derivatives. In
particular B(R™) is the Banach space of bounded measurable functions on R™ with supremum
norm || fllee = sup,cgn | f(2)]. Suppose our diffusion process {X;}:>0 has transition probabili-
ties P(t,z,T"). Then this induces a semigroup of operators { P}, as follows. For every ¢t > 0
we define on B(R™) the bounded linear operator

(P)@) = | ) Plt,,dy) = BU(X7)). )

The semigroup {P;},- is a strongly continuous semigroup on BC°(R™). Denote by A its
infinitesimal generator.

It is known that {P;},., is a strong Feller semigroup, that is, P; sends continuous functions
into differentiable functions. In fact, under above assumptions, a formula for the derivative of
P, f is known ( see [4] or [5] ).

Theorem 2 If f € BC?*(R™) then the derivative of P,f: R™ — R is given by

D(PA)(@)) = TBLFXD) | V)V dB.). (@
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Higher derivatives in a more general setting are given in [4]. See also [2] for a general formula
of this derivative in the context of a stochastic control system. Observe the mapping f —
TE{f(Xy) fot Y(X;)(Vs) dBs} defines a bounded linear functional on BC?(R™). Hence there
exists a unique extension on BC°(R™). Since the expression of this linear functional does not
depend on the derivatives of f, it has the same expression for any f in BC°(R™).

From last theorem we obtain

1 t
|IDP;f(z)(v)] < ;|f|ooE|/0Y(Xs)(Vs)st|
1
< kv 1.
And hence for small ¢
cllfll oo
1DP ., < Vs %)

Vit

Observe that, as expected, our estimate goes to infinity as ¢ approaches 0 since Pyf = f is not

necessarily differentiable. Also the rate at which it goes to infinity is not faster than — does.

Vit

2 Potential

Let V: R®™ — R be a bounded measurable function. We shall perturb the generator A by
adding to it the function V. We define the linear operator

AV = A+V,
with the same domain as for A. A semigroup {PY };>¢ having A" as generator is given by
the Feynman-Kac formula PY f = E{ f(X;)e/ oV (Xu) dul. We will find a similar estimate as (5)

for |DPY f|| ... We first derive a recursive formula that will help us calculate the derivative of
PY f. We have

PVf = Pf+[P_.PYf],
t
0
= Ptf+/ 8_(Pt—sPsz)ds
0 S

t
= Ptf+/ [—A(P,_PY f) + Pi_s((A+ V)PY )] ds.
0
Hence

t
PtszPtf+/0 P,_,(VPY f)ds.
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Now we use our formula for differentiation (4) to calculate the derivative of this semigroup.
We have

DPY f(z)(v) = DPf(a / DP,_,(VPY f)(@)(v) ds

t
- %E{f(xo JRESUATES:

0

t 1 v t—s

[ SRRy S0 [ YO dB Yas.
Then, by the Feynman-Kac formula and the Markov property we have
t
DRV [@)) = 7B(X) [ ¥ dB)

RV R 0 [ o)) dB) ds

0

from which we obtain

IDEY fl, < 7l / V) dB,|

sV oo t—s
e
+|\V|\oo|\f|\oo/ E|/ ) dB,| ds.

And hence for small ¢

DPY f < |\f|\oo+ VI |If etuvuw/ _C s
IDP; fll o W VIl 11 T
c|l £l

= T VA V]l

Observe again that our estimate goes to infinity as t — 0.

3 Bounded Smooth Drift

Let Z : R™ — R™ be a bounded smooth vector field. We shall consider another perturbation
to the generator A. This time we define the linear operator

A2 = A+Z-V.

The existence of a semigroup {PZ};>¢ having AZ as infinitesimal generator is guaranteed by
the regularity of Z. Indeed, if we write Z(x) = (Z*(z),..., Z™(z)), then the operator A% can
be written as

1 Jii 9? SN ; d

and this operator is the infinitesimal generator associated with the equation
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Thanks to the smoothness of Z, this equation yields a diffusion process (X}’ ’Z)teT and hence
the semigroup PZ f(z) = E(f(X} %)) Then previous estimate applies also to IDPZf|l .
But we can do better because we can find the explicit dependence of the estimate upon Z as
follows. As before, we first find a recursive formula for this semigroup.

=t
P f Ptf+[Pt—sPst]z:0

¢
0

Ptf+/ —(P,_sPZ?f)ds
0 85

— Pf+ / CAPPR) 4 Pu((At Z-Y)PZS) s
Hence
PZf= Ptf+/0t Pi_o(Z-VPZf)ds. (6)
We can now calculate its derivative as follows

DP? f(z)(v)

DP,f(z)(v) + /0 DP,_y(Z - VPZf)(z)(v) ds

— IE(/(x) /0 Y(X,)(V)dB,}

t
+

(Xi_s) - VPZF(X,_,) / (X (V) dB.) ds.
0 0

We now find an estimate for the supremum norm of this derivative. Taking modulus we obtain
DPES@ON < FISILE] [ VX0 am
t—s
+ [ mnrz gz | [ o)) s ds.
Hence for small ¢
IDPZ ]

0o f +C Z Oo/ — S5 ds.

We now solve this inequality. If we iterate once we obtain

IDP7 £l + 2] I£1l

/t ds
o Vst —s)
Z
0 \/ t—s s—u

By Fubini’s theorem, the double integral becomes

c
< %Hf”oo

/0t|DPff|oo/:ﬁdu
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and then we observe that

The case u = 0 solves also the first integral. Hence our inequality reduces to

t
2
IDPZf]| +7) Z) M fll o + 027THZHOO/0 IDPZ £l du.

oo S \/Hfl\

We now apply Gronwall’s inequality. After some simplifications ( extending the integral up to
infinity ) we finally obtain the estimate

2
IDPZ £ + 267 2] o | ] (12112 (1)

oo S \[Hfl\

As expected, our estimate goes to infinity as ¢t — 0 since PZ f = f is not necessarily differen-
tiable.

4 Bounded Uniformly Continuous Drift

We now find a similar estimate when Z: R™ — R" is only bounded and uniformly continuous.
We look again at the operator AZ = A+ Z - V. The problem here is that in this case we do
not have the semigroup {PZ f},-, since the stochastic equation with the added nonsmooth
drift Z might not have a strong solution. So we cannot even talk about its derivative. To solve
this problem we proceed by approximation.

4.1 Existence of Semigroup

Since Z € BC°(R™; R™) is uniformly continuous, and BC*(R"; R") is dense in BC?(R"; R"),
there exists a sequence {Z;};-, in BC*(R"; R") such that Z; converges to Z uniformly. Thus,
for every i € N, we have the semigroup { P} +>0 Since our stochastic equation with the added
smooth drift Z; has a strong solution.

For every t > 0 and f € BC°(R™) fixed, the sequence of functions {P7 f}jil is a Cauchy
sequence in the Banach space BC?(R™). We will prove this fact later. Let us denote its limit
by PZf. All properties required for PZf are inherited from those of the semigroup PtZi f.
Indeed by simply writing PZ f = limi_,ooPtZi f and using an interchange of limits we can prove

1. f+ PZf is a bounded linear operator.
2. t— PtZ f is a contraction semigroup of operators.

3. {PZ}i>0 has generator AZ = A+ Z - V.

Now, suppose for a moment that the sequence of derivatives {DPtZ °f }jil converges uniformly.
Then we would have D(lim;_,oo P77 f) = lim;_,oo DPZf. This proves that PZf is differen-
tiable. Then, for any € > 0 there exists N € N such that ifi > N, ||[DPZ f||, < |DPZ f| . +¢
and therefore our estimate also applies to || DPZ f|
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4.2 Uniform Convergence of Derivatives

We now prove that the sequence {DPtZ °f }Zl converges uniformly. We use again our recursive
formula (6) to obtain

t
Prif—Plf= / P, (Z; -NPZf—7; -VPZf)ds
0

We now use our formula for differentiation (4). After differentiating and taking modulus we
obtain

|D(PZ f — PP f)(z)(v)]

/ L B(IDPZ (X, )(Zi(Xi ) - DA F(X0)(Z(X,))

[ asyas.

Thus

1D~ FED < 12 2l [ Vet T |pesy
+1Zi o / T Vet=) —1|[DPZ f — DPJ fl| . ds.

And hence for small ¢

. 7 .
ID(PZf =P Nl < 112 = 24 IDPZ fl o ds

bk
L
t
1zl [ A=IDP?f - DPA..
Now write estimate (7) as

A
‘OOS__‘_BeCt;

Vit

for some positive constants A, B and C' depending on || f||, and ||Z;|| . Thus, substituting
this in our last estimate gives

|DPZ f

; Zj A

+ 1Zi = Zj|| o, / —Becsds

+1Z51., / \/—HDPZf DPZif||

The first two integrals are bounded if we allow ¢ to move within a finite interval (0,7]. Thus
there exist positive constants M; and My such that

) 7.
ID(PFf =P Pl < MilZ— Z,

t
M / \/—HDPZf DPZ ]|,
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Now iterate this to obtain

) Z:
ID(PZf =P Pl < MilZi—Zi,

+ MM || Z; — Zj||

Oo/t\/;_ds
+M2// ID(PZif = P )l o duds.

V(t—s)(s —u)

As before the double integral reduces to
o [ Dz - PP
0
Collecting constants into new constants M and N we arrive at
ID(P7 f = PP Pl < M||Zi — 25, + N/:|D(Puz"f — PIf)ll o du.
Now we apply again Gronwall’s inequality to obtain
IDUPF S ~ B D)l < M2~ 2+ NMIZ =, [ O du

The right hand side goes to zero as || Z; — Z;|| ., — 0. This proves the sequence {DPtZ"}jil is
uniformly convergent.

4.3 Uniform Convergence of Semigroups

We finally prove that the sequence of functions {PZ: f }jil is a Cauchy sequence. From our
recursive formula (6) we obtain

t
. 7. . .
|P7if— P fllo < /I\Zi-VPsZ’f—Zj-VPsZ’fHoods
0

t
< /sz-—szooHDPfif\wds
0
t
4 / 12, | DP? f — DP% | ds
t
S HZl—ZJHoo/ kve“s—lds
0

t
H1Z / |\DPZf — DPZ f|__ ds.

The first integral is bounded so the first part goes to zero as ||Z; — Z;||  approaches 0. The
second part also goes to zero since we just proved the sequence of derivatives is a Cauchy
sequence. Hence {P7 f} _, is uniformly convergent.

Thus, with this approximating procedure we found a semigroup for the operator A+ Z -V for
Z bounded and uniformly continuous and we proved it is differentiable and that our estimate
also applies to its derivative.
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Observe that the boundedness and uniform continuity of Z are required in order to ensure
the existence of a sequence of smooth vector fields Z; uniformly convergent to Z. Alternative
assumptions on Z that guarantee the existence of such approximating sequence may be used.

Appendix

We here give a proof of inequality (1) which is taken from [6]. By using the Cauchy-Schwarz
inequality and then the isometric property, we have

t zs)(v t zs)(v 2)1/2
E'/o V() (vs) dBy| < “E'/o Y(2.)(vs) dB,[2)

(E/O 1Y (@) (vs)II* ds )2

IN

t
I [ Bl ds)' 2. @

We will estimate the right-hand side of the last inequality. 1t6’s formula applied to the function
F()=1|*: R® - R and the semimartingale (v;);>0 yields

s n s
[[vs]|* = HUOH2+2/0 Uy duy +Z/O d(v'),, -
=1

Therefore
2 2
Efvsl® = [voll” + E{v),

= llwol® + E/Os [DX () (0u)] [DX(20) (v0)]" du

= |l +E / | DX () () 2

IN

S
ool + 10K [ B o) du.
We now use Gronwall’s inequality to obtain
E Jlos||* < floo|?elPXl= s

Integrating from 0 to ¢ yields

/tE|’U H2d8< HUOH2 (eHDXHoot_l)
s > )
0 DX |0

and thus, substituting in (8) we obtain

t
E|/ Y(zs)(vs) dBs| < |\Y|\§OM«/@ DXl — 1.
0

| DX |

This proves inequality (1).
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