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Abstract

Let {Pt}t≥0 be the transition semigroup of a diffusion process. It is known that Pt sends
continuous functions into differentiable functions so we can write DPtf. But what happens
with this derivative when t → 0 and P0f = f is only continuous ?. We give estimates for
the supremum norm of the Fréchet derivative of the semigroups associated with the operators
A + V and A + Z · ∇ where A is the generator of a diffusion process, V is a potential and Z
is a vector field.

1 Introduction

Consider the following stochastic differential equation on Rn

dXt = X(Xt) dBt +A(Xt) dt ,

X0 = x ∈ Rn ,

for t ≥ 0, where the first integral is an Itô stochastic integral and the second is a Riemann
integral. Here {Bt}t≥0 is Brownian motion on Rm and the equality holds almost everywhere.
The coefficients of this equation are the mapping X : Rn → L(Rm;Rn) and the vector field
A : Rn → Rn. Assume standard regularity conditions on these coefficients so that there exists
a strong solution {Xt}t≥0 to our equation. We write Xx

t for Xt when we want to make clear
its dependence on the initial value x. It is known that under further assumptions on the
coefficients of our equation, the mapping x 7→ Xx

t is differentiable ( see for instance [1] ).
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Assume coefficients X andA are smooth enough and consider the associated derivative equation

dVt = DX(Xt)(Vt) dBt +DA(Xt)(Vt) dt ,

V0 = v ∈ Rn ,

whose solution {Vt}t≥0 is the derivative of the mapping x 7→ Xx
t at x in the direction v. We

will assume that there exists a smooth map Y : Rn → L(Rn;Rm) such that Y(x) is the right
inverse of X(x). That is, X(x)Y(x) = IRn for all x in Rn. We shall also assume that the process

{Y(Xt)(Vt)}t≥0 belongs to L2([0, t]) for each t > 0, that is,
∫ t

0
|Y(Xs)(Vs)|2 ds < ∞ and thus

we can write
∫ t

0
Y(Xs)(Vs) dBs.

With all above assumptions, we have from [6], the following result (see Appendix for a proof)

Theorem 1 For every t > 0 there exist positive constants k and a such that

E |
∫ t

0

Y(Xs)(Vs) dBs| ≤ k
√
eat − 1 . (1)

We are interested in small values for t. Thus, since
√
eat − 1 = O(

√
t) as t→ 0, we have that

there exist a positive constant N such that
√
eat − 1 ≤ N

√
t for small t. Hence for sufficiently

small t, we have the following estimate

E |
∫ t

0

Y(Xs)(Vs) dBs| ≤ c
√
t , (2)

where c is a positive constant.

Let now BCr(Rn) be the Banach space of bounded measurable functions on Rn which are
r-times continuously differentiable with bounded derivatives. The norm of this space is given
by the supremum norm of the function plus the supremum norm of each of its r derivatives. In
particular B(Rn) is the Banach space of bounded measurable functions on Rn with supremum
norm ‖f‖∞ = supx∈Rn |f(x)|. Suppose our diffusion process {Xt}t≥0 has transition probabili-
ties P (t, x,Γ). Then this induces a semigroup of operators {Pt}t≥0 as follows. For every t ≥ 0
we define on B(Rn) the bounded linear operator

(Ptf)(x) =

∫
Rn
f(y)P (t, x, dy) = E(f(Xx

t )) . (3)

The semigroup {Pt}t≥0 is a strongly continuous semigroup on BC0(Rn). Denote by A its
infinitesimal generator.

It is known that {Pt}t≥0 is a strong Feller semigroup, that is, Pt sends continuous functions
into differentiable functions. In fact, under above assumptions, a formula for the derivative of
Ptf is known ( see [4] or [5] ).

Theorem 2 If f ∈ BC2(Rn) then the derivative of Ptf : Rn → R is given by

D(Ptf)(x)(v) =
1

t
E{f(Xt)

∫ t

0

Y(Xs)(Vs) dBs} . (4)
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Higher derivatives in a more general setting are given in [4]. See also [2] for a general formula
of this derivative in the context of a stochastic control system. Observe the mapping f 7→
1
tE{f(Xt)

∫ t
0
Y(Xs)(Vs) dBs} defines a bounded linear functional on BC2(Rn). Hence there

exists a unique extension on BC0(Rn). Since the expression of this linear functional does not
depend on the derivatives of f , it has the same expression for any f in BC0(Rn).

From last theorem we obtain

|DPtf(x)(v)| ≤
1

t
‖f‖∞E|

∫ t

0

Y(Xs)(Vs) dBs|

≤ 1

t
‖f‖∞k

√
eat − 1 .

And hence for small t

‖DPtf‖∞ ≤
c‖f‖∞√

t
. (5)

Observe that, as expected, our estimate goes to infinity as t approaches 0 since P0f = f is not

necessarily differentiable. Also the rate at which it goes to infinity is not faster than
1√
t

does.

2 Potential

Let V : Rn → R be a bounded measurable function. We shall perturb the generator A by
adding to it the function V . We define the linear operator

AV = A+ V ,

with the same domain as for A. A semigroup {P Vt }t≥0 having AV as generator is given by

the Feynman-Kac formula P Vt f = E{f(Xt)e
∫
t
0
V (Xu)du}. We will find a similar estimate as (5)

for ‖DP Vt f‖∞. We first derive a recursive formula that will help us calculate the derivative of
P Vt f . We have

P Vt f = Ptf +
[
Pt−sP

V
s f
]s=t
s=0

= Ptf +

∫ t

0

∂

∂s
(Pt−sP

V
s f) ds

= Ptf +

∫ t

0

[−A(Pt−sP
V
s f) + Pt−s((A + V )P Vs f)] ds .

Hence

P Vt f = Ptf +

∫ t

0

Pt−s(V P
V
s f) ds .
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Now we use our formula for differentiation (4) to calculate the derivative of this semigroup.
We have

DP Vt f(x)(v) = DPtf(x)(v) +

∫ t

0

DPt−s(V P
V
s f)(x)(v) ds

=
1

t
E{f(Xt)

∫ t

0

Y(Xs)(Vs) dBs}

+

∫ t

0

1

t − sE{V (Xt−s)P
V
s f(Xt−s)

∫ t−s

0

Y(Xu)(Vu) dBu }ds .

Then, by the Feynman-Kac formula and the Markov property we have

DP Vt f(x)(v) =
1

t
E{f(Xt)

∫ t

0

Y(Xs)(Vs) dBs}

+

∫ t

0

1

t− sE{V (Xt−s)E{f(Xt)e
∫
t
t−s V (Xu)du}

∫ t−s

0

Y(Xu)(Vu) dBu} ds ,

from which we obtain

‖DP Vt f‖∞ ≤ 1

t
‖f‖∞E |

∫ t

0

Y(Xs)(Vs) dBs|

+‖V ‖∞‖f‖∞
∫ t

0

es‖V ‖∞

t− s E |
∫ t−s

0

Y(Xu)(Vu) dBu| ds .

And hence for small t

‖DP Vt f‖∞ ≤ c‖f‖∞√
t

+ ‖V ‖∞‖f‖∞e
t‖V ‖∞

∫ t

0

c√
t− s

ds

=
c‖f‖∞√

t
+ 2c
√
t ‖V ‖∞‖f‖∞et‖V ‖∞ .

Observe again that our estimate goes to infinity as t→ 0.

3 Bounded Smooth Drift

Let Z : Rn → Rn be a bounded smooth vector field. We shall consider another perturbation
to the generator A. This time we define the linear operator

AZ = A + Z · ∇ .

The existence of a semigroup {PZt }t≥0 having AZ as infinitesimal generator is guaranteed by
the regularity of Z. Indeed, if we write Z(x) = (Z1(x), . . . , Zn(x)), then the operator AZ can
be written as

AZ =
1

2

n∑
i,j=1

(X(x)X(x)∗)ij
∂2

∂xi∂xj
+

n∑
i=1

(Ai(x) + Zi(x))
∂

∂xi
,

and this operator is the infinitesimal generator associated with the equation

dXt = X(Xt)dBt + [A(Xt) + Z(Xt)]dt ,

X0 = x ∈ Rn .
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Thanks to the smoothness of Z, this equation yields a diffusion process (Xx,Z
t )t∈T and hence

the semigroup PZt f(x) = E(f(Xx,Z
t )). Then previous estimate applies also to ‖DPZt f‖∞.

But we can do better because we can find the explicit dependence of the estimate upon Z as
follows. As before, we first find a recursive formula for this semigroup.

PZt f = Ptf +
[
Pt−sP

Z
s f
]s=t
s=0

= Ptf +

∫ t

0

∂

∂s
(Pt−sP

Z
s f) ds

= Ptf +

∫ t

0

[−A(Pt−sP
Z
s f) + Pt−s((A+ Z · ∇)PZs f) ] ds .

Hence

PZt f = Ptf +

∫ t

0

Pt−s(Z · ∇PZs f) ds . (6)

We can now calculate its derivative as follows

DPZt f(x)(v) = DPtf(x)(v) +

∫ t

0

DPt−s(Z · ∇PZs f)(x)(v) ds

=
1

t
E{f(Xt)

∫ t

0

Y(Xs)(Vs) dBs}

+

∫ t

0

1

t− sE{Z(Xt−s) · ∇PZs f(Xt−s)
∫ t−s

0

Y(Xu)(Vu) dBu} ds .

We now find an estimate for the supremum norm of this derivative. Taking modulus we obtain

|DPZt f(x)(v)| ≤
1

t
‖f‖∞E |

∫ t

0

Y(Xs)(Vs) dBs|

+

∫ t

0

1

t − sE |DP
Z
s f(Xt−s)(Z(Xt−s))| |

∫ t−s

0

Y(Xu)(Vu) dBu| ds .

Hence for small t

‖DPZt f‖∞ ≤
c√
t
‖f‖∞ + c‖Z‖∞

∫ t

0

‖DPZs f‖∞√
t− s

ds .

We now solve this inequality. If we iterate once we obtain

‖DPZt f‖∞ ≤ c√
t
‖f‖∞ + c2‖Z‖∞‖f‖∞

∫ t

0

ds√
s(t − s)

+ c2‖Z‖2∞
∫ t

0

∫ s

0

‖DPZu f‖∞√
(t− s)(s − u)

duds .

By Fubini’s theorem, the double integral becomes∫ t

0

‖DPZu f‖∞
∫ t

u

ds√
(t− s)(s− u)

du ,
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and then we observe that∫ t

u

ds√
(t− s)(s− u)

= 2 tan−1

√
s− u
t− s

∣∣∣∣t
u

= π .

The case u = 0 solves also the first integral. Hence our inequality reduces to

‖DPZt f‖∞ ≤
c√
t
‖f‖∞ + c2π‖Z‖∞‖f‖∞ + c2π‖Z‖2∞

∫ t

0

‖DPZu f‖∞ du .

We now apply Gronwall’s inequality. After some simplifications ( extending the integral up to
infinity ) we finally obtain the estimate

‖DPZt f‖∞ ≤
c√
t
‖f‖∞ + 2c2π‖Z‖∞‖f‖∞e

t(c2π‖Z‖∞) (7)

As expected, our estimate goes to infinity as t→ 0 since PZ0 f = f is not necessarily differen-
tiable.

4 Bounded Uniformly Continuous Drift

We now find a similar estimate when Z : Rn → Rn is only bounded and uniformly continuous.
We look again at the operator AZ = A + Z · ∇. The problem here is that in this case we do
not have the semigroup {PZt f}t≥0 since the stochastic equation with the added nonsmooth
drift Z might not have a strong solution. So we cannot even talk about its derivative. To solve
this problem we proceed by approximation.

4.1 Existence of Semigroup

Since Z ∈ BC0(Rn;Rn) is uniformly continuous, and BC∞(Rn;Rn) is dense in BC0(Rn;Rn),
there exists a sequence {Zi}∞i=1 in BC∞(Rn;Rn) such that Zi converges to Z uniformly. Thus,

for every i ∈N, we have the semigroup {PZit }t≥0 since our stochastic equation with the added
smooth drift Zi has a strong solution.
For every t ≥ 0 and f ∈ BC0(Rn) fixed, the sequence of functions {PZit f}∞i=1 is a Cauchy
sequence in the Banach space BC0(Rn). We will prove this fact later. Let us denote its limit
by PZt f . All properties required for PZt f are inherited from those of the semigroup PZit f .
Indeed by simply writing PZt f = limi→∞P

Zi
t f and using an interchange of limits we can prove

1. f 7→ PZt f is a bounded linear operator.

2. t 7→ PZt f is a contraction semigroup of operators.

3. {PZt }t≥0 has generator AZ = A + Z · ∇.

Now, suppose for a moment that the sequence of derivatives {DPZit f}∞i=1 converges uniformly.

Then we would have D(limi→∞P
Zi
t f) = limi→∞DP

Zi
t f . This proves that PZt f is differen-

tiable. Then, for any ε > 0 there exists N ∈N such that if i ≥ N , ‖DPZt f‖∞ ≤ ‖DP
Zi
t f‖∞+ε

and therefore our estimate also applies to ‖DPZt f‖∞.
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4.2 Uniform Convergence of Derivatives

We now prove that the sequence {DPZit f}∞i=1 converges uniformly. We use again our recursive
formula (6) to obtain

PZit f − PZjt f =

∫ t

0

Pt−s(Zi · ∇PZis f − Zj · ∇PZjs f) ds .

We now use our formula for differentiation (4). After differentiating and taking modulus we
obtain

|D(PZit f − PZjt f)(x)(v)|

≤
∫ t

0

1

t − sE{|DP
Zi
s f(Xt−s)(Zi(Xt−s)) −DPZjs f(Xt−s)(Zj(Xt−s))|

|
∫ t−s

0

Y(Xu)(Vu) dBu|} ds .

Thus

‖D(PZit f − PZjt f)‖∞ ≤ ‖Zi − Zj‖∞
∫ t

0

k

t − s
√
ea(t−s) − 1‖DPZis f‖∞ ds

+ ‖Zj‖∞
∫ t

0

k

t− s
√
ea(t−s) − 1‖DPZis f −DPZjs f‖∞ ds .

And hence for small t

‖D(PZit f − PZjt f)‖∞ ≤ ‖Zi − Zj‖∞
∫ t

0

k√
t − s

‖DPZis f‖∞ ds

+ ‖Zj‖∞
∫ t

0

k√
t− s

‖DPZis f −DPZjs f‖∞ ds .

Now write estimate (7) as

‖DPZit f‖∞ ≤
A√
t

+B eC t ,

for some positive constants A,B and C depending on ‖f‖∞ and ‖Zi‖∞. Thus, substituting
this in our last estimate gives

‖D(PZit f − PZjt f)‖∞ ≤ ‖Zi − Zj‖∞
∫ t

0

k√
t − s

A√
s
ds

+ ‖Zi − Zj‖∞
∫ t

0

k√
t− s

B eC s ds

+ ‖Zj‖∞
∫ t

0

k√
t− s

‖DPZis f −DPZjs f‖∞ ds .

The first two integrals are bounded if we allow t to move within a finite interval (0, T ]. Thus
there exist positive constants M1 and M2 such that

‖D(PZit f − PZjt f)‖∞ ≤ M1‖Zi − Zj‖∞

+ M2

∫ t

0

1√
t− s

‖DPZis f −DPZjs f‖∞ ds .
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Now iterate this to obtain

‖D(PZit f − PZjt f)‖∞ ≤ M1‖Zi − Zj‖∞

+ M2M1‖Zi − Zj‖∞
∫ t

0

1√
t− s

ds

+ M2
2

∫ t

0

∫ s

0

‖D(PZiu f − PZju f)‖∞√
(t− s)(s− u)

du ds .

As before the double integral reduces to

πM2
2

∫ t

0

‖D(PZiu f − PZju f)‖∞ du .

Collecting constants into new constants M and N we arrive at

‖D(PZit f − PZjt f)‖∞ ≤M‖Zi − Zj‖∞ + N

∫ t

0

‖D(PZiu f − PZju f)‖∞ du .

Now we apply again Gronwall’s inequality to obtain

‖D(PZit f − PZjt f)‖∞ ≤M‖Zi − Zj‖∞ + NM‖Zi − Zj‖∞
∫ t

0

eN(t−u) du .

The right hand side goes to zero as ‖Zi − Zj‖∞ → 0. This proves the sequence {DPZit }
∞
i=1 is

uniformly convergent.

4.3 Uniform Convergence of Semigroups

We finally prove that the sequence of functions {PZit f}∞i=1 is a Cauchy sequence. From our
recursive formula (6) we obtain

‖PZit f − PZjt f‖∞ ≤
∫ t

0

‖Zi · ∇PZis f − Zj · ∇PZjs f‖∞ ds

≤
∫ t

0

‖Zi − Zj‖∞‖DP
Zi
s f‖∞ ds

+

∫ t

0

‖Zj‖∞‖DP
Zi
s f −DPZjs f‖∞ ds

≤ ‖Zi − Zj‖∞
∫ t

0

k
√
eas − 1 ds

+‖Zj‖∞
∫ t

0

‖DPZis f −DPZjs f‖∞ ds .

The first integral is bounded so the first part goes to zero as ‖Zi − Zj‖∞ approaches 0. The
second part also goes to zero since we just proved the sequence of derivatives is a Cauchy
sequence. Hence {PZit f}∞i=1 is uniformly convergent.
Thus, with this approximating procedure we found a semigroup for the operator A+Z · ∇ for
Z bounded and uniformly continuous and we proved it is differentiable and that our estimate
also applies to its derivative.
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Observe that the boundedness and uniform continuity of Z are required in order to ensure
the existence of a sequence of smooth vector fields Zi uniformly convergent to Z. Alternative
assumptions on Z that guarantee the existence of such approximating sequence may be used.

Appendix

We here give a proof of inequality (1) which is taken from [6]. By using the Cauchy-Schwarz
inequality and then the isometric property, we have

E |
∫ t

0

Y(xs)(vs) dBs| ≤ (E|
∫ t

0

Y(xs)(vs) dBs|2 )1/2

= (E
∫ t

0

‖Y(xs)(vs)‖2 ds )1/2

≤ ‖Y‖2∞(

∫ t

0

E‖vs‖2 ds )1/2 . (8)

We will estimate the right-hand side of the last inequality. Itô’s formula applied to the function
f(·) = ‖ · ‖2 : Rn → R and the semimartingale (vt)t≥0 yields

‖vs‖2 = ‖v0‖2 + 2

∫ s

0

vu dvu +
n∑
i=1

∫ s

0

d〈vi〉u .

Therefore

E ‖vs‖2 = ‖v0‖2 + E〈v〉s

= ‖v0‖2 + E
∫ s

0

[DX(xu)(vu)] [DX(xu)(vu)]
∗ du

= ‖v0‖2 + E
∫ s

0

‖DX(xu)(vu)‖2 du

≤ ‖v0‖2 + ‖DX‖2∞
∫ s

0

E ‖vu‖2 du .

We now use Gronwall’s inequality to obtain

E ‖vs‖2 ≤ ‖v0‖2e‖DX‖∞ s .

Integrating from 0 to t yields∫ t

0

E ‖vs‖2 ds ≤
‖v0‖2
‖DX‖∞

(e‖DX‖∞ t − 1) ,

and thus, substituting in (8) we obtain

E |
∫ t

0

Y(xs)(vs) dBs| ≤ ‖Y‖2∞
‖v0‖
‖DX‖1/2∞

√
et ‖DX‖∞ − 1 .

This proves inequality (1).
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