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The purpose of this errata is to correct the proof of Corollary 4, page 12
of [MT02]. The corollary is true as stated, but there is a mistake in the last
paragraph of the proof. For easy reading, we repeat the statement of the
corollary and the first part of its proof. The notation comes from [MT02].

Theorem 1 (Corollary 4 of [MT02]). Suppose (ut(x) : t ≥ 0, x ∈ R)
is a solution to (1.1) of [MT02] and (ũt(x) : t ≥ 0, x ∈ T) is a solution to
(1.1) on the circle. For any compact set A ⊆ (0,∞)× (0, 1) the laws of the
fields (ut(x) : (t, x) ∈ A) and (ũt(x) : (t, x) ∈ A) are mutually absolutely
continuous.

Proof. We may suppose that the initial functions u0 = f ∈ Eexp and
ũ0 = g ∈ C(T) are deterministic. The case where u0 and ũ0 are random
then follows by using the Markov property at time zero. We also suppose
that they are defined on the same probability space and the noise driving
(ũt(x)) is the restriction to the circle of the noise W driving (ut(x)).

We use a standard symmetry trick to extend the solution (ũt(x)) over the

real line. We may extend the solution to (ũ
(per)
t (x) : t ≥ 0, x ∈ R) by making

it periodic with period one. We also extend the noise to a noiseW (per)(dx dt)

over the whole line by making it periodic. Note that ũ
(per)
t (x) = ũt(x) and

W (per)(dx dt) = W (dx dt) for t ≥ 0, x ∈ T. Then (ũ
(per)
t (x)) satisfies (1.2)

of [MT02] over the whole line, with the Green’s function for the whole line
but with the periodic noise W (per)(dx dt).

We again take a C∞ function ψt(x) that equals 1 on A and still has
compact support inside (0,∞)× (0, 1). Define

vt(x) = ut(x) + ψt(x)

∫

Gt(x− y)
(

g(per)(y)− f(y)dy
)

+ψt(x)

∫ t

0

∫

Gt−s(x− y)
(

W (per)(dy ds)−W (dy ds)
)

.

1



Then using the representation (1.2) of [MT02] we see that vt(x) = ũt(x) for
(t, x) ∈ A. Also v0 = f and it is straightforward to check that (vt(x)) is a
solution to (3.1) in [MT02] with

ht(x) =

(

∂

∂t
− ∂2

∂2x

)

(

ψt(x)

∫

Gt(x− y)
(

g(per)(y)− f(y)
)

dy

)

+

(

∂

∂t
− ∂2

∂2x

)

(

ψt(x)

∫ t

0

∫

Gt−s(x− y) (1)

(

W (per)(dy ds)−W (dy ds)
)

)

.

=: hdeterministic(t, x) + hrandom(t, x)

Note that ht(x) has compact support. We claim that ht(x) is also smooth.
The only term in ht(x) for which this is not clear is the stochastic integral

I(t, x) =

∫ t

0

∫

Gt−s(x− y)
(

W (per)(dy ds)−W (dy ds)
)

.

However, since W (per)(dy ds) − W (dy ds) = 0 for y ∈ (0, 1), the function
I(t, x) solves the deterministic heat equation in the region [0,∞)×(0, 1), with
zero initial conditions and continuous random boundary values I(t, 1) and
I(t, 0). Hence it is smooth in this region, and since ψt(x) is also supported
in this region, the claim follows.

Remark. It remains to show that the stochastic exponential

exp

(

∫ T

0
ht(x) ·W (dx dt)− 1

2

∫ T

0
|ht(x)|2dxdt

)

is a true martingale. Here is where we depart from the proof in [MT02].
We appealed incorrectly to Lemma 2 of [MT02], the hypotheses of which
were not true. We now correct this mistake by showing that the Novikov
condition applies over short time intervals, and then iterating the argument
to get the result for long time intervals.

To verify the exponential moment required by Novikov’s condition, we
note that the integrand ht(x) is Gaussian. Hence |ht(x)|2 will have some
finite exponential moments. We will apply Borell’s inequality to see that
supt,x |ht(x)|2 also has some exponential moments. This will be enough
to verify Novikov’s criterion over a sufficiently small time interval [0, δ].
By iterating this argument the stochastic exponential will remain a true
martingale over [0, T ]. Here are the details.
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The following lemma deals with absolute continuity of Wiener measure
when a drift is added. It is an easy generalization of Theorem 3.1.1, page
216, of Gyöngy and Pardoux [GP93] (see also [GP92]), and we will not prove
it here. Gyöngy and Pardoux do not deal with the case in which ht(x) is a
vector.

Lemma 1. Assume that D ⊂ Rm is a bounded open set. Suppose that
(Ẇ (t, x) : x ∈ Rn) is a vector of independent white noises. Let Ft be the
σ-field generated by (W (S) : S ⊂ [0, t]×Rm), where the sets S must be Borel
and bounded. Suppose ht : Ω ×Rm → Rn is a jointly measurable function
adapted to the filtration Ft, satisfying

∫ T

0

∫

D
|h(t, x)|2dxdt <∞ a.s.

Define the measure P̃ by dP̃ = ZdP , where

Z = exp

(

∫ T

0

∫

D
h(t, x) ·W (dxdt)− 1

2

∫ T

0

∫

D
|h(t, x)|2dxdt

)

.

Assume that P̃ is a probability measure. Then, under P̃ , we have that W̃ is
a vector of independent space-time white noises on [0, T ] ×D, where W̃ is
defined by

W̃ (C) =W (C)−
∫ T

0

∫

D
1C(t, x)h(t, x)dxdt

for C a measurable subset of [0, T ]×D.

Remark. In our case, D is just the closure of ∪t>0{x : ht(x) > 0},
which is compact because ht(x) has compact support.

If EZ = 1, then restricted to [0, T ] × D, we have that W and W̃ are
mutually absolutely continuous. Therefore, we need to show that upon
setting g(t, x) = ht(x) and D = (ε, 1 − ε) for ε sufficiently small, we get
EZ = 1.

We claim that EZ = 1 if Novikov’s criterion holds, namely

E

[

exp

(

1

2

∫ T

0

∫

D
|ht(x)|2dxdt

)]

<∞. (2)

Indeed, suppose that (2) holds. Then

Mt =

∫ t

0

∫

D
hs(x) ·W (dxds)
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is a continuous (Ft)-martingale with quadratic variation

〈M〉t =
∫ t

0

∫

D
|hs(x)|2dxds.

With this definition of M , Proposition 5.12 of Karatzas and Shreve [KS91]
page 198 states that (2) implies EZ = 1.

We formulate our problem more generally in the following lemma.

Lemma 2. Let D ⊂ R be a compact set, let T > 0, and let Λ = [0, T ]×D.
Suppose that ht(x) = α(t, x) + β(t, x), where α(t, x) is a bounded determin-
istic function, and β(t, x) is a mean-zero, almost surely bounded Gaussian
field given by

β(t, x) :=

∫ t

0

∫

R

η(s, t, x, y) ·W (dyds)

Suppose that α, β are both (almost surely) supported on (t, x) ∈ Λ. Also
assume that

σΛ := sup
(t,x)∈Λ

E[β2(t, x)] = sup
(t,x)∈Λ

∫ t

0

∫

R

|η(s, t, x, y)|2dyds <∞.

Then (2) holds, so EZ = 1.

End of the proof of Theorem 1, Corollary 4 of [MT02]. Note
that ht(x), as defined in (1), satisfies the conditions of Lemma 2. Indeed,
the support of ψt(x) is bounded away from t = 0 and f ∈ Eexp, so it
follows that hdeterministic is a bounded deterministic function. Note that
W (per)(dy ds) − W (dy ds) = 0 on y ∈ (0, 1), and hrandom(t, x) = 0 unless
x ∈ (ε, 1 − ε). Thus, in the integral used to define hrandom(t, x) in (1),
|x − y| > ε. Furthermore, the term G(t − s, x − y) which appears in that
integral, along with its first and second derivatives, is bounded and decreases
exponentially in |y|, uniformly in t, s, since t, s ∈ [0, T ].

We claim that hrandom(t, x) has finite maximal variance. Indeed, since
hrandom(t, x) is supported on A, we find that

sup
(t,x)

E
[

|hrandom(t, x)|2
]

≤ sup
(t,x)∈A

E

[

∣

∣

∣

∣

(

∂

∂t
− ∂2

∂2x

)(

ψt(x)

∫ t

0

∫

Gt−s(x− y)

·
(

W (per)(dy ds)−W (dy ds)
)

)
∣

∣

∣

∣

2
]

(3)

Applying the partial derivative operators on the right of (3), we would
use the product rule to get a number of nonrandom terms multiplied by
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W (per) −W . But since we are taking the supremum over (t, x) ∈ A, and
since W (per)(dy ds) − W (dy ds) = 0 for y ∈ (0, 1), we find that |x − y|
is bounded away from 0 in the region of integration. But ψt(x) and its
derivatives are bounded, and the same is true of Gt−s(x− y) away from the
singularity at x = y. Furthermore, the nonrandom terms have exponen-
tial decay in y. Using these observations, the reader can easily show that
hrandom(t, x) has finite maximal variance, so σΛ < ∞, and hrandom(t, x) is
almost surely bounded. Thus, Corollary 4 of [MT02] will be proved once we
have established Lemma 2.

Proof of Lemma 2. Our strategy is to express Z as a product involving
short time intervals, and to show that the terms have conditional expectation
1. Let

Zt,t+δ = exp

(

∫ t+δ

t

∫

D
hs(x) ·W (dxds)− 1

2

∫ t+δ

t

∫

D
|hs(x)|2dxds

)

Recall that ht(x) has (deterministic) compact support contained in (t, x) ∈
[0, T ]× (ε, 1− ε) for some ε > 0.

Lemma 3. Suppose that

δ < min

(

1

12σ2Λ
, T

)

. (4)

For t ∈ [0, T − δ], we have

E

[

Zt,t+δ

∣

∣

∣

∣

Ft

]

= 1 (5)

where Ft is the σ-field generated by W (S) for S ⊂ [0, t]×R.

Proof. Let

Ht,t+δ = E

[

exp

(

1

2

∫ t+δ

t

∫

D
|hs(x)|2dxds

)

∣

∣

∣

∣

Ft

]

.

Conditioning on Ft and using (2), we see that (5) follows from

Ht,t+δ <∞. (6)

We claim that it suffices to prove (6) for t = 0. Indeed, we can write

ht+r(x) = α(t+ r, x) +

∫ t

0

∫

R

η(s, t+ r, x, y) ·W (dyds) (7)

+

∫ t+r

t

∫

R

η(s, t+ r, x, y) ·W (dyds)

=: Q1(r, x) +Q2(r, x) +Q3(r, x).
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The reader can check that the conditions of Lemma 2 imply that Q2(r, x) is
almost surely bounded, and that Q3(r, x) is a Gaussian field satisfying the
conditions required of β(t, x) of Lemma 2. Therefore, conditioning on Ft

and shifting the variable t, we see that if (6) is true for t = 0, then it is true
in general.

Now we turn to the proof of (6) for t = 0. Note that

∫ δ

0

∫

R

|hs(x)|2dxds ≤ 2

∫ δ

0

∫

R

|α(s, x)|2dxds

+2

∫ δ

0

∫

R

|β(s, x)|2dxds
=: 2K + 2L.

where β(s, x) was defined in Lemma 2.
Now

E

[

exp

(

∫ δ

0

∫

R

|hs(x)|2dxds
)]

= E [exp (2K + 2L)]

=

∫ ∞

0
P (exp (2K + 2L) > λ) dλ

=

∫ ∞

−∞

P (exp (2K + 2L) > ez) dez

≤ 1 +

∫ ∞

0
P (2K + 2L > z)ezdz

≤ 1 +

∫ ∞

0

(

P (K > z/6) + P (L > z/6)
)

ezdz

=: 1 +A1 +A2.

Our goal is to show that A1, A2 <∞. But K is a constant, so A1 <∞.
Now we deal with A2. We need Borell’s inequality for Gaussian processes;

see Adler [Adl90], page 43, Theorem 2.1.

Theorem 2 (Borell’s inequality). Let {Xt}t∈Λ be a centered Gaussian
process with sample paths bounded almost surely. Let ‖X‖∞ = supt∈Λ |Xt|.
Then E‖X‖∞ <∞, and for all λ > 0,

P (‖X‖∞ > λ) ≤ 2 exp

(

−(λ− E[‖X‖∞])2

2σ2Λ

)

where σ2Λ = supt∈ΛE[X2
t ].
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We intend to apply Borell’s inequality with X = β(t, x) and Λ = [0, T ]×
(ε, 1 − ε). Recall that β(t, x) is almost surely bounded, and so by Borell’s
inequality E‖β‖∞ <∞. Also,

∫ δ

0

∫ 1

0
|β(t, x)|2dxdt ≤ δ‖β‖2∞.

Therefore,

P (L > z/6) = P

(

∫ δ

0

∫ 1

0
|β(t, x)|2dxdt > z/6

)

≤ P
(

δ‖β‖2∞ > z/6
)

≤ P

(

‖β‖∞ >

√

z

6δ

)

Using Borell’s inequality, we see that if (4) holds, then

− [(z/(6δ))1/2 − E‖β‖∞]2

2σ2Λ
+ z ≤ −cz + C

√
z

for some C > 0, c > 1, and
∫ ∞

0
P (L > z/6) ezdz ≤

∫ ∞

0
2 exp

(

− [(z/(6δ))1/2 − E‖β‖∞]2

2σ2Λ

)

ezdz <∞.

Thus, A2 <∞, which proves Lemma 3.
Now we use Lemma 3 to finish the proof of Corollary 4 of Mueller and

Tribe [MT02]. We need to prove EZ = 1. Choose a partition

0 = t0 < t1 < · · · < tn = T

such that tk−tk−1 ≤ δ for all k = 1, . . . , n. Recall that Z = Zt0,t1 · · ·Ztn−1,tn .
By (5) of Lemma 3, we have

E
[

Ztn,tn−1

∣

∣

∣Ftn−1

]

= 1

and therefore
E
[

Z
∣

∣

∣Ftn−1

]

= Z0,tn−1
.

Iterating this argument, we find that EZ = Z0,0 = 1, which proves (6).
This finishes the proof Lemma 2, and thus establishes Corollary 4 of

[MT02].

Acknowledgment We wish to thank Robert Dalang for finding the
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tion.
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