In the statement of Theorem 1.1, the word "complete" should be removed.

To see why, consider a set B that is closed and such that the set $A = \{x \in \partial B : x \text{ is regular for } B^c\}$ has positive Lebesgue measure. Let $f = 1_A$ It is easy to see that since $P_t \varphi_i(x) = e^{-\lambda_i t} \varphi_i(x)$, then all the $\varphi_i(x)$ are 0 on A, so f is orthogonal to all the φ_i yet is nonzero.

Since $P_t f = 0$, then P_t has 0 as an eigenvalue. In the Hilbert-Schmidt expansion theorem, it is required that P_t have only nonzero eigenvalues. Examining the proof of the Hilbert-Schmidt expansion theorem, we see that the only place this assumption is used is to prove that the φ_i are complete; thus the rest of Theorem 1.1 is correct.

The completeness of the $\varphi_i(x)$ is not needed in the rest of the paper.

In "Positivity of Brownian transition densities" by M.T. Barlow, R. Bass, and K. Burdzy (*Electr. Comm. Probab.* **2**, (1997) paper 4, p. 43–51), Theorem 1.1 is improved to show equality everywhere instead of almost everywhere.