Variably Skewed Brownian Motion

Martin Barlow (University of British Columbia)
Krzysztof Burdzy (University of Washington)
Haya Kaspi (Technion Institute)
Avi Mandelbaum (Technion Institute)

Abstract


Given a standard Brownian motion $B$, we show that the equation $$ X_t = x_0 + B_t + \beta(L_t^X), t \geq 0,$$ has a unique strong solution $X$. Here $L^X$ is the symmetric local time of $X$ at $0$, and $\beta$ is a given differentiable function with $\beta(0) = 0$, whose derivative is always in $(-1,1)$. For a linear function $\beta$, the solution is the familiar skew Brownian motion.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 57-66

Publication Date: March 1, 2000

DOI: 10.1214/ECP.v5-1018

References

  • [HS] Harrison, J.M. and Shepp, L.A. (1981), On skew Brownian motion, Ann. Probab. 9 (2), 309-313. Math. Review 82j:60144
  • [IM] Itô, K. and McKean, H.P. (1965), Diffusion Processes and Their Sample Paths, Springer, New York. Math. Review 49:9963
  • [KM1] Kaspi, H. and Mandelbaum, A. (1995), Lévy bandits: Multi- armed bandits driven by Lévy processes, Ann. Appl. Probab. 5 (2), 541-565. Math. Review 96i:60079
  • [KM2] Kaspi, H. and Mandelbaum, A. (1998), Multi-armed bandits in discrete and continuous time. Ann. Appl. Probab. 8 (4), 1270-1290. Math. Review 2000c:90110
  • [KP] Kurtz, T.G. and Protter, P. (1991), Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19 (3), 1035-1070. Math. Review 92k:60130
  • [JM] Jacod, J. and Memin J. (1981), Weak and strong solutions of stochastic differential equations: Existence and stability, Stochastic integrals, Lecture Notes in Mathematics 851 169-212, Springer, Berlin. Math. Review 83h:60062
  • [M] Mandelbaum, A. (1987), Continuous multi-armed bandits and multiparameter processes, Ann. Probab. 15, 1527-1556. Math. Review 89b:62169
  • [RY] Revuz, D. and Yor, M. (1991), Continuous Martingales and Brownian Motion, Springer Verlag, Berlin, Heidelberg, New York. Math. Review 92d:60053
  • [W1] Walsh, J.B. (1978), A diffusion with discontinuous local time, Temps Locaux Asterisque, 52--53, 37-45. Math. Review 81b:60042
  • [W2] Walsh, J.B. (1981), Optional increasing paths, Colloque ENST- CNET, Lecture Notes in Math. 863, 172-201, Springer, Berlin. Math. Review 82k:60101
  • [We] Weinryb, S. (1983), Etude d'une equation différentielle stochastique avec temps local, Séminaire de Probabilités XVII, Lecture Notes in Mathematics, 986, 72-77, Springer, Berlin. Math. Review 86c:60091


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.