Intersection probabilities for a chordal SLE path and a semicircle

Tom Alberts (New York University)
Michael J Kozdron (University of Regina)

Abstract


We derive a number of estimates for the probability that a chordal SLE$_\kappa$ path in the upper half plane $\mathbb{H}$ intersects a semicircle centred on the real line. We prove that if $0<\kappa <8$ and $\gamma:[0,\infty) \to \overline{\mathbb{H}}$ is a chordal SLE$_\kappa$ in $\mathbb{H}$ from $0$ to $\infty$, then $P\{\gamma[0,\infty) \cap \mathcal{C}(x;rx) \neq \emptyset\} \asymp r^{4a-1}$ where $a=2/\kappa$ and $\mathcal{C}(x;rx)$ denotes the semicircle centred at $x>0$ of radius $rx$, $00$. For $4<\kappa<8$, we also estimate the probability that an entire semicircle on the real line is swallowed at once by a chordal SLE$_\kappa$ path in $\mathbb{H}$ from $0$ to $\infty$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 448-460

Publication Date: August 14, 2008

DOI: 10.1214/ECP.v13-1399

References

  1. Alberts, T. and Sheffield, S. Hausdorff dimension of the SLE curve intersected with the real line. To appear, Electron. J. Probab. Math. Review number not available.
  2. Beffara, V. Hausdorff dimensions for SLE6. Ann. Probab. 32 (2004), 2606-2629. MR2078552
  3. Dubédat, J. SLE and triangles. Electron. Comm. Probab. 8 (2003), 28-42. MR1961287
  4. Garban, C. and Trujillo Ferreras, J.A. The expected area of the filled planar Brownian loop is π/5. Comm. Math. Phys. 264 (2006), 797-810. MR2217292
  5. Kennedy, T. Monte Carlo Tests of Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk. Phys. Rev. Lett., 88 (2003), 130601. Math. Review number not available.
  6. Lawler, G.F. Conformally Invariant Processes in the Plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. MR2129588
  7. Rohde, S. and Schramm, O. Basic properties of SLE. Ann. Math. 161 (2005), 883-924. MR2153402
  8. Schramm, O. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221-288. MR1776084
  9. Schramm, O. A percolation formula. Electron. Comm. Probab. 6 (2001), 115--120 (electronic). MR1871700
  10. Schramm, O. and Zhou, W. Boundary proximity of SLE. Available online at arXiv:0711.3350. Math. Review number not available.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.