Exponential bounds for multivariate self-normalized sums

Patrice Bertail (Laboratory of Statistics, CREST and MODALX, University Paris X, France)
Emmanuelle Gautherat (Laboratory of Statistics, CREST and Economic Faculty of Reims, France)
Hugo Harari-Kermadec (Laboratory of Statistics, CREST and Université Paris-Dauphine, France)

Abstract


In a non-parametric framework, we establish some non-asymptotic bounds for self-normalized sums and quadratic forms in the multivariate case for symmetric and general random variables. This bounds are entirely explicit and essentially depends in the general case on the kurtosis of the Euclidean norm of the standardized random variables.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 628-640

Publication Date: December 14, 2008

DOI: 10.1214/ECP.v13-1430

References

  1. Abramovitch, M. and Stegun, L.A. Handbook of Mathematical Tables. National Bureau of Standards, Washington, DC, 1970.
  2. Bahadur, R. R.; Savage, Leonard J. The nonexistence of certain statistical procedures in nonparametric problems. Ann. Math. Statist. 27 (1956), 1115--1122. MR0084241 (18,834b)
  3. P.Barbe and P.Bertail. Testing the global stability of a linear model. Working Paper n?46, CREST, 2004.
  4. Bercu, Bernard; Gassiat, Elisabeth; Rio, Emmanuel. Concentration inequalities, large and moderate deviations for self-normalized empirical processes. Ann. Probab. 30 (2002), no. 4, 1576--1604. MR1944001 (2004a:60060)
  5. P.Bertail, E.Gautherat, and H.Harari-Kermadec. Exponential bounds for quasi-empirical likelihood. Working Paper n?34, CREST, 2005.
  6. G.P. Chistyakov and F.G?tze. Moderate deviations for Student's statistic. Theory of Probability And Its Applications, 47 (3): 415--428, 2003.
  7. Eaton, M.L. A probability inequality for linear combinations of bounded random variables. Annals of Statistics, 2: 609--614, 1974.
  8. Eaton, M. L.; Efron, Bradley. Hotelling's $T\sp{2}$ test under symmetry conditions. J. Amer. Statist. Assoc. 65 1970 702--711. MR0269021 (42 #3918)
  9. Efron, Bradley. Student's $t$-test under symmetry conditions. J. Amer. Statist. Assoc. 64 1969 1278--1302. MR0251826 (40 #5053)
  10. Giné, Evarist; Götze, Friedrich. On standard normal convergence of the multivariate Student $t$-statistic for symmetric random vectors. Electron. Comm. Probab. 9 (2004), 162--171 (electronic). MR2108862 (2006b:60034)
  11. Harari-Kermadec, H. Vraisemblance empirique gÈnÈralisÈe et estimation semi-paramÈtrique. PhD thesis, UniversitÈ Paris X, 2006.
  12. Hoeffding, Wassily. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 1963 13--30. MR0144363 (26 #1908)
  13. B.Y. Jing and Q. Wang. An exponential nonuniform Berry-Esseen bound for self-normalized sums. Annals of Probability, 27 (4): 2068--2088, 1999.
  14. Major, P. A multivariate generalization of Hoeffding's inequality. Arxiv preprint math. PR/0411288, 2004.
  15. Owen, A.B. Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, 2001.
  16. Panchenko, Dmitry. Symmetrization approach to concentration inequalities for empirical processes. Ann. Probab. 31 (2003), no. 4, 2068--2081. MR2016612 (2005c:60023)
  17. Pinelis, Iosif. Extremal probabilistic problems and Hotelling's $T\sp 2$ test under a symmetry condition. Ann. Statist. 22 (1994), no. 1, 357--368. MR1272088 (95m:62115)
  18. Romano, Joseph P.; Wolf, Michael. Finite sample nonparametric inference and large sample efficiency. Ann. Statist. 28 (2000), no. 3, 756--778. MR1792786 (2001i:62059)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.