The Law of the Hitting Times to Points by a Stable Lévy Process with No Negative Jumps

Goran Peskir (The University of Manchester)

Abstract


Let $X=(X_t)_{t \ge 0}$ be a stable Levy process of index $\alpha \in (1,2)$ with the Levy measure $\nu(dx) = (c/x^{1+\alpha}) I_{(0,\infty)}(x) dx$ for $c>0$, let $x>0$ be given and fixed, and let $\tau_x = \inf\{ t>0 : X_t=x \}$ denote the first hitting time of $X$ to $x$. Then the density function $f_{\tau_x}$ of $\tau_x$ admits the following series representation: $$f_{\tau_x}(t) = \frac{x^{\alpha-1}}{\pi ( \Gamma(-\alpha) t)^{2-1/\alpha}} \sum_{n=1}^\infty \bigg[(-1)^{n-1} \sin(\pi/\alpha) \frac{\Gamma(n-1/\alpha)}{\Gamma(\alpha n-1)} \Big(\frac{x^\alpha}{c \Gamma(-\alpha)t} \Big)^{n-1} $$ $$- \sin\Big(\frac{n \pi}{\alpha}\Big) \frac{\Gamma(1+n/\alpha)}{n!} \Big(\frac{x^\alpha}{c \Gamma(-\alpha)t}\Big)^{(n+1)/\alpha-1} \bigg]$$ for $t>0$. In particular, this yields $f_{\tau_x}(0+)=0$ and $$ f_{\tau_x}(t) \sim \frac{x^{\alpha-1}}{\Gamma(\alpha-1), \Gamma(1/\alpha)} (c \Gamma(-\alpha)t)^{-2+1/\alpha} $$ as $t \rightarrow \infty$. The method of proof exploits a simple identity linking the law of $\tau_x$ to the laws of $X_t$ and $\sup_{0 \le s \le t} X_s$ that makes a Laplace inversion amenable. A simpler series representation for $f_{\tau_x}$ is also known to be valid when $x<0$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 653-659

Publication Date: December 19, 2008

DOI: 10.1214/ECP.v13-1431

References

  1. Bernyk, V. Dalang, R. C. and Peskir, G. (2008). The law of the supremum of a stable Lévy process with no negative jumps. Ann. Probab. 36 (1777-1789). MR2440923 (A review for this item is in process).
  2. Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press. Math. Review 98e:60117
  3. Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press. Math. Review 41 #9348
  4. Borovkov, K. and Burq, Z. (2001). Kendall's identity for the first crossing time revisited. Electron. Comm. Probab. 6 (91-94). Math. Review 2002i:60099
  5. Braaksma, B. L. J. (1964). Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compositio Math. 15 (239-341). MR not available.
  6. Doney, R. A. (1991). Hitting probabilities for spectrally positive Lévy processes. J. London Math. Soc. 44 (566-576). Math. Review 93b:60166
  7. Doney, R. A. (2008). A note on the supremum of a stable process. Stochastics 80 (151-155). MR2402160 (A review for this item is in process).
  8. Erdélyi, A. (1954). Tables of Integral Transforms, Vol. 1. McGraw-Hill. Math. Review 15,868a
  9. Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer-Verlag. Math. Review 2008a:60003
  10. Monrad, D. (1976). Lévy processes: absolute continuity of hitting times for points. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (43-49). Math. Review 54 #11526
  11. Peskir, G. (2002). On integral equations arising in the first-passage problem for Brownian motion. J. Integral Equations Appl. 14 (397-423). Math. Review 2004c:60235
  12. Pollard, H. (1946). The representation of $e^{-x^lambda$ as a Laplace integral. Bull. Amer. Math. Soc. 52 (908-910). Math. Review 8,269a
  13. Pollard, H. (1948). The completely monotonic character of the Mittag-Leffler function $E_a(-x)$. Bull. Amer. Math. Soc. 54 (1115-1116). Math. Review 10,295e
  14. Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press. Math. Review 2003b:60064
  15. Schneider, W. R. (1986). Stable distributions: Fox functions representation and generalization. Proc. Stoch. Process. Class. Quant. Syst. (Ascona 1985), Lecture Notes in Phys. 262, Springer (497-511). Math. Review 88d:60050


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.