Sharp maximal inequality for martingales and stochastic integrals

Adam Osekowski (University of Warsaw)

Abstract


Let $X=(X_t)_{t\geq 0}$ be a martingale and $H=(H_t)_{t\geq 0}$ be a predictable process taking values in $[-1,1]$. Let $Y$ denote the stochastic integral of $H$ with respect to $X$. We show that $$ ||\sup_{t\geq 0}Y_t||_1 \leq \beta_0 ||\sup_{t\geq 0}|X_t|||_1,$$ where $\beta_0=2,0856\ldots$ is the best possible. Furthermore, if, in addition, $X$ is nonnegative, then $$ ||\sup_{t\geq 0}Y_t||_1 \leq \beta_0^+ ||\sup_{t\geq 0}X_t||_1,$$ where $\beta_0^+=\frac{14}{9}$ is the best possible.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 17-30

Publication Date: January 23, 2009

DOI: 10.1214/ECP.v14-1438

References

  1. K. Bichteler. Stochastic integration and $L^p$-theory of semimartingales . Ann. Probab. 9 (1981), 49-89. Math. Review 82g:60071
  2. D. L. Burkholder. Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12 (1984), 647-702. Math. Review 86b:60080
  3. D. L. Burkholder. Explorations in martingale theory and its applications. Ecole d'Ete de ProbabilitÈs de Saint-Flour XIX---1989, 1--66, Lecture Notes in Math., 1464, Springer, Berlin, 1991. Math. Review 92m:60037
  4. D. L. Burkholder. Sharp norm comparison of martingale maximal functions and stochastic integrals. Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), 343-358, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence RI, 1997 Math. Review 98f:60103
  5. A. Osekowski. Sharp maximal inequality for stochastic integrals. Proc. Amer. Math. Soc. 136 (2008), 2951-2958. Math. Review number not available


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.