Berry-Esseen Bounds for Projections of Coordinate Symmetric Random Vectors

Larry Goldstein (University of Southern California)
Qi-Man Shao (Hong Kong University of Science and Technology)

Abstract


For a coordinate symmetric random vector $(Y_1,\ldots,Y_n)={\bf Y} \in \mathbb{R}^n$, that is, one satisfying $(Y_1,\ldots,Y_n)=_d(e_1Y_1,\ldots,e_nY_n)$ for all $(e_1,\ldots,e_n) \in \{-1,1\}^n$, for which $P(Y_i=0)=0$ for all $i=1,2,\ldots,n$, the following Berry Esseen bound to the cumulative standard normal $\Phi$ for the standardized projection $W_\theta=Y_\theta/v_\theta$ of ${\bf Y}$ holds: $$ \sup_{x \in \mathbb{R}}|P(W_\theta \leq x) - \Phi(x)| \leq 2 \sum_{i=1}^n |\theta_i|^3 E| X_i|^3 + 8.4 E(V_\theta^2-1)^2, $$ where $Y_\theta=\theta \cdot {\bf Y}$ is the projection of ${\bf Y}$ in direction $\theta \in \mathbb{R}^n$ with $||\theta||=1$, $v_\theta=\sqrt{\mbox{Var}(Y_\theta)},X_i=|Y_i|/v_\theta$ and $V_\theta=\sum_{i=1}^n \theta_i^2 X_i^2$. As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure ${\cal C}_p^n$ on the $\ell_p^n$ sphere as a special case, resulting in a bound of order $\sum_{i=1}^n |\theta_i|^3$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 474-485

Publication Date: October 30, 2009

DOI: 10.1214/ECP.v14-1502

References

  1. Anttila, M., Ball, K., and Perissinaki, I. (2003) The central limit problem for convex bodies. Trans. Amer. Math. Soc., 355 (12): (2003) 4723-4735 (electronic). MR1997580
  2. Bobkov, S. (2003) On concentration of distributions of random weighted sums. Ann. Probab. 31 (2003), 195-215. MR1959791
  3. Chistyakov, G.P. and Götze, F. Moderate deviations for Student's statistic. Theory Probability Appl47 (2003), 415-428. MR1975426
  4. Diaconis, P. and Freedman, D. A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Statist23 (1987), 397-423. MR0898502
  5. Goldstein, L. L1 bounds in normal approximation. Ann. Probab. 35 (2007), pp. 1888-1930. MR2349578
  6. Klartag, B. (2009). A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields 45 (2009), 1-33.  MR2520120
  7. Lai, T.L., de la Pena, V., and Shao, Q-M. Self-normalized processes: Theory and Statistical Applications. (2009) Springer, New York. MR2488094
  8. Meckes, M. and Meckes, E. The central limit problem for random vectors with symmetries. J. Theoret. Probab20 (2007), 697-720. MR2359052
  9. Naor, A. and Romik, D. Projecting the surface measure of the sphere of lpn. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 241-261. MR1962135
  10. Schechtman, G., Zinn, J. On the volume of the intersection of two lpn balls. Proc. Amer. Math. Soc., 110 (1990), 217--224. MR1015684
  11. Shevtsova, I. G.  Sharpening the upper bound for the absolute constant in the Berry-Esseen inequality. (Russian) Teor. Veroyatn. Primen. 51 (2006),  622-626; translation in Theory Probab. Appl. 51 (2007), 549-553. MR2325552
  12. Sudakov, V. Typical distributions of linear functionals in finite-dimensional spaces of higher dimension. Dokl. Akad. Nauk SSSR243, (1978); translation in Soviet Math. Dokl. 19 (1978), 1578-1582. MR0517198


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.