Countable representation for infinite dimensional diffusions derived from the two-parameter Poisson-Dirichlet process
Stephen G. Walker (University of Kent)
Abstract
This paper provides a countable representation for a class of infinite-dimensional diffusions which extends the infinitely-many-neutral-alleles model and is related to the two-parameter Poisson-Dirichlet process. By means of Gibbs sampling procedures, we define a reversible Moran-type population process. The associated process of ranked relative frequencies of types is shown to converge in distribution to the two-parameter family of diffusions, which is stationary and ergodic with respect to the two-parameter Poisson-Dirichlet distribution. The construction provides interpretation for the limiting process in terms of individual dynamics.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 501-517
Publication Date: November 26, 2009
DOI: 10.1214/ECP.v14-1508
References
- Aldous, D. (1985). Exchangeability and related topics. École d'été de probabilités de Saint-Flour XIII. Lecture notes in Math. 1117. Springer, Berlin. 0883646
- Bertoin, J. (2006). Random fragmentation and coagulation processes. Cambridge University Press, Cambridge. 2253162
- Billingsley, P. (1968). Convergence of probability measures. Wiley, New York. 0233396
- Blackwell, D. and MacQueen, J.B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1, 353-355. 0362614
- Dawson, D.A. (1993). Measure-valued Markov processes. École d'été de probabilités de Saint-Flour XXI. Lecture Notes in Math. 1541. Springer, Berlin. 1242575
- Donnelly, P. and Kurtz, T.G. (1996). A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24, 69-742. 1404525
- Donnelly, P. and Kurtz, T.G. (1999a). Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9, 1091-1148. 1728556
- Donnelly, P. and Kurtz, T.G. (1999b). Particle representation for measure-valued population models. Ann. Probab. 27, 166-205. 1681126
- Ethier, S.N. and Kurtz, T.G. (1981). The infinitely-many-neutral-alleles diffusion model. Adv. Appl. Probab. 13, 429-452. 0615945
- Ethier, S.N. and Kurtz, T.G. (1986). Markov processes: characterization and convergence. Wiley, New York. 0838085
- Ethier, S.N. and Kurtz, T.G. (1992). On the stationary distribution of the neutral diffusion model in population genetics. Ann. Appl. Probab. 2, 24-35. 1143391
- Ethier, S.N. and Kurtz, T.G. (1993). Fleming-Viot processes in population genetics. SIAM J. Control Optim. 31, 345-386. 1205982
- Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230. 0350949
- Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409. 1141740
- Ishwaran, H. and James, L. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96, 161-173. 1952729
- Kingman, J.F.C. (1975). Random discrete distributions. J. Roy. Statist. Soc. Ser B 37, 1-22. 0368264
- Lijoi, A. and Prünster, I. (2009). Models beyond the Dirichlet process. To appear in Hjort, N.L., Holmes, C.C. Müller, P., Walker, S.G. (Eds.), Bayesian Nonparametrics. Cambridge University Press.
- Petrov, L. (2009). Two-parameter family of diffusion processes in the Kingman simplex. Funct. Anal. Appl., in press.
- Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory and Related Fields 102, 145-158. 1337249
- Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics, probability and game theory, IMS Lecture Notes Monogr. Ser. 30, Inst. Math. Statist., Hayward, CA. 1481784
- Pitman, J. (2006). Combinatorial stochastic processes. École d'été de probabilités de Saint-Flour XXXII. Lecture Notes in Math. 1875. Springer, Berlin. 2245368
- Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855-900. 1434129
- Ruggiero, M. and Walker, S.G. (2009). Bayesian nonparametric construction of the Fleming-Viot process with fertility selection. Statist. Sinica 19, 707-720. 2514183
- Sethuraman, J. (1994). A constructive definition of the Dirichlet process prior. Statist. Sinica 2, 639-650. 1309433
- Teh, Y.W. and Jordan, M.I. (2009). Bayesian Nonparametrics in Machine Learning. To appear in Hjort, N.L., Holmes, C.C. Müller, P., Walker, S.G. (Eds.), Bayesian Nonparametrics. Cambridge University Press.

This work is licensed under a Creative Commons Attribution 3.0 License.