Sharp tail inequalities for nonnegative submartingales and their strong differential subordinates

Adam Osekowski (University of Warsaw)

Abstract


Let $f=(f_n)_{n\geq 0}$ be a nonnegative submartingale starting from $x$ and let $g=(g_n)_{n\geq 0}$ be a sequence starting from $y$ and satisfying $$|dg_n|\leq |df_n|,\quad |\mathbb{E}(dg_n|\mathcal{F}_{n-1})|\leq \mathbb{E}(df_n|\mathcal{F}_{n-1})$$ for $n\geq 1$. We determine the best universal constant $U(x,y)$ such that $$\mathbb{P}(\sup_ng_n\geq 0)\leq ||f||_1+U(x,y).$$ As an application, we deduce a sharp weak type $(1,1)$ inequality for the one-sided maximal function of $g$ and determine, for any $t\in [0,1]$ and $\beta\in\mathbb{R}$, the number $$ L(x,y,t,\beta)=\inf\{||f||_1: \mathbb{P}(\sup_ng_n\geq \beta)\geq t\}.$$ The estimates above yield analogous statements for stochastic integrals in which the integrator is a nonnegative submartingale. The results extend some earlier work of Burkholder and Choi in the martingale setting.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 508-521

Publication Date: October 26, 2010

DOI: 10.1214/ECP.v15-1582

References

  1. R. Bañuelos, P. Janakiraman, Lp-bounds for the Beurling-Ahlfors transform, Trans. Amer. Math. Soc. 360 (2008), 3603-3612. Math. Review 2009d:42032
  2. R. Bañuelos, G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J. 80 (1995), 575-600. Math. Review 96k:60108
  3. D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702. Math. Review 86b:60080
  4. D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Été de Probabilités de Saint Flour XIX-1989, Lecture Notes in Mathematics 1464 (1991), 1-66 . Math. Review 92m:60037
  5. D. L. Burkholder, Strong differential subordination and stochastic integration, Ann. Probab. 22 (1994), 995-1025. Math. Review 95h:60085
  6. C. Choi, A weak-type submartingale inequality, Kobe J. Math. 14 (1997), 109-121. Math. Review 99f:60088
  7. C. Choi, A norm inequality for Itô processes, J. Math. Kyoto Univ. 37 (1997), 229-240. Math. Review 99b:60061
  8. C. Choi, A sharp bound for Itô processes, J. Korean Math. Soc. 35 (1998), 713-725. Math. Review 2000f:60085
  9. K. P. Choi, Some sharp inequalities for martingale transforms, Trans. Amer. Math. Soc. 307 (1988), 279-300. Math. Review 89b:60132
  10. S. Geiss, S. Montgomery-Smith, E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), 553-575. Math. Review number not available.
  11. W. Hammack, Sharp maximal inequalities for stochastic integrals in which the integrator is a submartingale, Proc. Amer. Math. Soc. 124 (1996), 931-938. Math. Review 96f:60075
  12. A. Osekowski, Weak type inequality for noncommutative differentially subordinated martingales, Probability Theory Related Fields 140 (2008), 553 - 568. Math. Review 2008m:46135
  13. A. Osekowski, Sharp LlogL inequalities for differentially subordinated martingales, Illinois J. Math. , 52 (2009), 745-756. Math. Review number not available.
  14. A. Osekowski, Sharp weak type inequalities for differentially subordinated martingales, Bernoulli 15 (2009), 871-897. Math. Review number not available.
  15. Y. Suh, A sharp weak type (p,p) inequality (p>2) for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), 1545-1564. Math. Review 2005k:60134
  16. G. Wang, Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522-551. Math. Review 96b:60120


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.