On relaxing the assumption of differential subordination in some martingale inequalities

Adam Osekowski (University of Warsaw)

Abstract


Let $X$, $Y$ be continuous-time martingales taking values in a se\-pa\-rable Hilbert space $\mathcal{H}$.

(i) Assume that $X$, $Y$ satisfy the condition $[X,X]_t\geq [Y,Y]_t$ for all $t\geq 0$. We prove the sharp inequalities $$ \sup_t||Y_t||_p\leq (p-1)^{-1}\sup_t||X_t||_p,\qquad 1 < p\leq 2,$$ $$ \mathbb{P}(\sup_t|Y_t|\geq 1)\leq \frac{2}{\Gamma(p+1)}\sup_t||X_t||_p^p,\qquad 1\leq p\leq 2,$$ and for any $K>0$ we determine the optimal constant $L=L(K)$ depending only on $K$ such that $$ \sup_t ||Y_t||_1\leq K\sup_t\mathbb{E}|X_t|\log|X_t|+L(K).$$

(ii) Assume that $X$, $Y$ satisfy the condition $[X,X]_\infty-[X,X]_{t-}\geq [Y,Y]_\infty-[Y,Y]_{t-}$ for all $t\geq 0$. We establish the sharp bounds $$ \sup_t||Y_t||_p\leq (p-1)\sup_t||X_t||_p,\qquad 2\leq p < \infty$$ and $$ \mathbb{P}(\sup_t|Y_t|\geq 1)\leq \frac{p^{p-1}}{2}\sup_t||X_t||_p^p,\qquad 2\leq p < \infty.$$

This generalizes the previous results of Burkholder, Suh and the author, who showed the above estimates under the more restrictive assumption of differential subordination. The proof is based on Burkholder's technique and integration method.


Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 9-21

Publication Date: January 2, 2011

DOI: 10.1214/ECP.v16-1593

References

  1. R. Bañuelos, G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J. 80 (1995), 575-600. Math. Review 96k:60108
  2. R. Bañuelos, P. J. Méndez-Hernández, Space-time Brownian motion and the Beurling-Ahlfors transform, Indiana Univ. Math. J. 52 (2003), 981--990. Math. Review 2004h:60067
  3. D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702. Math. Review 86b:60080
  4. D. L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Colloque Paul L'evy (Palaiseau, 1987), Astérisque 157-158 (1988), 75-94. Math. Review 90b:60051
  5. D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Été de Probabilités de Saint Flour XIX-1989, Lecture Notes in Mathematics 1464 (1991), 1-66 . Math. Review 92m:60037
  6. D. L. Burkholder, Martingales and singular integrals in Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, 233--269, North-Holland, Amsterdam, 2001. Math. Review 2003b:46009
  7. C. Dellacherie, P. A. Meyer, Probabilities and potential B, North-Holland, Amsterdam, 1982. Math. Review 89b:60132
  8. S. Geiss, S. Montgomery-Smith, E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), 553-575. Math. Review number not available.
  9. A. Osekowski, Inequalities for dominated martingales, Bernoulli 13 (2007), 54--79. Math. Review 2008e:60120
  10. A. Osekowski, Sharp LlogL inequalities for differentially subordinated martingales, Illinois J. Math. , 52 (2009), 745-756. Math. Review number not available.
  11. A. Osekowski, Sharp weak type inequalities for differentially subordinated martingales, Bernoulli 15 (2009), 871-897. Math. Review number not available.
  12. Y. Suh, A sharp weak type (p,p) inequality (p>2) for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), 1545-1564. Math. Review 2005k:60134
  13. G. Wang, Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522-551. Math. Review 96b:60120


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.