Asymptotic Products of Independent Gaussian Random Matrices with Correlated Entries

Gabriel H Tucci (Bell Labs, Alcatel-Lucent)

Abstract


In this work we address the problem of determining the asymptotic spectral measure of the product of independent, Gaussian random matrices with correlated entries, as the dimension and the number of multiplicative terms goes to infinity. More specifically, let $\{X_p(N)\}_{p=1}^\infty$ be a sequence of $N\times N$ independent random matrices with independent and identically distributed Gaussian entries of zero mean and variance $\frac{1}{\sqrt{N}}$. Let $\{\Sigma(N)\}_{N=1}^\infty$ be a sequence of $N\times N$ deterministic and Hermitian matrices such that the sequence converges in moments to a compactly supported probability measure $\sigma$. Define the random matrix $Y_p(N)$ as $Y_p(N)=X_p(N)\Sigma(N)$. This is a random matrix with correlated Gaussian entries and covariance matrix $E(Y_p(N)^*Y_p(N))=\Sigma(N)^2$ for every $p\geq 1$. The positive definite $N\times N$ matrix $$ B_n^{1/(2n)} (N) := \left( Y_1^* (N) Y_2^* (N) \dots Y_n^*(N) Y_n(N) \dots Y_2(N) Y_1(N) \right)^{1/(2n)} \to \nu_n $$ converges in distribution to a compactly supported measure in $[0,\infty)$ as the dimension of the matrices $N\to \infty$. We show that the sequence of measures $\nu_n$ converges in distribution to a compactly supported measure $\nu_n \to \nu$ as $n\to\infty$. The measures $\nu_n$ and $\nu$ only depend on the measure $\sigma$. Moreover, we deduce an exact closed-form expression for the measure $\nu$ as a function of the measure $\sigma$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 353-364

Publication Date: July 7, 2011

DOI: 10.1214/ECP.v16-1635

References

  1. Bai, Z. D.; Silverstein, Jack W. CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 (2004), no. 1A, 553--605. MR2040792 (2005b:60046)

  2. Baik, Jinho; Silverstein, Jack W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 (2006), no. 6, 1382--1408. MR2279680 (2008a:60063)

  3. Bercovici, Hari; Pata, Vittorino. Limit laws for products of free and independent random variables. Studia Math. 141 (2000), no. 1, 43--52. MR1782911 (2001i:46105)

  4. Bercovici, Hari; Voiculescu, Dan. Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42 (1993), no. 3, 733--773. MR1254116 (95c:46109)

  5. Borade, Shashibhushan; Zheng, Lizhong; Gallager, Robert. Amplify-and-forward in wireless relay networks: rate, diversity, and network size. IEEE Trans. Inform. Theory 53 (2007), no. 10, 3302--3318. MR2419789 (2009g:94002)

  6. Brown, L. G. Lidski?'s theorem in the type ${rm II}$ case. Geometric methods in operator algebras (Kyoto, 1983), 1--35, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986. MR0866489 (88d:47024)

  7. Crisanti, A.; Paladin, G.; Vulpiani, A. Products of random matrices in statistical physics. With a foreword by Giorgio Parisi. Springer Series in Solid-State Sciences, 104. Springer-Verlag, Berlin, 1993. xiv+166 pp. ISBN: 3-540-56575-2 MR1278483 (95d:82031)

  8. Furstenberg, H.; Kesten, H. Products of random matrices. Ann. Math. Statist. 31 1960 457--469. MR0121828 (22 #12558)

  9. Gill, Richard D.; Johansen, S¯ren. A survey of product-integration with a view toward application in survival analysis. Ann. Statist. 18 (1990), no. 4, 1501--1555. MR1074422 (92f:60125)

  10. Haagerup, Uffe; Larsen, Flemming. Brown's spectral distribution measure for $R$-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176 (2000), no. 2, 331--367. MR1784419 (2001i:46106)

  11. Haagerup, Uffe; Schultz, Hanne. Invariant subspaces for operators in a general ${rm II}sb 1$-factor. Publ. Math. Inst. Hautes ?tudes Sci. No. 109 (2009), 19--111. MR2511586 (2010e:47020)

  12. Isopi, Marco; Newman, Charles M. The triangle law for Lyapunov exponents of large random matrices. Comm. Math. Phys. 143 (1992), no. 3, 591--598. MR1145601 (93d:60045)

  13. Kargin, Vladislav. The norm of products of free random variables. Probab. Theory Related Fields 139 (2007), no. 3-4, 397--413. MR2322702 (2008g:46117)

  14. Kargin, Vladislav. Lyapunov exponents of free operators. J. Funct. Anal. 255 (2008), no. 8, 1874--1888. MR2462579 (2009k:46122)

  15. Newman, C. M. Lyapunov exponents for some products of random matrices: exact expressions and asymptotic distributions. Random matrices and their applications (Brunswick, Maine, 1984), 121--141, Contemp. Math., 50, Amer. Math. Soc., Providence, RI, 1986. MR0841087 (88a:60020)

  16. Newman, Charles M. The distribution of Lyapunov exponents: exact results for random matrices. Comm. Math. Phys. 103 (1986), no. 1, 121--126. MR0826860 (87h:60119)

  17. Nica, Alexandru; Speicher, Roland. $R$-diagonal pairsa common approach to Haar unitaries and circular elements. Free probability theory (Waterloo, ON, 1995), 149--188, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997. MR1426839 (98b:46083)

  18. Oseledec, V. I. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. (Russian) Trudy Moskov. Mat. Oböč. 19 1968 179--210. MR0240280 (39 #1629)

  19. Ratnarajah, T.; Vaillancourt, R.; Alvo, M. Complex random matrices and Rayleigh channel capacity. Commun. Inf. Syst. 3 (2003), no. 2, 119--138. MR2042593 (2005b:94016)

  20. Rider, B.; Silverstein, Jack W. Gaussian fluctuations for non-Hermitian random matrix ensembles. Ann. Probab. 34 (2006), no. 6, 2118--2143. MR2294978 (2008d:60036)

  21. Ruelle, David. Characteristic exponents and invariant manifolds in Hilbert space. Ann. of Math. (2) 115 (1982), no. 2, 243--290. MR0647807 (83j:58097)

  22. Verdu. S and Tulino A.M., Random Matrix Theory and Wireless Communications, Now Publishers Inc., 2004.

  23. Voiculescu D. Free Probability Theory, Fields Institute Communications, 1997 .

  24. Voiculescu, D. V.; Dykema, K. J.; Nica, A. Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992. vi+70 pp. ISBN: 0-8218-6999-X MR1217253 (94c:46133)



Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.