Rank probabilities for real random $N\times N \times 2$ tensors

Göran Bergqvist (Linköping University)
Peter J. Forrester (University of Melbourne)

Abstract


We prove that the probability $P_N$ for a real random Gaussian $N\times N\times 2$ tensor to be of real rank $N$ is $P_N=(\Gamma((N+1)/2))^N/G(N+1)$, where $\Gamma(x)$, $G(x)$ denote the gamma and Barnes $G$-functions respectively. This is a rational number for $N$ odd and a rational number multiplied by $\pi^{N/2}$ for $N$ even. The probability to be of rank $N+1$ is $1-P_N$. The proof makes use of recent results on the probability of having $k$ real generalized eigenvalues for real random Gaussian $N\times N$ matrices. We also prove that $\log P_N= (N^2/4)\log (e/4)+(\log N-1)/12-\zeta '(-1)+{\rm O}(1/N)$ for large $N$, where $\zeta$ is the Riemann zeta function.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 630-637

Publication Date: October 21, 2011

DOI: 10.1214/ECP.v16-1655

References

  1. G. Bergqvist and E.G. Larsson. The higher-order singular value decomposition: theory and an application. IEEE Signal Processing Magazine 27 (2010), 151--154. Math. Review number not available.
  2. G. Bergqvist. Exact probabilities for typical ranks of 2x2x2 and 3x3x2 tensors. Linear Algebra Appl. to appear (doi:10.1016/j.laa.2011.02.041). Math. Review number not available.
  3. P. Comon, J.M.F. ten Berge, L. De Lathauwer and J. Castaing. Generic and typical ranks of multi-way arrays. Linear Algebra Appl. 430 (2009), 2997--3007. Math. Review 2010e:15027
  4. V. De Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Analysis Appl. 30 (2008), 1084--1127. Math. Review 2009h:15013
  5. A. Edelman, E. Kostlan and M. Shub. How many eigenvalues of a random matrix are real? J. American Math. Soc. 7 (1994), 247--267. Math. Review 94f:60053
  6. P.J. Forrester. Log-gases and random matrices. Princeton University Press, Princeton, NJ (2010). Math. Review 2011d:82001
  7. P.J. Forrester and A. Mays. Pfaffian point process for the Gaussian real generalised eigenvalue problem. Prob. Theory Rel. Fields, to appear (doi:10.1007/s00440-011-0361-8), (arXiv:0910.2531). Math. Review number not available.
  8. J.B. Kruskal. Rank, decomposition, and uniqueness for 3-way and N-way arrays. Multiway data analysis. North-Holland, Amsterdam (1989) pp. 7--18. Math. Review 91j:62003
  9. J.M.F. ten Berge. Kruskal's polynomial for 2x2x2 arrays and a generalization to 2 x n x n arrays. Psychometrika 56 (1991), 631--636. Math. Review number not available.
  10. J.M.F. ten Berge and H.A.L. Kiers. Simplicity of core arrays in three-way principal component analysis and the typical rank of pxqx2 arrays. Linear Algebra Appl. 294 (1999), 169--179. Math. Review 2000f:62146
  11. E.W. Weisstein. Glaisher-Kinkelin constant. MathWorld -- A Wolfram Web Resource (link). Math. Review number not available.
  12. E.W. Weisstein. Barnes G-function. MathWorld -- A Wolfram Web Resource (link). Math. Review number not available.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.