Pure jump increasing processes and the change of variables formula

Jean Bertoin (Universität Zürich)
Marc Yor (Université Pierre et Marie Curie - Paris 6)


Given an increasing process $(A_t)_{t\geq 0}$, we characterize the right continuous non-decreasing functions $f: \mathbb{R}_+\to \mathbb{R}_+$ that map $A$ to a pure jump process. As an example of application, we show for instance that functions with bounded variations belong to the domain of the extended generator of any subordinator with no drift and infinite Lévy measure.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-7

Publication Date: May 30, 2013

DOI: 10.1214/ECP.v18-2700


  • Andrew, Peter. A proof from `first principles' of Kesten's result for the probabilities with which a subordinator hits points. Electron. Comm. Probab. 11 (2006), 58-63 (electronic). MR2219346
  • Bertoin, Jean. Subordinators: examples and applications. Lectures on probability theory and statistics (Saint-Flour, 1997), 1-91, Lecture Notes in Math., 1717, Springer, Berlin, 1999. MR1746300
  • Bretagnolle, Jean. Résultats de Kesten sur les processus à accroissements indépendants. (French) Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970), pp. 21-36. Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971. MR0368175
  • Kesten, Harry. Hitting probabilities of single points for processes with stationary independent increments. Memoirs of the American Mathematical Society, No. 93 American Mathematical Society, Providence, R.I. 1969 129 pp. MR0272059
  • Kingman, J. F. C. Regenerative phenomena. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Ltd., London-New York-Sydney, 1972. xii+190 pp. MR0350861
  • Lamperti, John. Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 205-225. MR0307358

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.