### Central limit theorem for an additive functional of the fractional Brownian motion II

**David Nualart**

*(University of Kansas)*

**Fangjun Xu**

*(East China Normal University)*

#### Abstract

We prove a central limit theorem for an additivefunctional of the $d$-dimensional fractional Brownian motionwith Hurst index $H\in(\frac{1}{d+2},\frac{1}{d})$, using the method of moments,extending the result by Papanicolaou, Stroock and Varadhan in the case of the standard Brownian motion.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-10

Publication Date: September 1, 2013

DOI: 10.1214/ECP.v18-2761

#### References

- Berman, Simeon M. Local nondeterminism and local times of Gaussian processes.
*Indiana Univ. Math. J.*23 (1973/74), 69--94. MR0317397 - Geman, Donald; Horowitz, Joseph. Occupation densities.
*Ann. Probab.*8 (1980), no. 1, 1--67. MR0556414 - Hu, Y.; Nualart, D. and Xu, F.: Central limit theorem for an additive functional of the fractional Brownian motion. Ann. Probab., accepted.
- Papanicolaou, G. C.; Stroock, D.; Varadhan, S. R. S. Martingale approach to some limit theorems.
*Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Paper No. 6,*ii+120 pp. Duke Univ. Math. Ser., Vol. III,*Duke Univ., Durham, N.C.,*1977. MR0461684

This work is licensed under a Creative Commons Attribution 3.0 License.