A Skorohod representation theorem without separability

Patrizia Berti (University of Modena and Reggio-Emilia)
Luca Pratelli (Accademia Navale di Livorno)
Pietro Rigo (University of Pavia)

Abstract


Let $(S,d)$ be a metric space, $\mathcal{G}$ a $\sigma$-field on $S$ and $(\mu_n:n\geq 0)$ a sequence of probabilities on $\mathcal{G}$. Suppose $\mathcal{G}$ countably generated, the map $(x,y)\mapsto d(x,y)$ measurable with respect to $\mathcal{G}\otimes\mathcal{G}$, and $\mu_n$ perfect for $n>0$. Say that $(\mu_n)$ has a Skorohod representation if, on some probability space, there are random variables $X_n$ such that
\begin{equation*}
X_n\sim\mu_n\text{ for all }n\geq 0\quad\text{and}\quad d(X_n,X_0)\overset{P}\longrightarrow 0.
\end{equation*}
It is shown that $(\mu_n)$ has a Skorohod representation if and only if
\begin{equation*}
\lim_n\,\sup_f\,\left|\mu_n(f)-\mu_0(f)\right|=0,
\end{equation*}
where $\sup$ is over those $f:S\rightarrow [-1,1]$ which are $\mathcal{G}$-universally measurable and satisfy $\left|f(x)-f(y)\right|\leq 1\wedge d(x,y)$. An useful consequence is that Skorohod representations are preserved under mixtures. The result applies even if $\mu_0$ fails to be $d$-separable. Some possible applications are given as well.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-12

Publication Date: October 18, 2013

DOI: 10.1214/ECP.v18-2793

References

  • Basse-O'Connor, A. and Rosinski, J.: On the uniform convergence of random series in Skorohod space and representations of cadlag infinitely divisible processes. Ann. Probab., (2012), to appear.
  • Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. Skorohod representation theorem via disintegrations. Sankhya A 72 (2010), no. 1, 208--220. MR2658171
  • Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. A Skorohod representation theorem for uniform distance. Probab. Theory Related Fields 150 (2011), no. 1-2, 321--335. MR2800912
  • Blackwell, David. On a class of probability spaces. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, pp. 1--6. University of California Press, Berkeley and Los Angeles, 1956. MR0084882
  • Dudley, R. M. Distances of probability measures and random variables. Ann. Math. Statist 39 1968 1563--1572. MR0230338
  • Dudley, R. M. Uniform central limit theorems. Cambridge Studies in Advanced Mathematics, 63. Cambridge University Press, Cambridge, 1999. xiv+436 pp. ISBN: 0-521-46102-2 MR1720712
  • Jain, Naresh C.; Monrad, Ditlev. Gaussian measures in $B_{p}$. Ann. Probab. 11 (1983), no. 1, 46--57. MR0682800
  • Jakubowski, A. The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42 (1997), no. 1, 209--216; translation in Theory Probab. Appl. 42 (1997), no. 1, 167--174 (1998) MR1453342
  • Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169
  • Ramachandran, D.; Rüschendorf, L. A general duality theorem for marginal problems. Probab. Theory Related Fields 101 (1995), no. 3, 311--319. MR1324088
  • Sethuraman, Jayaram. Some extensions of the Skorohod representation theorem. Special issue in memory of D. Basu. Sankhyā Ser. A 64 (2002), no. 3, part 2, 884--893. MR1981517
  • Skorohod, A. V. Limit theorems for stochastic processes. (Russian) Teor. Veroyatnost. i Primenen. 1 (1956), 289--319. MR0084897
  • van der Vaart, Aad W.; Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996. xvi+508 pp. ISBN: 0-387-94640-3 MR1385671
  • Wichura, Michael J. On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 1970 284--291. MR0266275


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.