The gaps between the sizes of large clusters in 2D critical percolation

Jacob van den Berg (Centrum Wiskunde & Informatica)
Rene Conijn (VU University Amsterdam)

Abstract


Consider critical bond percolation on a large $2 n \times 2 n$ box on the square lattice. It is well-known that the size (i.e. number of vertices) of the largest open cluster is, with high probability, of order $n^2 \pi(n)$, where $\pi(n)$ denotes the probability that there is an open path from the center to the boundary of the box. The same result holds for the second-largest cluster, the third largest cluster etcetera.

Jàrai showed that the differences between the sizes of these clusters is, with high probability, at least of order $\sqrt{n^2 \pi(n)}$. Although this bound was enough for his applications (to incipient infinite clusters), he believed, but had no proof, that the differences are in fact of the same order as the cluster sizes themselves, i.e. $n^2 \pi(n)$. Our main result is a proof that this is indeed the case.


Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-9

Publication Date: December 10, 2013

DOI: 10.1214/ECP.v18-3065

References

  • van den Berg, J.; Conijn, R. On the size of the largest cluster in $2D$ critical percolation. Electron. Commun. Probab. 17 (2012), no. 58, 13 pp. MR3005731
  • van den Berg, J.; Kesten, H. Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (1985), no. 3, 556--569. MR0799280
  • Bollobás, Béla; Riordan, Oliver. Percolation. Cambridge University Press, New York, 2006. x+323 pp. ISBN: 978-0-521-87232-4; 0-521-87232-4 MR2283880
  • Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. Uniform boundedness of critical crossing probabilities implies hyperscaling. Statistical physics methods in discrete probability, combinatorics, and theoretical computer science (Princeton, NJ, 1997). Random Structures Algorithms 15 (1999), no. 3-4, 368--413. MR1716769
  • Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. The birth of the infinite cluster: finite-size scaling in percolation. Dedicated to Joel L. Lebowitz. Comm. Math. Phys. 224 (2001), no. 1, 153--204. MR1868996
  • Le Cam, Lucien. On the distribution of sums of independent random variables. 1965 Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif. pp. 179--202 Springer-Verlag, New York MR0199871
  • Esseen, C. G. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 1968 290--308. MR0231419
  • Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 (2013), no. 4, 939--1024. MR3073882
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
  • Járai, Antal A. Incipient infinite percolation clusters in 2D. Ann. Probab. 31 (2003), no. 1, 444--485. MR1959799
  • Kesten, Harry. The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73 (1986), no. 3, 369--394. MR0859839


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.