Disjoint crossings, positive speed and deviation estimates for first passage percolation

Ghurumuruhan Ganesan (École Polytechnique Fédérale de Lausanne)

Abstract


Consider bond percolation on the square lattice \(\mathbb{Z}^2\) where each edge is independently open with probability \(p.\) For some positive constants \(p_0 \in (0,1), \epsilon_1\) and \(\epsilon_2,\) the following holds: if \(p > p_0,\) then with probability at least \(1-\frac{\epsilon_1}{n^{4}}\) there are at least \(\frac{\epsilon_2 n}{\log{n}}\) disjoint open left-right crossings in \(B_n := [0,n]^2\) each having length at most \(2n,\) for all \(n \geq 2.\) Using the proof of the above, we obtain positive speed for first passage percolation with independent and identically distributed edge passage times \(\{t(e_i)\}_i\) satisfying \(\mathbb{E}\left(\log{t(e_1)}\right)^+<\infty;\) namely, \(\limsup_n \frac{T_{pl}(0,n)}{n} \leq Q\) a.s. for some  constant \(Q < \infty,\) where \(T_{pl}(0,n)\) denotes the minimum passage time from the point \((0,0)\) to the line \(x=n\) taken over all paths contained in \(B_n.\) Finally, we also obtain deviation corresponding estimates for nonidentical passage times satisfying \(\inf_i\mathbb{P}(t(e_i) = 0) > \frac{1}{2}.\)

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-8

Publication Date: August 11, 2014

DOI: 10.1214/ECP.v19-3490

References

  • Bollobas, Bela; Riordan, Oliver. Percolation. Cambridge University Press, New York, 2006. x+323 pp. ISBN: 978-0-521-87232-4; 0-521-87232-4 MR2283880
  • Durrett, Richard. Oriented percolation in two dimensions. Ann. Probab. 12 (1984), no. 4, 999--1040. MR0757768
  • Durrett, Richard. Probability: theory and examples. Second edition. Duxbury Press, Belmont, CA, 1996. xiii+503 pp. ISBN: 0-534-24318-5 MR1609153
  • Kesten, Harry. On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993), no. 2, 296--338. MR1221154
  • Smythe, R. T.; Wierman, John C. First-passage percolation on the square lattice. Lecture Notes in Mathematics, 671. Springer, Berlin, 1978. viii+196 pp. ISBN: 3-540-08928-4 MR0513421


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.