Percolation Dimension of Brownian Motion in $R^3$

Chad Fargason (Duke University)

Abstract


Let $B(t)$ be a Brownian motion in $R^3$. A subpath of the Brownian path $B[0,1]$ is a continuous curve $\gamma(t)$, where $\gamma[0,1] \subseteq B[0,1]$ , $\gamma(0) = B(0)$, and $\gamma(1) = B(1)$. It is well-known that any subset $S$ of a Brownian path must have Hausdorff dimension $\text{dim} (S) \leq 2.$ This paper proves that with probability one there exist subpaths of $B[0,1]$ with Hausdorff dimension strictly less than 2. Thus the percolation dimension of Brownian motion in $R^3$ is strictly less than 2.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 51-63

Publication Date: February 27, 1998

DOI: 10.1214/ECP.v3-993

References

  1. Bass, R. (1995), Probabilistic Techniques in Analysis, Springer-Verlag. Math Review link
  2. Bishop, C., Jones, P., Pemantle, R. an Peres, Y. (1997), the dimension of the Brownian frontier is greater than 1, J. Funct. Anal. 143, 309-336. Math Review link
  3. Burdzy, K. (1990), Percolation dimension of fractals, J. Math. Anal. Appl. 145, 282-288. Math Review link
  4. Burdzy, K. and Lawler, G. (1990), Non-intersection exponents for random walks and Brownian motion, Part II: Estimates and applications to a random fractal, Ann. Probab. 18, 981-1009. Math Review link
  5. Burdzy, K.; (1995), Labyrinth dimension of Brownian trace, Dedicated to the memory of Jerzy Neyman, Probab. Math. Statist. 15, 165-193. Math Review link
  6. Durrett, R. (1984), Brownian Motion and Martingales in Analysis, Wadsworth. Math Review link
  7. Dvoretsky, A., Erdos, P. and Kakutani, S. (1950), Double points of paths of Brownian motions in n-space, Acta. Sci. Math. Szeged 12, 75-81. Math Review article not available.
  8. Dvoretsky, A., Erdos, P., Kakutani, S. and Taylor, S. J. (1957), Triple points of Brownian paths in 3-space, Proc. Cambridge Philos. Soc. 53, 856-862. Math Review article not available.
  9. Falconer, K. (1990), Fractal Geometry, John Wiley & Sons. Math Review link
  10. Kaufman, R. (1969), Une propriete metrique du movement brownien, C. R. Acad. Sci., Paris 268, 727-728. Math Review article not available.
  11. Lawler, G. (1991), Intersections of Random Walks, Brikhauser-Boston. Math Review link
  12. Lawler, G. (1996), Hausdorff dimension of cut points for Brownian motion, Electronic J. Probab. 1, paper no. 2. Math Review link
  13. Lawler, G. (1996), The dimension of the frontier of planar Brownian motion, Electronic Comm. Probab. 1, 29-47. Math Review link
  14. Pemaltle, R. (1997), The probability that Brownian motion almost contains a line, Ann. Inst. H. Poncare Probab. Statist. 33, 147-165. Math Review link
  15. Perkins, E. and Taylor, S. J. (1987), Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Relat. Fields 76, 257-289. Math Review link
  16. Revuz, D. and Yor, M. (1991), Continuous Martingales and Brownian Motion, Springer-Verlag. Math Review link
  17. Werner, W. (1995), An upper bound to the disconnection exponent for two-dimensional Brownian motion, Bernoulli 1, 371-380. Math Review link not available.
  18. Werner, W. (1996), Bounds for disconnection exponents, Electronic Comm. Prob. 1, 19-28. Math Review link


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.