Fractional Brownian Motion and the Markov Property

Philippe Carmona (Université Paul Sabatier)
Laure Coutin (Université Paul Sabatier)

Abstract


Fractional Brownian motion belongs to a class of long memory Gaussian processes that can be represented as linear functionals of an infinite dimensional Markov process. This leads naturally to:
  1. An efficient algorithm to approximate the process.
  2. An ergodic theorem which applies to functionals of the type
    $$\int_0^t \phi(V_h(s)),ds \quad\text{where}\quad V_h(s)=\int_0^s h(s-u), dB_u,.$$
where $B$ is a real Brownian motion.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 95-107

Publication Date: October 27, 1998

DOI: 10.1214/ECP.v3-998

References

  1. J. Audounet and G. Montseny, Mod`eles non h'er'editaires pour l'analyse et le contr^ole de syst`emes `a m'emoire longue, April 1995, JournÈes d'etude: les systemes non entiers en automatique, Bordeaux, France.
  2. J. Audounet, G. Montseny, and B.Mbodje, Optimal models of fractional integrators and application to systems with fading memory, 1993, IEEE SMC's conference, Le Touquet (France).
  3. J. Beran and N. Terrin, Testing for a change of the long-memory parameter, Biometrika 83 (1996), no. 3, 627--638. Math Review link
  4. V.S. Borkar, Probability Theory: an advanced course, Universitext, Springer, 1995. Math Review link
  5. N. Bouleau and D. L'epingle, Numerical methods for stochastic processes, Wiley series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., 1994, ISBN 0-471-54641-0. Math Review link
  6. Ph. Carmona and L. Coutin, Simultaneous approximation of a family of (stochastic) differential equations, Unpublished, June 1998.
  7. Ph. Carmona, L. Coutin, and G. Montseny, Applications of a representation of long memory Gaussian processes, Submitted to Stochastic Processes and their Applications, June 1997.
  8. Ph. Carmona, L. Coutin, and G. Montseny, A diffusive Markovian representation of fractional Brownian motion with Hurst parameter less than $1/2$, Submitted to Statistic and Probability Letters, November 1998.
  9. N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Wiley Classics Library Edition Published 1988, John Wiley and Sons, New York, 1988. Math Review link
  10. H. Graf, Long range correlations and estimation of the self-similarity parameter, Ph.D. thesis, ETH Z"urich, 1983.
  11. W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, On the self-similar nature of Ethernet traffic, IEEE/ACM Trans. Networking 2 (1994), no.~1, 1--15.
  12. B. Mandelbrot, Self-similar error clusters in communication and the concept of conditional stationarity, IEEE Trans. Commun. Technol. COM--13 (1965), 71--90.
  13. B.B. Mandelbrot and Van Ness, Fractional brownian motions, fractional noises and applications, SIAM Review 10 (1968), no.~4, 422--437.
  14. Yu.A. Rozanov, Stationary random processes, Holden--Day, San Francisco, 1966.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.