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Abstract. This paper is concerned with a class of age-structured cholera model with
general infection rates. We first explore the existence and uniqueness, dissipativeness
and persistence of the solutions, and the existence of the global attractor by verifying
the asymptotical smoothness of the orbits. We then give mathematical analysis on the
existence and local stability of the positive equilibrium. Based on the preparation, we
further investigate the global behavior of the cholera infection model. Corresponding
numerical simulations have been presented. Our results improve and generalize some
known results on cholera models.
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1 Introduction

Cholera is an acute water-borne infectious disease caused by Vibrio cholerae, with an estimated
disease burden of 1.3 to 4.0 million cases and 21 000 to 143 000 deaths every year world-
wide, which still affects at least 47 countries around the globe [2]. At present, there are 139
serogroups of Vibrio cholerae, of which O1 and O139 can cause cholera outbreaks. The disease
peaks in the summer and it can be transmitted to humans by pathogen in the contaminated
water and by person-to-person contact [20,37]. Clinically, cholera can cause severe diarrhea,
and the infected person will die of dehydration within a few days without prompt treatment
[12]. In 1855, the British scholar John Snow found that the sewage in the city was the source of
the spread of cholera epidemic [36], which was a major historical event in public hygiene. In
the history of human epidemiology, cholera broke out many times in different countries and
regions. In recent years, cholera outbreaks are mainly concentrated in developing countries
with low medical and health level and lack of safe and hygienic drinking water sources. For
example, cholera broke out in Haiti in 2010, leading to more than 665000 confirmed cases and
8183 deaths [10], and one of the causal factors for this outbreak is the transmission of local
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water source Artibonite river. The incidence rate of cholera will decrease in the future due
to the global economic development and the reduction in global poverty [44], however, may
increase in the next few decades due to the climate change and ocean changes caused by the
extreme weather [1]. Therefore, it is of great theoretical and practical significance to study the
transmission mechanism and development trend of cholera.

Recently, the mathematical model of cholera transmission has attracted widespread atten-
tion since the earlier study [9] on cholera modeling for the outbreak in the European Mediter-
ranean region. In the aspect of mathematical modeling, Tien and Earn [37] introduced a water
compartment into classical SIR model and established a water-borne infectious disease model
with multiple transmission routes described by ordinary differential equations. In [37], the
susceptible individual can not only be infected by the infected individual, but also be in-
fected by indirect intake of contaminated water from the environment, which could be used
to describe the transmission dynamics of cholera. By constructing an appropriate Lyapunov
function, the global asymptotical stability of the equilibria of the system was obtained. Con-
sidering the hyperinfectious state of vibrio cholerae, Hartley et al. [20] extended the model
proposed in [37] and studied the impact of hyperinfectious state on limiting the spread of
cholera. Eisenberg et al. [15] aimed to evaluate the effects of patch structure on cholera spread
and the type/target reproduction numbers were derived to quantify the strategies of cholera
prevention. Some models involving different factors of cholera can be found in [3,33,38,40,41]
and the references therein.

In modeling of epidemics, the age structure of individuals and pathogen is a significant
characteristic [4,8,13,27,42]. In [7], Brauer et al. proposed an age-structured cholera model
with multiple transmission pathways, which is

B = a— ()~ Bis(0) [ a®)p(e s — () [ k@itt,a)da,

8i(t,a) ai(t,ﬂ) _ . 1.1
o + PR o(a)i(t,a), (L1)
op(t,b)  ap(tb) _
with initial condition
$(0) = So, i(0,-) =io(-) € LL(0,400), p(0,-) = po(-) € LL(0,+00), (1.2)

and boundary condition
i(£,0) = BiS(t) /O a(b)p(t,b)db + BaS(F) /O " k(a)i(t,a)da,
p(t,0) = /0°° &(a)i(t, a)da.

where S(t) is the density of the susceptible population at time ¢, i(t,a) and p(t,b) are the densi-
ties of the infectious population and the pathogen at time t with age a and b, respectively. The
parameters of model (1.1) are explained in Table 1.1. Brauer et al. successfully obtained the
global dynamics of model (1.1) by using the method of Lyapunov functional. Moreover, some
other results for model (1.1) can be found in the studies [7,42], such as relative compactness
of orbits and uniform persistence.

More and more studies showed that immigration of populations has a significant impact
on the spread of cholera. Due to the drought, refugees from Mozambique poured into Zim-
babwe at the end of 1992, making Zimbabwe face the first cholera epidemic since 1985, which
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(1.3)
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Parameter Interpretation
Ag Constant recruitment of susceptible individuals
U Natural death rate of susceptible individuals
Ba Direct transmission coefficient of cholera
Bi Indirect transmission coefficient of cholera

Age specific removal rate of the infected individuals
Age specific removal rate of the pathogen

Age specific shedding rate of an infected individual
Measure the Infectivity of infected individuals
Measure the Infectivity of pathogen
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Table 1.1: Parameters and their biological meaning in model (1.1).

spread to 7 provinces (Zimbabwe has 8 provinces in total) within five months [5]. Research
shows that cholera has a history of outbreak through the immigration caused by interna-
tional flights [14] and international conferences [32]. By analyzing 26 strains isolated from
the cholera outbreak in Haiti in 2010, Frerichs et al. [17] believes that this wave of cholera
outbreak was caused by the spread of Vibrio cholerae to the local drinking water source by
the UN peacekeeping force dispatched by Nepal to Haiti. In fact, for developed countries with
safe and hygienic water resources, cholera can also enter through immigration. According to
the Centers for Disease Control and Prevention of USA, there was an increase in cholera cases
reported in the United States during cholera outbreaks in Latin America in the 1990s and
countries close to the United States such as Haiti in 2010 [11]. Five European Union countries
reported 26 confirmed cholera cases in 2018, of which 22 were immigrated from India, Pak-
istan, Thailand, Bangladesh, Myanmar and Tunisia [16]. Therefore, it is urgent to explore the
impact of immigration on the development and evolution of cholera infectious disease, which
is also one of the important topics in the study of infectious disease dynamics.

From the view of mathematical modeling of infectious disease, immigration of population
was always supposed to be of constant recruitment rate in each compartment. Brauer and
van den Driessche [6] studied the threshold-like results for disease transmission model with
immigration of the infective. By using Lyapunov function, Sigdel and McCluskey [34] inves-
tigated the global stability for an SEI model with immigration. More specifically, the endemic
equilibrium for the model proposed in [34] is globally asymptotically stable. Considering the
vaccination effect in the modeling of infectious diseases, Henshaw and McCluskey [21] pre-
sented the results on the global stability of a vaccination model with immigration, by virtue of
the key method of constructing appropriate Lyapunov function. Meanwhile, age-dependent
immigration rate seems more realistic in the real world and it is meaningful to investigate the
age-structured models with immigration. In [30], McCluskey introduced an age-structured
epidemic model with immigration. With an ingenious Lyapunov functional, the stability of
endemic equilibrium for the SEI model with immigration was proved successfully. Zhang and
Liu [46] further extended the study in [30] by introducing general nonlinear incidence. More
recently, McCluskey [31] proved a general result for a Lyapunov calculation for the model
with immigration and applied the results to a multi-group SIR model.

In (1.1), the incidence rates are assumed to be bilinear. Actually, nonlinear incidence rates
are critical for accounting for a variety of nonlinear features of the corresponding biological
phenomena. For example, Beddington-DeAngelis [23], Holling type II [24], Crowley-Martin
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[45] and general incidence [18,26]. Motivated by the above studies, in this paper, we shall con-
sider a generalization of model (1.1) by taking general incidence rates into account. However,
to our best knowledge, there is no study on the age-structured cholera model with immigra-
tion. Based on model (1.1), we further introduce the immigration of infectious individuals
and pathogen into the cholera model. Let A;(a) and A, (b) represent the recruitment through
immigration into the infectious group and the pathogen group. Let

Q(t):/oooq(b)p(t,b)db and ](t):/oook(a)i(t,a)da

represent the infectivity of infected individuals with infection age 2 and the total infectivity of
pathogen with pathogen age b. In the current paper, we focus on the following age-structured
cholera model with immigration

dio’i(tt) = Ay — uS(t) = S(OF(J(H)) — S()g(Q(1)),

di(t,a) di(t,a) _
5 T = Aila) = d(a)i(t,a), (1.4)

apgt’b) * apét,;b) = Ap(b) — v (b)p(t,b),

with boundary condition

i(t,0) = S(t)f(J(t)) + S(t)g(Q(t)), t>0,
o ) (1.5)
p(t,0) = P(t) := /0 &(a)i(t,a)da, t>0,
and initial condition
Xo := (5(0),i(0,-), p(0,-)) = (So,i0(-), po(-)) € v+, (1.6)

where 1 := R x £! (0,00) x L! (0, 0) with norm

(@0 9)ly =191+ [ Ip@lda+ [Clp®)ide, ¢ R,y e L1(00)

and y; = Ry x L1 (0,00) x £1 (0,00) is the positive cone of 1. Here £L! (0,00) denotes the
space of Ll-integrable functions from the interval (0,00) to itself. All the other coefficients
in system (1.4)—(1.6) and the corresponding biological interpretation are the same as those in
(1.1)—(1.3).

In the current paper, we study the global asymptotical stability of the unique positive
equilibrium, which need to construct suitable Lyapunov functional. Mathematically, the age-
based immigration rate and the indirect/direct transmission route of cholera generate a huge
difficulty in constructing the proper Lyapunov functional. Moreover, the general incidence
will bring great trouble to the calculation of the derivative of Lyapunov functional. For the
well-posedness of the Lyapunov functional, we also need verify the uniform persistence of
the system. The theoretical analysis shows that there exists a unique globally asymptotically
stable endemic equilibrium, and the disease persists at the endemic level. The results in
present paper not only serve as a supplement and generalization of the works in F. Brauer et
al. [7], but also deal with some other new epidemic models with multiple transmission routes
and immigration.
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The plan of this article is as follows. In Section 2, we make some preliminaries for the
system. In Section 3, we explore the asymptotical smoothness and global attractor. In Sec-
tion 4, we explore the existence and local stability of the positive equilibrium. In Section 5, we
construct a Lyapunov functional to discuss the global stability of the equilibrium. Numerical
simulation and a brief conclusion will be given in section 6.

2 Preliminaries

Firstly, for system (1.4)—(1.6), we give the following assumptions.

Assumption 1. Constants As, y € R. For functions (), k(-), q(-), 6(-), () € LF(0,4+0),
Ai(+), Ap(+) € L1 (0, +00), we make the following assumptions.

(I) For é(-), denote § := fo 7)dt, and denote é and ¢ as the essential supremum and
essential infimum of 4(-), so do G(-), k(+), q(-), v(+), Ai(+) and Ap(+);

(I) ¢(-), k(+), q(-), 6(-) and 7(+) are Lipschitz continuous.
Assumption 2. For functions f(-), g(-) : R+ — R4, we introduce the following assumptions.
1)) f() and g(-) are Lipschitz continuous on R4 with f(0) = ¢(0) = 0;

(IM) >f’( z) >0, g >¢'(z) >0and f"(z) <0,¢"(z) <0, forz € Ry.

2.1 Existence of unique solution
Denote the following spaces
X=RxRxL'(R{,R) xR x L' (R}, R),
Xp =R x {0} x £ (R,,R) x {0} x £} (R, R),
X, =R, xRy x L} (R, R) x R x £ (R, R),
Xoy = X NAX =R, x {0} x £ (Ry,R) x {0} x £! (R4, R),

One defines a linear operator A : Dom(A) C X — X as follows,

# —udr

JE |-G
(qoz) <—7Z§042)§ 2 fp&)

with Dom(A) = R x {0} x W'1(0,00) x {0} x W1(0,c0), where W'1(0,c0) denotes the
Sobolev space of locally summable functions y : R™ — R such that for every multi-index
a with |laf < 1, the weak derivative D*y € L£!(0,00) exists. Moreover, define a nonlinear
operator F: Dom(A) C X — X as

$1 A—¢if (f k 1(a)da) — ¢1g gofoooQ(b)(Pz(b)db)
< 0 > <‘P1f (fo a)da) + ¢18 ([, q<b)(P2(b)db)>
LT (A (0

i (riis
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Let u(t) = (S(t), (0,i(t,*)T, (0, p(t,-))")T € Ay, then we can write system (1.4) as the follow-
ing abstract Cauchy problem

dt
Ll(O) =ug € Ay N Aps.

{mﬁ)_AMQ+FW®% vt >0, (2.1)

To show the existence of unique solutions for system (1.4), we need to prove the operator A
as a Hille-Yosida operator.

Theorem 2.1. The operator A is a Hille-Yosida operator.

Proof. In order to apply Hille-Yosida theorem [29], we need find { = (1, P10, $1, P20, $2) € X,
such that for (¢1,0, 91,0, ¢2) € Dom(A), there holds

$1 1

(AL—-A)"! (%11()) = (91(’)1>

5
)
From above equation, we then yield
$1 = (ML= A)p1 = Agr — Adr = (A + ).

Thus, ¢; = Besides, we obtain

- /H-y
P1=(M—=A)p1 = A1 —Apr = Ap1 + (- )1 + @) = (A +0(-)) 1 + ¢7.

Thus, there holds

P1=¢1— (A+6())e1,

and we have

Further, there holds
loalle, = [ lor(@lda
= [ [proe B0y [* gy () SOy
0 0
(o] a o0 a a
< |0l / o= JoA+o(s)ds g 1 / / 161(T) e~ JF O+ ds qrdq
0 0 0

. 1 0 oo . —(a—1
<‘¢10|m+/ / |§1(T) e DM dadr

+/ A T(A+5) /oo —a(A+9) qadT
= |P10l 7/ Py P1(7)e" e a
[P1(

7)|
|(’)1°|/\+5+/ Ao OF

_ 1wl | NI9alle,
Ad+ds A+67

da
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Similarly, we can obtain that

|¢20! n 1§21l .,

Let 7 = min{4,y, u}. For any { = (¢1, P10, P1, P20, $2) € X, we have

1AL = A)TIZ] = |¢a] + 10 + @1l e, + 10+ llg2ll 2,

< 1] 419wl l9rlle | 192l | [I92lle,
A+y A+é A+6 Aty Aty
el
A+17
Thus, the linear operator A is a Hille-Yosida operator due to [29]. O

Let Xo = (S(),(0,i(t,-))%, (0, p(t,-)))T € Xy, thanks to [29, Theorem 5.2.7], we have the
following theorem.

Theorem 2.2. There exists a unique determined semiflow {4(t)}i=0 on Xoy such that for any Xo,
a unique continuous map 4 € C([0, 00|, Xo4) exists as an integrated solution of the Cauchy problem
(2.1), that is,

/Otil(s)XOds € Dom(A),

U(H)Xo = X0+A/ Xods+/ (5)Xo)ds,
forallt >0

2.2 Dissipativeness and persistence

Combining equations (1.5) and (1.6), integrating the last two equations of (1.4) along the
characteristic lines yields

i(t—a,0)01(a +/ 1EZ;de, 0<a<t,

i(t,a) = (a) (2.2)
] <t <K
i(0,a — —t —1—/ e) © de, 0<t<a,

)

p(t —b,0)02(b) +/ Ap(e)g Egde, 0<b<t,

p(t,b) = os(b) o7 (t) 2.3)

_ A <t <
p(0,b—t) oa(b— 1) + Ap(e) UZ(G)de, 0<t<y,
where ; .
oi(a) = e 0T and oy (b) = e~ o 7(MdT, (2.4)
Now, we are concerned with the boundedness of solutions. Let Y; := AS;A’ Y> &]11;/\”

and

7= {(S(t),i(t,a),p(t,b)) € X |5+ [~ ithaydat [ pitbab < v, +yz}.

We arrive at the following theorem.
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Theorem 2.3. For (1.4), il is point dissipative, which means there is a bounded set 11 that attracts all
points in X.

Proof. Note that

/Oooi(t,a)da = /Oti(t,a)da + /tooi(t,a)da
= [ i(t—a,0)01(a)da + Ai(e) Y deda
b bl Mg
)deda.

o€
+/tooi(0,a—t)m(&(i)t)daJr/tm/aa_tAl( o)

Interchanging the order of integration for the double integrals and making change of integra-
tion variable for the two single integrals gives

00 t )
/ i(t,a)da:/ i(T,O)al(t—T)dT+/ i(0,7T) Ul t+T d +/ / Z dade.
0 0 0
Thus, there holds
d [, . t, d
f/ i(t,a)da :(71(0)1(1‘,0)—1—/ i(7,0) S0y (t— T)dr
dt Jo dt
+/ dtUl t+T d +/ (71 e+t)d€
— i(t,0) —/ i(T,O)cS(t—T)Ul(t—T)dT
0
_/ooi(O’T)(S<t—|—T 01 t+T d +/ 0'1 €+t>d€
0
t
—i(t,0) — / i(t — a,O)&(a)al(a)da
0
[ (@) 01 e+t)
/t i(0,a t)al(a—t da —|—/ —————de.
Note that

(a) deda—i— { a deda = a) dade
J [ e gaeans [ [ atag // 0

_/ Ul e+t)de—/ Ai(e)de,
0

we thus have

dt/ i(t,a)da = i(t, 0) — /t(t—a0)5() ()da—/ooz(Oa—t)

#/
—i(t,0) — /05()( a)da + A;.

Together with the first equation of (1.4), one has

i<5(t)+/0°°i(t,a)da> (As+A) ( )+ [ itta) da>

S(a)cn(a)

op(a— t) da
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Hence,

£+ /Oooz'(t,a)da <Y, e {Y1 —(5(0) + /Oooz'(O,a)da)}, 2.5)

for any Xy € Il. Similarly, we can derive that

/Ooo p(t,b)db < Y, — e {Yz - /0°° p(o,b)db}, 26)

for any Xy € Il. Hence, combining (2.5) and (2.6) yields
144(E, Xo) | < Y1+ Yo — et {Y1 +Ys — (5(0) +/0 i(0,a)da +/0 p(O,b)db)} .

This implies that ||£(t, Xo)||x < Y1 + Y2 for Xp € I, and the proof is complete. O

From Theorem 2.3, we obtain the following result.

Corollary 2.4. If Xy € X and || Xo||x < B with some constant B > Y1 + Y, then for t € R4, we
have the following statements

S(t), fy7i(t,a)da < Band [y p(t,b)db < B;

(ii) i(t,0) < (kf'(0) +q8'(0))B* and p(t,0) < ZB.

The following corollary generates a positive asymptotical lower bound of S(¢).

Corollary 2.5. If Xo € X4, then

o Ag
1 t5(t) > kB + .
it () p+ f'(0)kB +g'(0)9B

Proof. For any € > 0, there exists a ty) € R such that

/i(t,a)da<B+s and /p(t,b)db<B+s
0 0

for t > ty. Then, for t > t,

O — A= s+ 00 +s(Q)

)
> As = S(t)(u+ f'(0)k(B +¢) + g'(0)7(B +¢)).

This implies that

. 7AW
liminf S(t .
RS > ORB o) 1 (03B + o)
Letting € tend to 0 gives the required result. O

Then by similar verification in [30], we obtain the following proposition.

Theorem 2.6. There exist f > 0 and € > 0 such that i(t,0) > € and p(t,0) > € forall t > L.
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3 Asymptotical smoothness and global attractor

For the existence of an attractor, the asymptotical smoothness of the semiflow {l is necessary.
For this, by the similar argument in [30, Proposition 6], we claim that J(¢), Q(¢t) and P(t)
are Lipschitz continuous with Lipschitz coefficients L;j, Lo and Lp. Then we introduce the

following lemma for the asymptotical smoothness of the semiflow.

Lemma 3.1 ([35]). The semiflow $ : Ry x Xy — X is asymptotically smooth if there exist maps
Uy, th : Ry x Xy — Xy satisfying $U(t,x) = Ly (t,x) + U (t,x), and for any bounded closed set

B C X, which is forward invariant under Y, there holds:
(i) lim; e diam $hy(t,B) = 0;
(ii) There exists tg > 0 such that Ll (t,B) has compact closure for t > tp.

For Lemma 3.1 (ii), we utilize the following lemma.

Lemma 3.2 ([35]). A set B € L% (0, 00) has compact closure iff the following conditions hold:

() supfep Jo f(z)dz < oo
(i) imy—eo [ f(z)dz — O uniformly in f € B;
(iii) limy_o+ [y |f(z+h) — f(z)|dz — O uniformly in f € B;
(iv) limy_,o+ fohf(z)dz — 0 uniformly in f € B.
Based on above lemmas, we can obtain the following result.
Theorem 3.3. The semiflow A generated by (1.4) is asymptotically smooth.
Proof. Define maps il; and &, such that 4l = Ll; + &0y, satisfying

{ill(f,xo) = (S(t),i(t,-), p(t,-)),
i/[2<tz xO) = (O, gbi(t/ ')1 qbp(tf ))1

where
B i(t—a,0)oq(a), 0<a<t,
Hie) = {o, 0<t<a,
R _ p(t—0,0)02(b), 0<b<t,
p(t’b)_{o, 0<t<b,
a . oi(a)
gilt,a) = {/0 RTO 0
A I o1 (a) a o1 (a)
i(0,a—1t) 1(11—1?) +/a_tAl(€)c71(e)d€' 0
and
b Uz(b)
op(1,) = Jo A |
' o2(b) b o2(b)
p(O,b—t)Uz(z_t) /bitAp(e Ui(e)ds, 0
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Firstly, we show that I, satisfies Lemma 3.1(i). For X}, X2 € II, letting ¢; = a — t, we
obtain

194) — 26, = /”\ 00— 1) - #0,a—H-2@_g,

o1(a—t)
o1 (t+€1)
= Og 2(0,e1) | ———2de
g/ ~0111(0,1) — 2(0, 1) |dex
0
< 2Be %,

Similarly, we have ||(p117(t, )= (i)f,(t, Iz, <2Be™2'. And thus, we have

Huz(t, Xb) — (8, X3)]|

< 2B(e7% e ).
1

Hence, as t — oo, we have that diam||$l,(¢, Xo)||x — 0. This accomplishes the verification of
Lemma 3.1(i). Subsequently, we focus on the proof of Lemma 3.1(ii) by virtue of Lemma 3.2.
By Proposition 2.4, we claim that conditions (i), (ii) and (iv) of Lemma 3.2 are satisfied since
0 < i(t,a) = i(t —a,0)o1(a) < [f(0)k + g'(0)7]B%e~. Tt suffices to verify the condition of
Lemma 3.2 (iii). Choosing h € (0, t) small enough, one has

/O°°|Z(a,t)—i‘(a+h,t)\da
< [ 8= a = WU a1+ g(QU —a =) (er(a+ )~ or(a))

[ S a1 - £ - o)
+18(Q(t —a—h)) —g(Q(t —a))|)oi(a)da
t—h
+/O |S(t—a—h)—=S(t—a)|(f(J(t—a))+g(Q(t —a)))oi(a)da
+£(0) /tth]S(t—a)](t—a o (a)|da

N (3.1)
+8(0) [ 18(t=a)Q(t ~a)or(a)]da

<P Ok+LONB [ loa(a+h) —s(a)da
t—h

££10) [ S(t—a=n)J(t—a=h)= (= 0)|or(a)da
+4'(0) /Oth S(t—a—h)|Q(t—a—h) — Q(t —a)|oi(a)da

[ PO -a)+ OQU — ISt —a—1) — 5 - a) o (a)da
+(f'(0)k + ¢'(0)7)B?h.
From (2.4), we have

h

0< /Ot—h lov(a+h) —oi(a)|da = /0 o1(a)da — /tih o1(a)da < h. (3.2)
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Note that
’ ds(t)

| < Ak (R (0) + a9 OB

which means that S(t) is Lipschitz continuous. Then

/Oth S(t—a—h)|J(t—a—h) — J(t — a)|or(a)da < <BL;h, (3.3)

[ ] =

and
1

/Oth S(t—a—h)|Q(t—a—h)—Q(t —a)|oi(a)da < <BLgh. (34)

Moreover, one has that

[ 7)1~ a) + Q0 - )Is(t —a 1) - 5(t - a)er(a)da
1

<< (f'(0)k +¢'(0)7) BLsh, (3.5)

[

where Ls := Ag + uB + (kf'(0) + 4¢’(0)) B2. Substituting equations (3.2)—(3.5) into (3.1), one
has that

/ i(a,t) —i(a+ h,t)|da
0

<2(f'(0)k+&'(0)4)B*h + < (f'(0)L; + &'(0)Lg)Bh + = (f'(0)k + ¢'(0)q)BLsh. ~ (3.6)

[ =
[] =

Thus, Lemma 3.2 holds. Hence, i(t,a) remains in a pre-compact subset in £ (0,0). The same
arguments can be derived on p(t,b) and this completes the proof. O

According to [19], a global attractor exists since the semiflow il is asymptotically smooth.

Theorem 3.4. The semi-flow $\(t) has a global attractor in X,.

4 Local stability of the infection equilibrium
Because the model introduces immigration terms, there exists no infection-free equilibrium

for system (1.4). Assume E* = (5%,i*(a),p*(b)) be an equilibrium for system (1.4), then it
satisfies the following equations.

As = puS"+ S f(J7) + 57¢(Q7),

di;ia) = Ai(a) = 6(a)i*(a),
dpc;gb) = Ap(b) =7 (0)p"(b), o

i°(0) = §°£(") +5°5(Q),
prO) = [ e@)it(a)da,
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where Q* = [ 4(b)p*

—~

b)db and J* = [} k(a

[ee]

k(a By =

~—

i*(a)da. Denote

[

j&

[
I
\ 0\8 o\
Q
[x1
a1
I
S~ ﬁ S~
)
S
S
=
S— hc\
wilka

Owing to equations (4.1), we derive

and

Then substituting (4.3) into the first equation of (4.4) yields

a
i*(a) = (As — uS*")o1(a) + /O Ai(t
Combining (4.5) and the last equation of (4.1) yields
p*(0) = (As — uS*)E3 + Ee.
Further, substituting (4.6) into the second equation of (4.4), one has that

o (b)
02(7)

oy (a)
) 7 (0) dr.

p(6) = (A~ 18 )Z502(0) + Zg0n(0) + [ Ap(r) 2

13

(4.2)

(4.7)

Thus, in order to find E*, inspired from the first equation of (4.1), we need to search for the

zero of the following formula

h(S) = As — uS — SF((As — 1S)Z1 + E4) — Sg((As — 1S)EaE3 + EoEg + Es).

Since h(0) = As; > 0 and h(%) < 0, by the Intermediate Vale Theorem, h(S) has one zero in

(0, %) Thus, there exists at least one S* € (0, %) and thus at least one positive equilibrium

E* exists.
In the following, we first focus on the local stability.

Theorem 4.1. System (1.4) has one infection equilibrium E*, which is locally asymptotically stable.

Proof. The linearization of system (1.4)—(1.5) on (S*,i*(a), p*(b)) is
ds(t)

di(t,a)  0i(t,a)

5 + 5 = —6(a)i(t,a),
WD) O byt ),

i(t,0) = (f(J*) +8(Q")S+ S f(J)] +5"¢'(Q")Q,
p(t,0) = /0 &(a)i(t,a)da.

—q; = Cr=fU7) = g(QN))S(E) = ST ()] = ST (18" (Q)Q,
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obtain
(e o0

AS = =(n+ () +8(QNS=SFU") | Ka)ila)da—$'¢'(Q") [ ~av)p(e)a,
i(a) = i(0)e Moy (a),
p(b) = p(0)e *oa(b), (4.9)

[e]

i(0) = (FU7) +8(Q)5 +5°¢/(Q") [ a@p()db+ S [ Ka)i(a)da

T(A) = /O “k(@)e Mar(a)da,  Ta(M) = /0 " 4(b)e 0 (b)db,

and

It follows from (4.9) that

A+ p+fU7)+8(Q7))S+[S™F(J)T1(A)]i(0) + [$78"(Q)T2(M)]p(0) = 0,
(fJ7) +8(Q7))S = [1 =S f(J)I1(M)]i(0) + [S*8"(Q")T2(A)]p(0) = O,
I3(A)i(0) = p(0) = 0.
Thus, the corresponding characteristic equation of the linearization for system (1.4) at infection
equilibrium (S*,i*(a), p*(b)) is

AtptfU)+8Q7)  SFUINA) - 57 (Q)I2(A)
FU7) +8(Q7) STF(IT(A) =1 57¢'(Q7)2(A)| = 0.
0 I'3(A) -1
Clearly, A = —pu is not a root of the above equation, then
A+p+fU)+8Q)/(A+u) =S f(T)T1(A) + 578 (Q)T2(A)T3(A), (4.10)

Assume that equation (4.10) has one root with positive real part. The module of the left
side of the equation (4.10) is more than one. The module of the right side is

5 ()T () + 579/ (@) < |57 () + 5288, s )

J* Q*
Since
Q= /0°° q(b)p*(b)db = p*(0)Ez + Es, ' = /Ooo k(a)i*(a)da = i*(0)Z; + &y,
and o o
o — ~ ee i*(a _ p*
z = [ e@nleda < [ e g = g
we have

AU, S°8(Q)
RONNEO

This is a contradiction and we finish the proof. O

[S*F1T1(A) + 878" (Q)T2(M)T3(A)| <
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method. For this, we introduce a function

5 Global asymptotic stability of the positive equilibrium

In order to ensure (

i(t.a)
Section 2

h(z)=z—1—1Inz
) and 1 (55

b)

For the global asymptotic stability of the positive equilibrium, we apply Lyapunov functional

ZEIR+.

*(b)

(5.1)
) well-defined, we need to show that ll(t(g)) and PU:D)
are bounded by some positive constants through dissipativeness and persistence analysis in

i(ta
=Je

)p*(0)

For the verification of Lyapunov functional, we need the following lemmas
Lemma 5.1. 2 fo S*g(Q*)i*(a)d( )[1 —
Proof. Since p(t,0)

p(b)
P da =0
i(t,a)da and p*(0) = [;°¢ a)da, we have
1 /w * { i(t,a>p*<o>]
= S a) |1— - da
z5 o SO [ ,0)
s [ s 2) 2P (0)
/ S5°g da g, /0 S*¢(Q n(t,0) — 27 > “da
* ok * * 1 © .
— 2-5'8(Q) /0 (@)¢(a)da — -8"8(Q ) O) s [ G(@ilta)da
=0.
The proof is completed 0
Lemma 5.2. Define a function h not depending on a and b. Then we have
1 *© * *© * %
= | 58(@ ) ©n@aeinds = [ 57(Q")i @2 (a)hda
Proof. Since E, = [ q(b)oz(b)db and p*(0) = [, i*(a)¢(a)da, we have
This completes the proof

2(b)q(b)hdb = S*g(Q")p"(0)h

| s'8(Q)i (@) (a)hda
Proof. We define the Lyapunov function ¢(t)

Theorem 5.3. The infection equilibrium E* of system (1.4) is globally asymptotically stable

OJ
(1 (t) + Lo(t) + £3(t) with
ao =5 (52 )i, e = [Te@i@n () da
and 1 e N p
l3(t) = 33/0 ¥(b)p (b)h<
where
d(a) = Hi
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and

¥o) = o [ 5@ () i,

Then, calculating the derivative of /;(t) along (1.4) yields

dgi ) (1 B Ss> [A—uS—Sf(]) —Sg(Q)]i*(0).

B~

Using the fact that A = uS* + S*f(J*) + 5*g(Q*), one has that

Tl = (1 %) 1S S0 +59(@) - 15 - SF() - 5@ )
= [-E(s— 52 +5°0) +5°8(Q") — SF()) - $3(Q) 652
-GS S @) £ ) + s*g<Q>] i*(0).

Define H(a) = 0’1 {7\11((3 de and K(b) = Ob /;2”((5)) de. In what follows, calculating the derivative

of l5(t) along (1.4) and then letting T = t — a gives

Aoy (t a)
dt dt/ ( a))da
i(t,0)+ H(t— 1)
dt/ (t =i t_Th< i*(0) +Ht—r )dT

— ()i ( (?

Letting a = t — T, we have

d{if” — ©(0)i" (0)R (iiit('g))) + [0 < [@o(a)i* @) (f(’;))) da

o " i*(a) H'(a) _i(t,a) .
+ [ P(a)i*(a) (1—- — @ (1 . )d

0 i(t,a) ) i*(0)+ H z*(a).
=0 On (18 + [T1@@i @+ e@izn (1) an
0 #(a B i*(a) B i(t,a) Ai(a) .
#fTewr (- i%) (- 56 ) smro A
i(t,0) it

Since

P'(a) = 25" F(J)k(a) - ;T(O)C(ﬂ) +0(a)®(a) and iy(a) = —i*(a)é(a) + Ai(a),
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we further derive

déx(t) N i(t,0)
gt = ®(0)i (0)h< i ) -

Since

we subsequently obtain

a6 ;1 [ siroan »(For) - (7))
1 |

Similarly, we have

W0 < L [ ss@pr 0nwao [ (20) -1 (2] ay
o [Trma,mn ( P ) db (5:4)

From equations (5.2), (5.3) and (5.4), we yield

dﬁ(f) < [_g(s —§"2 £ S F(J) + 5*g(Q*) — Sf(J) — S¢(Q)
- 75 (T )—S—S*g(Q*)+5*f( J)+57¢(Q)| i
+;/Sﬂ)(>(H)V

) *0) i*(a
1 . L0) it
+a [ 58Q) On@e | i) -

) ln

) " F@ MO
Lo L) pltD) _
tam [ SEQW O | BES

p

p*(0 0
- ewnan (55 ) e g [ vomon (o )@
- [ H@e (ﬂ;)[ (7 )K(@) + 3.5°3(Q)6 )| do

J
1 S p(t >
— S*q( b)h
EpH3 /0 8(Q ( p*(

~— 1
/-\
\/

t,0) i(ta

Q\_/
~.
*
—
(=)
~—
—
—
—~
[

1
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Since /Oo k(a)oy(a)da = E1 and / o1(a)da = B3, we have
1 . (T *(0)Sf(J)
5 )y STk [ o i) &

: o (0)Sg(Q)
+53/o 5°8(Q")¢(a)i*(0)e (a) [1 - (tO)Sg(Q*)}

+S*g(Q*)313/0005(”)‘71(a) *(0)da [ l(to S*g% }
8

_ _ MOSAD) T gy [1- E©58(Q)
- (s -5 O)S*f(f*)] #5600 [1- g0 ) 7O
= (s - “E D s o )i
- <i (0) —i(t, 0)2%) *(0)
=0.
Then ¢ dt g 26 ©;, where
0= [~K(s =5 = 57 - 55(Q)] 10) + 5 [ 50 Oenlwk(a)
o M@ O >¢<a>i§tg§fda
i(t,a) 1 © . p(t,0)
0= — o [Ts5(0 @) 5 dat g )8 8(Qp O)b)g()
Q3 := [Sf( )—f ) +S U )]1 (0)
g [0 On@ke |- - e T
+ 23 [T srrrare [1- DD T
- o [ 59@p Oy K D,
@5 := S*g(Q)i*(0) — E/OOO 5°¢(Q")i*(0)1(a)¢(a) In iiit(’é’))da
© L p(t,b) . p(tb)
taa ) Ss@)p (b)) (o) Iyl
T [ _ _(0)58(Q) 14,
tg, ), 58 (9)01(61)6(6!) [ i(t,O)S*g(Q*)] a
O := — /(,wq’(ﬂ)/\z(a)h (il( : ) da - :2153 /0 5'8(Q7)a(b)e=(b)K ()M (r;&%:))) 4
(t

- [T H@an (T8 [ 2570k + 5 579(QEw | de
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Thanks to Sf(]) + Sg(Q) = i(t,0), one has

0, = — %(s — §%)%i*(0) —i(£,0)i*(0) + S* f(J")i(£,0) + S*g(Q*)i(t, 0)
(5.5)

By virtue of [~ &(a)i(t,a)da = p(t,0), [;” 02(b)q(b)db = E, and the first equation of (4.4), we
obtain that

0, = Lsg(Q") <3p<t,o> [ emamian- [ °°a<a>i<t,a>da>

=2

1 [ i(t,a)
+553(Q") [ d@H(@)on (@) 77 da (5.6)

It follows from &y = [;° k(a)oq(a)da that

+ o [T U@ )0 [1 - g))”f”] da 57)
0

Due to

L k)it (i.(t’”)> da > i*(0) /0 ~ka)ia), <i.(f’”)

=1 J0

(5.8)
1 [ J
— 5/() k(a)i* (0)or (a)n (]* da
Lo ()
> :71/0 k(a)i* (0)or (a)n <f(]*)> da
Then, combining (5.7) and (5.8), we have
| R S* *(0)S£(J)
o1 < 5[50 @i O [ (5 ) -1 (i) aa .
1 i(t,a) '

+ = /Ooo S*f(J*)k(a)H(a)o(a)h <z*(,a) ) da.

=1
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Recall that E, = [;° 02(b)gq(b)db, p*(0) = [, &(a)i*(a)da and Lemmas 5.1 and 5.2, we derive
that

o4 e - nor_ ).
L. i(t,a)p'(©) | p(t0)
+; ), Fs@HEa@e [1- G - Eig)
-5 oo [2(2) 1 (4a8) 2]
L. i(t,a)p'(©) | p(t,0)
5 [T ss@) @A @) 1 - HEEE - B

Thus, combining ®4 and ©s gives

or+0s < o [ 59(@)i O |- (TN ag

2 [Tss@ron@em [0 (5 ) - (RO |
/ 50, 501,

g(Q*) g(Q*)

% k(o p(t,b) _p(tb)
tEE /0 5*8(Q%)p*(0)a2(b)q(b) [ln b (D) } db

-5 [ ss@H@n e | £

Es g(Q) Q)
L o iy (), p(10)
5 [ ss@) @@ [1 - HEE - EEE .
Since . -
22" (0) = [ a)e2(0)p"(©)db < [ q(0)p* (v)db = Q°

and Jensen’s inequality, we have

LI )yt by (p(*t,b)> > () [~ 1P O, (p(t,b)>

o Jo
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Thus, we finally have

0105 < o [ 5@ O @)@ [

[ 55 k@b (B ) ao (510

Hence, combining (5.6), (5.9) and (5.10), we yield

de) . p 2
~qr S g8-S )%i*(0)

“5 ks rrrom@r |2 (5 )+ (G o5 )|
- :13 /ooo 5°g(Q")i" (0)o1(a)5(a) {h (W d
-2 s o5 ) on (0
L s @@ (S wn (080,
)

ot

Consequently, from above discussion, we assert that dT < 0 and the largest invariant subset

of set {%(:) = 0} is E*. Due to the invariance principle [39, Theorem 4.2], E* is globally
asymptotically stable. O

6 Numerical simulation and conclusion

In this section, we consider a special model with nonlinear functional responses:

T f a)da  S(t) i~ q(b)p(t b)db

T_AS_VS() Afo 0 tada+1 Afo 0 (tb)db+1

di(t,a)  9i(t,a) y
5 T e = Aila) —d(a)i(t,a), (6.1)

apgt’b) * apéZb) = Ap(b) — v (b)p(t,b),

with initial condition (1.6) and boundary condition

f0°° i fo p(t,b)db
Afo tada+1 Afo tbdb—l—l ' 62)

p(t,0) = /06()(ta)da £> 0.

i(t,0) =
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Then, from Theorem 5.3, we obtain the following corollary:
Corollary 6.1. The infection equilibrium of system (6.1) is globally asymptotically stable.

To verify the validity of the result, we perform numerical simulations. Let A; = 2000, p =
1

il and

k(a) = 0.003 <1 + sin (“_5):> , q(b) = 0.01 (1 +sin (b_5):>

10 10
Ai(a) =5 <1 + sin<a_105)E> , Ap(b) =80 (1 + sin(b_lo5)3>
5(a) =0.18 (1 + sin (a—lg)E) , v(b) =2 (1 + sin (b—lg)E) ,
£(a) = <1+sin(a_105)E>,

for 0 < a,b < 10. Clearly, as in Figure 6.1, all the solutions converge to the positive steady
state. In Figure 6.2, we further show the distribution of i(t,a) and p(t,b) atage a = b = 5.

2500

2000

1500 [

1000

500 1

I T T
0 500 1000 1500 2000
Time t

10000 4000
8000 3000
6000

4000
2000 1000

10 10

p(t.b)

i(t,a)

Figure 6.1: Long-time dynamical behavior of system (6.1)—(6.2).

Now, we finish this paper with a conclusion. In this paper, we considered an age-infection
model of cholera with general infection rates. We focused on the global asymptotical stabil-
ity of the unique positive equilibrium under some assumptions. For this, we directly used
the Lyapunov functional method. It is necessarily pointed here that the uniform persistence
and asymptotical smoothness play the key role for the construction of Lyapunov functional.
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3500 T T T T T T 5000

4500
3000 [

4000 |
2500 | 1 3500
2000 [ g 3000 ¢

o
< 2500
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1500 - 2000 -

1000 - — 1500 1

1000

500
500

0 . . . . . . 0 . . . . . .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time t Time t

Figure 6.2: Long-time dynamical behavior of i(t,a) and p(t,b) fora = b = 5.

Finally, we performed numerical simulations. On account of the waterborne disease, we incor-
porated indirect pathogen-to-person transmission and direct person-to-person transmission.
By taking general infection rates into account, we gain a unified theoretical framework to de-
scribe the cholera propagation process. In a recent paper [25], Liu et al. proposed an age-space
structured cholera model, and studied the local stability of equilibria, disease persistence and
global attractivity of equilibria for their model. How about introducing immigration into the
age-space structured cholera model, which will be an interesting problem and we will leave it
for the future work.

Acknowledgements

X. Jiang was supported by the Fundamental Research Funds of Beijing Municipal Educa-
tion Commission (no. 110052972027/141) and the North China University of Technology Re-
search Fund Program for Young Scholars (no. 110051360002). R. Zhang was supported by the
National Natural Science Foundation of China (nos. 12101309, 11871179), the Fundamental
Research Funds for the Colleges and Universities in Heilongjiang Province (no. 2022-KYYWEF-
1113) and Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex
Systems.

References

[1] M. A11, A. L. Lorez, Y. A. You, Y. E. Kim, B. San, B. MAskeRry, J. CLEMENS, The global
burden of cholera, Bull. World Health Organ. 90(2012), 209-218A. https://doi.org/10.
2471/BLT.11.093427

[2] M. AL, A. R. NELsoN, A. L. Lorez, D. A. Sack, Updated global burden of cholera in
endemic countries, PLoS Negl. Trop. Dis. 9(2015), Article No. e0003832. https://doi.org/
10.1371/journal.pntd.0003832

[3] N. Bar, C. Song, R. Xu, Mathematical analysis and application of a cholera transmission
model with waning vaccine-induced immunity, Nonlinear Anal. Real World Appl. 58(2021),
Article No. 103232. https://doi.org/10.1016/j.nonrwa.2020.103232


https://doi.org/10.2471/BLT.11.093427
https://doi.org/10.2471/BLT.11.093427
https://doi.org/10.1371/journal.pntd.0003832
https://doi.org/10.1371/journal.pntd.0003832
https://doi.org/10.1016/j.nonrwa.2020.103232

24 X. Jiang and R. Zhang

[4] S. BenTout, Y. CHEN, S. DyjiraLi, Global dynamics of an SEIR model with two age
structures and a nonlinear incidence, Acta Appl. Math. 171(2021), Article No. 103232.
https://doi.org/10.1007/s10440-020-00369-z

[5] M. BRADLEY, R. SHAKESPEARE, A. RUWENDE, M. E. J. WooLHOUSE, E. MASON, A. MUNATSI,
Epidemiological features of epidemic cholera (El Tor) in Zimbabwe, Trans. R. Soc. Trop.
Med. Hyg. 90(1996), 378-382. https://doi.org/10.1016/S0035-9203(96)90512-X

[6] F. BRAUER, P. vAN DEN DRriEsscHE, Models for transmission of disease with immigration of
infectives, Math. Biosci. 171(2001), 143-154. https://doi.org/10.1016/50025-5564(01)
00057-8

[7] F. BRAUER, Z. SHUAL P. vAN DEN DriesscHE, Dynamics of an age-of-infection cholera
model, Math. Biosci. Eng. 10(2013), 1335-1349. https://doi.org/10.3934/mbe.2013.10.
1335

[8] F. BRAUER, P. vAN DEN DRIEsscHE, ]. Wu, Mathematical epidemiology, Lecture Notes in
Mathematics, Vol. 1945, Springer-Verlag, New York, 2008. https://doi.org/10.1007/
978-3-540-78911-6

[9] V. Carasso, S. L. Paveri-FONTANA, A mathematical model for the 1973 cholera epidemic
in the European Mediterranean region, Rev. Epidemiol. Sante. 27(1979), 121-132.

[10] T. TuLcHINSKY, John Snow, cholera, the broad street pump; waterborne diseases then and
now, in: Case studies in public health, Academic Press, London, 2018, pp. 77-99.

[11] A. E. NewtoN, K. E. HEmmAN, A. Scamitz, T. TOROK, A. ArostoLou, H. HANSON, P.
GOUNDER, ET AL., Cholera in United States associated with epidemic in Hispaniola,
Emerg. Infect. Dis. 17(2011), 2166-2168. https://doi.org/10.3201/eid1711.110808

[12] C. T. CopEego, Endemic and epidemic dynamics of cholera: The role of the aquatic reser-
VOH}BAAC?E?%Ct13&.](2001L4AIﬁCREPJO.1.https://doi.org/lO.1186/1471—2334—1—1

[13] X. C. DuaN, H. CHENG, M. MARTCHEVA, S. YUAN, Dynamics of an age structured heroin
transmission model with imperfect vaccination, Int. J. Bifurcat. Chaos 31(2021), Article No.
2150157. https://doi.org/10.1142/50218127421501571

[14] J. EBERHART-PHILLIPS, R. E. BESsEr, M. P. TorMEY, D. FEIKIN, M. R. ARANETA, ]J. WELLS,
L. KiLMAN, ET AL., An outbreak of cholera from food served on an international aircraft,
Epidemiol. Infect. 116(1996), 9-13. https://doi.org/10.1017/s0950268800058891

[15] C. E1sENBERG, Z. SHUAI, H. TiEN, P. vAN DEN DRIEssCHE, A cholera model in a patchy
environment with water and human movement, Math. Biosci. 246(2013), 105-112. https:
//doi.org/10.1016/j.mbs.2013.08.003

[16] EuroPEAN CENTRE FOR Di1sEasE PREVENTION, Cholera, in: Annual Epidemiological Report
for 2018, European Centre for Disease Prevention and Control, Stockholm, 2019.

[17] R. R. Frericas, P. S. KM, R. BARrAIS, R. P1aARROUX, Nepalese origin of cholera epidemic
in Haiti, Clin. Microbiol. Infec. 18(2012), E158-163. https://doi.org/10.1111/j.1469-
0691.2012.03841 .x


https://doi.org/10.1007/s10440-020-00369-z
https://doi.org/10.1016/S0035-9203(96)90512-X
https://doi.org/10.1016/S0025-5564(01)00057-8
https://doi.org/10.1016/S0025-5564(01)00057-8
https://doi.org/10.3934/mbe.2013.10.1335
https://doi.org/10.3934/mbe.2013.10.1335
https://doi.org/10.1007/978-3-540-78911-6
https://doi.org/10.1007/978-3-540-78911-6
https://doi.org/10.3201/eid1711.110808
https://doi.org/10.1186/1471-2334-1-1
https://doi.org/10.1142/S0218127421501571
https://doi.org/10.1017/s0950268800058891
https://doi.org/10.1016/j.mbs.2013.08.003
https://doi.org/10.1016/j.mbs.2013.08.003
https://doi.org/10.1111/j.1469-0691.2012.03841.x
https://doi.org/10.1111/j.1469-0691.2012.03841.x

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Age-infection structured cholera model with immigration 25

P. GEorGescy, Y. H. Hsien, Global stability for a virus dynamics model with nonlinear
incidence of infection and removal, SIAM |. Appl. Math. 67(2006), 337-353. https://doi.
org/10.1137/060654876

J. K. HALE, Asymptotic bhavior of dissipative systems, Mathematical Surveys and Mono-
graphs, Vol. 25, American Mathematical Society, Providence, 1988. https://doi.org/10.
1007/978-3-540-78911-6

D. M. HARTLEY, ]. G. Morris, D. L. Smith, Hyperinfectivity: A critical element in the
ability of V. cholerae to cause epidemics? PLoS Med. 3(2006), 63—69. https://doi.org/
10.1371/journal.pmed.0030007

S. HENsHAW, C. C. McCLUskey, Global stability of a vaccination model with immigration,
Electron. |. Differential Equations 2015, No. 92, 1-10. Zbl 1318.34065

G. Huang, X. Ly, Y. TakeucHi, Lyapunov functions and global stability for age-
structured HIV infection model, SIAM ]. Appl. Math. 72(2012), 25-38. https://doi.org/
10.1137/110826588

G. Huang, W. Ma, Y. TakeucHi, Global properties for virus dynamics model with
Beddington-DeAngelis functional response, Appl. Math. Lett. 22(2009), 1690-1693. https:
//doi.org/10.1016/j.aml.2009.06.004

G. Huang, H. Yokor, Y. TakeucHI, T. Kajiwara, T. Sasaki, Impact of intracellular delay,
immune activation delay and nonlinear incidence on viral dynamics, Japan |. Indust. Appl.
Math. 28(2011), 383-411. https://doi.org/10.1007/s13160-011-0045-x

W. L1y, J. WANG, R. ZHANG, Dynamics of an infection age-space structured cholera model
with Neumann boundary condition, Eur. J. Appl. Math. 33(2022), 393—422. https://doi.
org/10.1017/5095679252100005X

A. KoroseInikov, P. K. MaiIN1, Nonlinear incidence and stability of infectious disease
models, Math. Med. Biol. 22(2005), 113-128. https://doi.org/10.1093/imammb/dqi001

T. Kuniya, Global stability analysis with a discretization approach for an age-structured
multigroup SIR epidemic model, Nonlinear Anal. Real World Appl. 12(2011), 2640-2655.
https://doi.org/10.1016/j .nonrwa.2011.03.011

P. MacgaL, C. C. McCruskey, G. F. WeBB, Lyapunov functional and global asymptotic
stability for an infection-age model, Appl. Anal. 89(2010), 1109-1140. https://doi.org/
10.1080/00036810903208122

P. MagaL, S. RuaN, Theory and applications of abstract semilinear Cauchy problems, Applied
Mathematical Sciences, Vol. 201, Springer, Cham, 2005. https://doi.org/10.1007/978-
3-030-01506-0

C. C. McCruskey, Global stability for an SEI model of infectious disease with age
structure and immigration of infecteds, Math. Biosci. Eng. 13(2016), 381-400. https:
//doi.org/10.3934/mbe.2015008

C. C. McCLuskey, Lyapunov functions for disease models with immigration of infected
hosts, Disc. Cont. Dyn. Syst. B 26(2021), 4479-4491. https://doi.org/10.3934/dcdsb.
2020296


https://doi.org/10.1137/060654876
https://doi.org/10.1137/060654876
https://doi.org/10.1007/978-3-540-78911-6
https://doi.org/10.1007/978-3-540-78911-6
https://doi.org/10.1371/journal.pmed.0030007
https://doi.org/10.1371/journal.pmed.0030007
https://zbmath.org/?q=an:1318.34065
https://doi.org/10.1137/110826588
https://doi.org/10.1137/110826588
https://doi.org/10.1016/j.aml.2009.06.004
https://doi.org/10.1016/j.aml.2009.06.004
https://doi.org/10.1007/s13160-011-0045-x
https://doi.org/10.1017/S095679252100005X
https://doi.org/10.1017/S095679252100005X
https://doi.org/10.1093/imammb/dqi001
https://doi.org/10.1016/j.nonrwa.2011.03.011
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1007/978-3-030-01506-0
https://doi.org/10.1007/978-3-030-01506-0
https://doi.org/10.3934/mbe.2015008
https://doi.org/10.3934/mbe.2015008
https://doi.org/10.3934/dcdsb.2020296
https://doi.org/10.3934/dcdsb.2020296

26 X. Jiang and R. Zhang

[32] V. MweNDA, A. NIYoMWUNGERE, E. Ovuar, J. Gitauku, M. OBonYO, Z. GURA, Cholera
outbreak during a scientific conference at a Nairobi hotel, Kenya, 2017, J. Public Health
43(2021), No. 2, e140-e144. https://doi.org/10.1093/pubmed/fdz078

[33] Z. Suuar, J. H. TiEN, P. vaN DEN DriesscHE, Cholera models with hyperinfectivity and
temporary immunity, Bull. Math. Biol. 74(2012), 2423-2445. https://doi.org/10.1007/
s11538-012-9759-4

[34] R. P. SiGpEL, C. C. McCLuskey, Global stability for an SEI model of infectious disease
with immigration, Appl. Math. Comput. 243(2014), 684-689. https://doi.org/10.1016/
j.amc.2014.06.020

[35] H. L. Smits, H. R. THIEME, Dynamical systems and population persistence, Graduate Studies
in Mathematics, Vol. 118, American Mathematical Society, Providence, 2011. https://
doi.org/10.1090/gsm/118

[36] J. Snow, On the mode of communication of cholera, John Churchill, London, 1855.

[37] ]J. H. Tien, D. J. D. EArN, Multiple transmission pathways and disease dynamics in a
waterborne pathogen model, Bull. Math. Biol. 72(2010), 1506-1533. https://doi.org/10.
1007/s11538-010-9507-6

[38] X. TiaN, R. Xvu, J. LIN, Mathematical analysis of a cholera infection model with vaccina-
tion strategy, Appl. Math. Comput. 361(2019), 517-535. https://doi.org/10.1016/j.amc.
2019.05.055

[39] J. A. WALKER, Dynamical systems and evolution equations: Theory and applications, Mathe-
matical Concepts and Methods in Science and Engineering, Vol. 20, Springer, New York,
1980. https://doi.org/10.1090/gsm/118

[40] X. WANG, F. B. WANG, Impact of bacterial hyperinfectivity on cholera epidemics in a
spatially heterogeneous environment, |. Math. Anal. Appl. 480(2019), Article No. 123407.
https://doi.org/10.1016/j.jmaa.2019.123407

[41] ]J. WANG, ]J. WANG, Analysis of a reaction-diffusion cholera model with distinct dispersal
rates in the human population, J. Dyn. Differ. Equ. 33(2021), 549-575. https://doi.org/
10.1007/s10884-019-09820-8

[42] ]J. WANG, R. ZHANG, T. Kun1ya, A note on dynamics of an age-of-infection chorela model,
Math. Biosci. Eng. 13(2016), 227-247. https://doi.org/10.3934/mbe.2016.13.227

[43] G. F. WEBB, Theory of nonlinear age-dependent population dynamics, Monographs and Text-
books in Pure and Applied Mathematics, Vol. 89, Marcel Dekker, New York, 1985.

[44] WorLD HEeALTH ORGANIZATION, Cholera, https://www.who.int/news-room/fact-
sheets/detail/cholera. Accessed January 17, 2023.

[45] S. Xu, Global stability of the virus dynamics model with Crowley-Martin functional
response, Electron. |. Qual. Theory. Diffeq. Equ. 2012, No. 9, 1-10. https://doi.org/10.
14232/ejqtde.2012.1.9

[46] R. ZHANG, S. Liu, Global analysis of an age-structured SEIR model with immigration
of population and nonlinear incidence rate, . Appl. Anal. Comput. 9(2019), 1470-1492.
https://doi.org/10.11948/2156-907X.20180281


https://doi.org/10.1093/pubmed/fdz078
https://doi.org/10.1007/s11538-012-9759-4
https://doi.org/10.1007/s11538-012-9759-4
https://doi.org/10.1016/j.amc.2014.06.020
https://doi.org/10.1016/j.amc.2014.06.020
https://doi.org/10.1090/gsm/118
https://doi.org/10.1090/gsm/118
https://doi.org/10.1007/s11538-010-9507-6
https://doi.org/10.1007/s11538-010-9507-6
https://doi.org/10.1016/j.amc.2019.05.055
https://doi.org/10.1016/j.amc.2019.05.055
https://doi.org/10.1090/gsm/118
https://doi.org/10.1016/j.jmaa.2019.123407
https://doi.org/10.1007/s10884-019-09820-8
https://doi.org/10.1007/s10884-019-09820-8
https://doi.org/10.3934/mbe.2016.13.227
https://www.who.int/news-room/fact-she ets/detail/cholera
https://www.who.int/news-room/fact-she ets/detail/cholera
https://doi.org/10.14232/ejqtde.2012.1.9
https://doi.org/10.14232/ejqtde.2012.1.9
https://doi.org/10.11948/2156-907X.20180281

	Introduction
	Preliminaries
	Existence of unique solution
	Dissipativeness and persistence

	Asymptotical smoothness and global attractor
	Local stability of the infection equilibrium
	Global asymptotic stability of the positive equilibrium
	Numerical simulation and conclusion

