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CONJUGACY AND PRINCIPAL SOLUTION OF GENERALIZED

HALF-LINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

ONDŘEJ DOŠLÝ AND JANA ŘEZNÍČKOVÁ

Abstract. We study the generalized half-linear second order differential equation
and the associated Riccati type differential equation. We introduce the concepts
of minimal and principal solutions of these equations and using these concepts we
prove a new conjugacy criterion for the generalized half-linear equation.

1. Introduction

We consider the differential equation of the form

(1)
(

r(t)x′
)′

+ c(t)f(x, r(t)x′) = 0

with continuous functions c, r and r(t) > 0, under assumptions on the function f
which guarantee that the solution space of this equation is homogeneous, i.e., if x is
a solution of (1) then λx, λ ∈ R, is a solution as well. Particular assumptions on the
function f will be listed later. Equation (1), under these assumptions, was investigated

by Hungarian mathematicians I. Bihari [2, 3] and Á. Elbert [12, 13]. It was shown
that many statements of the classical oscillation theory for the Sturm-Liouville linear
differential equation

(2)
(

r(t)x′
)′

+ c(t)x = 0

can be extended in a natural way to (1).

A typical model of (1) is the “classical” half-linear differential equation

(3)
(

r(t)Φ(x′)
)′

+ c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1,

which attracted considerable attention in recent years, see, e.g., [1, 10]. If q denotes
the conjugate exponent of p, i.e., 1

p
+ 1

q
= 1, the first term in (3) can be written as

(

Φ(rq−1x′)
)′

= (p − 1)|rq−1x′|p−2(rq−1x′)′
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and hence (3) can be written as

(

rq−1(t)x′
)′

+
c(t)

p − 1
Φ(x)|rq−1(t)x′|2−p = 0

which is equation of the form (1). Recall also that an important role in the investi-
gation of the qualitative properties of solutions of (3) is played by the Riccati type
differential equation

(4) w′ + c(t) + (p − 1)r1−q(t)|w|q = 0

related to (3) by the Riccati substitution w = rΦ(x′/x).

Since 1987, when the last of the series of papers [2, 3, 12, 13] were published, the
qualitative theory of (3) made a big progress and it is a natural question which results
of this theory can be extended to a more general equation (1). In our paper we follow
this idea. First, we introduce the concept of the minimal (and maximal) solution of
the Riccati type differential equation associated with (1). Next, we define the concept
of the principal solution of (1) and we use the properties of this solution to establish
a conjugacy criterion for this equation. In the last part of the paper we formulate
open problems for the next investigation.

2. Generalized Riccati type equation

We start this section with the assumptions on the function f in (1) which are
taken from the papers [12, 13]. We also refer to [13] for a discussion concerning these
assumptions.

(i) The function f is continuous on Ω = R × R0, where R0 = R \ {0};
(ii) It holds xf(x, y) > 0 if xy 6= 0;
(iii) The function f is homogeneous, i.e., f(λx, λy) = λf(x, y) for λ ∈ R and

(x, y) ∈ Ω;
(iv) The function f is sufficiently smooth in order to ensure the continuous depen-

dence and the uniqueness of solutions of the initial value problem x(t1) = x0,
x′(t1) = x1 at some (x0, x1) ∈ Ω;

(v) Let F (t) := tf(t, 1), then

(5)

∫ ∞

−∞

dt

1 + F (t)
< ∞ and lim

|t|→∞
F (t) = ∞.

Let g be the differentiable function given by the formula

(6) g(u) =

{

∫ ∞

1/u
ds

F (s)
if u > 0,

−
∫ 1/u

−∞
ds

F (s)
if u < 0,
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and g(0) = 0. Then g is strictly increasing and limu→±∞ g(u) = ±∞. If x is a solution
of (1) such that x(t) 6= 0, then the function v = g(rx′/x) solves the Riccati type
differential equation

(7) v′ + c(t) + r−1(t)H(v) = 0,

where the function H is given by the formula

(8) H(v) = [g−1(v)]2g′(g−1(v))

with H(0) = 0 (g−1 being the inverse function of g). Conversely, having a function
H(v) > 0 for v 6= 0, with H(0) = 0, such that

(9)

∫ −1

−∞

ds

H(s)
< ∞,

∫ ∞

1

ds

H(s)
< ∞,

one can associate with (7) an equation (1) with f satisfying (i) – (v) as follows. The
function g is given as the solution of the differential equation

g′(u) =
1

u2
H(g(u)), g(0) = 0,

and the function f : R × R0 → R is given by the formula

(10) f(1, u) :=
1

g′(u)
, f(t, s) :=

{

tf(1, t/s), t 6= 0,

0 t = 0.

Let us stop for a moment by the assumption (iii). This assumption was introduced
by Bihari [2, 3] and modified later by Elbert [13] in such a way that the equality
f(λx, λy) = λf(x, y) is supposed only for λ > 0. Under this weaker version of homo-
geneity assumption, one obtains two Riccati type equations of the form (7), one for
the ratio rx′/x with x(t) > 0 and the other one for x(t) < 0. However, as noted in
[13], both Riccati equations can be treated in the same manner, so we adopt here the
original Bihari’s assumption (iii).

Following [13], to study oscillatory properties of (1) in more details, we also need
the following assumption:

(vi) The function H given by (8) is strictly convex.

This assumption is satisfied e.g. when the function log F (t) is strictly concave, see
[13]. Under this assumption, the function H is decreasing for u ≤ 0 and increasing for
u ≥ 0. We denote by H−1

− , H−1
+ the inverse functions of H restricted to nonpositive

and nonnegative half-line, respectively. Also, H is a locally Lipschitz function under
assumption (vi), which means the the initial value problem associated with (7) is
uniquely solvable and hence graphs of solutions of (7) cannot intersect.
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Another motivation for the investigation of the generalized Riccati equation is
the so-called “perturbation method” which in half-linear oscillation theory has been
introduced in [15] and further developed in [10, Section 5.2]. Consider equation (3)
with r(t) ≡ 1 as a perturbation of the Euler half-linear differential equation with the
so-called critical constant

(11)
(

Φ(x′)
)′

+
γp

tp
Φ(x) = 0, γp :=

(

p − 1

p

)p

.

This equation is known to be nonoscillatory and possesses a solution h(t) = t
p−1

p . The
Riccati equation associated with (11) is

(12) w′ +
γp

tp
+ (p − 1)|w|q = 0.

The function v := hp(w − wh), where w is a solution of (4) with r = 1 and wh =

Φ(h′/h) =
(

p−1
p

)p−1

t1−p, is a solution of the equation

(13) v′ +
(

c(t) −
γp

tp

)

tp−1 + (p − 1)t−1 [|v + Γ|q − v − Γq] = 0, Γ :=

(

p − 1

p

)p−1

.

The last equation is just the Riccati type equation of the form (7) since the function

(14) H(v) = |v + Γ|q − v − Γq

satisfies all assumptions on the function H given above.
Finally, at the end of this section, note that a closer examination of our treatment

reveals that we can more or less forget about the original second order differential
equation (1) and consider directly the equation (7) with a strictly convex function H
satisfying H(0) = minu∈R H(u) = 0 such that (9) holds.

3. Minimal, maximal, and principal solutions

First we introduce the concept of the minimal (and maximal) solution of (7). We
modify the construction given in [21, Sec. 15], see also [4].

Suppose that (7) possesses a solution which is defined on some interval [T,∞) (such
a solution we call proper). Define

Y = {y ∈ R, the solution v of (7) given by v(T ) = y is proper}

and let

(15) ỹ = inf Y .
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Denote by vmin the solution of (7) given by the initial condition vmin(T ) = ỹ. This
solution we call the minimal solution (at ∞).

Next we show that the minimal solution is well defined.

Lemma 1. The set Y is bounded from below. In particular, consider an interval
[T, T + τ ], where τ > 0 is arbitrary. There exists y0 ∈ R such that any solution of (7)
with v(T ) < y0 satisfies

lim
t→t1−

v(t) = −∞

for some t1 ∈ [T, T + τ ].

Proof. Denote
C = min

[T,T+τ ]
c(t), R = max

[T,T+T ]
r(t),

and together with (7), consider the equation with constant coefficients

(16) u′ + C +
H(u)

R
= 0.

Then by the standard theorem for differential inequalities (see, e.g., [18]), if v(T ) <
u(T ), then v(t) < u(t) for t > T for which v(t) exists.

Now consider equation (16). We have
∫ u(t)

u(T )

ds

−C − R−1H(s)
= t − T.

For u → −∞ we have H(u) → ∞ and hence there exists ũ such that −C−R−1H(u) <
0 for u < ũ, i.e., u(t) is decreasing and

∫ u(T )

u(t)

ds

C + R−1H(s)
= t − T

if u(T ) < ũ. Hence, by (9),

∞ >

∫ u(T )

−∞

ds

C + R−1H(s)
>

∫ u(T )

u(t)

ds

C + R−1H(s)
= t − T.

Now, if u(T ) → −∞, the first integral in the previous formula tends to 0, which
means that t → T, i.e., t − T < τ for u(T ) sufficiently negative. Hence u(t) has to
blow down to −∞ inside of the interval [T, T + τ ] and inequality for solutions of
(7) and (16) implies that a solution v of (7) starting with sufficiently negative initial
value v(T ) has the same property. �

Next we show that the minimal solution vmin is really proper.

Lemma 2. The minimal solution vmin of (7) is a proper solution.
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Proof. By contradiction, suppose that vmin is not proper, i.e., vmin(t1−) = −∞ for
some t1 > T . Let t2 > t1 be arbitrary. Recall that we suppose that (7) possesses a
solution v defined in the whole interval [T,∞) and that by definition of vmin it holds
v(T ) > ỹ, where ỹ is given by (15). Let x̂ be the solution of (1) given by the initial
condition x̂(t2) = 0, r(t2)x̂

′(t2) = −1 and let v̂ = g(rx̂′/x̂) be the associated solution
of (7). Then v̂(t2−) = −∞ and by the unique solvability of (7)

v(t) > v̂(t) > vmin(t), for t ∈ [T, t1).

But this inequality contradicts the definition of ỹ, so the solution vmin is proper. �

Similarly we define the maximal solution (in the neighbourhood of −∞) of (7). We
suppose that (7) possesses a solution defined in an interval (−∞, A] (such a solution
we call again proper at ∞) and we denote

Z = {z ∈ R, the solution v of (7) given by v(A) = z is proper at ∞},

and z̃ = supZ. The maximal solution in the neighbourhood of −∞ is the solution
given by the initial condition vmax(A) = z̃. The proofs that the set Z is nonempty
and bounded above and that the solution vmax is proper are the same as in case of
the minimal solution.

Definition 1. Suppose that (1) is nonoscillatory, i.e., there exists a solution of this
equation which is nonzero in an interval [T,∞), and let vmin be the minimal solution of
the associated Riccati equation (7). The principal solution of (1) at ∞ is the solution
given by the formula

(17) x(t) = C exp

{
∫ t

T

g−1(vmin(s))

r(s)
ds

}

,

where C 6= 0 is a real constant. The principal solution is determined uniquely up to
a nonzero multiplicative factor.

The principal solution at −∞ is defined via the maximal solution of (7) in the
neighbourhood of −∞ analogously.

Next we present a Sturmian type comparison theorem for minimal solution of (7).
This statement can be regarded as a complement of [12, Theorem 4.10]. A similar
statement holds for maximal solutions.

Theorem 1. Together with (1) consider the equation of the same form

(18)
(

r̂(t)x
)′

+ ĉ(t)f(x, r̂(t)x′) = 0

with the continuous functions ĉ, r̂ satisfying

(19) ĉ(t) ≥ c(t), 0 < r̂(t) ≤ r(t)
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for large t. Suppose that (18) is nonoscillatory and denote by vmin, v̂min minimal
solutions of (7) and of the Riccati equation associated with (18), respectively. Then
v̂min(t) ≥ vmin(t) in the common interval of their existence.

Proof. First of all, note that nonoscillation of (18) implies nonoscillation of (1) by
the Sturmian theorem for (1), see [13]. Our proof follows the idea of [4, Theorem 2].
Let u be a proper solution of the equation

(20) u′ + ĉ(t) + r̂−1(t)H(u) = 0

(which is the Riccati equation associated with (18)), i.e., a solution which is defined
on some interval [T,∞). Consider the solution v of (7) given by the initial condition
v(T ) = u(T ). Then inequalities between c, ĉ, r, and r̂ imply that v(t) ≥ u(t) for t ≥ T .
Now, by contradiction, suppose that the minimal solutions vmin, v̂min satisfy vmin (t1) >
v̂min (t1) at some t1 > T . Consider the solution v of (7) given by v (t1) = v̂min (t1).
Then by the same argument as in the previous part of the proof v(t) ≥ v̂min(t) for
t ≥ t1. At the same time, since v (T ) < vmin (T ) we have v(t) < vmin(t) for t ≥ T . This
means that we have found a proper solution v of (7) which is less then the minimal
solution of this equation, a contradiction. �

The next theorem shows that the principal solution has the property which is called
zero maximal property in the linear case, see [19]. In the “linear terminology”, it states
that the largest zero point of the principal solution at ∞ is something like the left
conjugate point of ∞.

Theorem 2. Suppose that (1) is nonoscillatory, x̃ is its principal solution at ∞, and
let T be its largest zero. Then any other solution of (1) has a zero in [T,∞).

Proof. Suppose, by contradiction, that there is a solution x of (1) having no zero
in [T,∞) and v = g(rx′/x) is the associated solution of (7). Further, let vmin be
the minimal solution of (7), i.e., vmin = g(rx̃′/x̃). Then by the definition of the
minimal solution we have v(t) ≥ vmin(t) for large t. But this contradicts the fact that
vmin(T+) = ∞ while v(T ) is a real number, so the graphs of v and vmin have to
intersect somewhere in (T,∞) and this is impossible due to the unique solvability of
(7). �

4. A conjugacy criterion

To make the results of this section better understandable, consider equation (3) for
t ∈ R. Suppose that

(21)

∫ ∞

r1−q(t) dt = ∞ =

∫

−∞

r1−q(t) dt.
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Under this assumption, x(t) = 1 is the only solution (up to a nonzero multiplicative
factor) of the one-term equation

(22)
(

r(t)Φ(x′)
)′

= 0

which has no zero in R and this also means that the principal solutions at −∞ and
∞ coincide. Note that in the terminology of the linear Sturm-Liouville differential
equations (2), an equation whose principal solutions at −∞ and ∞ coincide is said
to be 1-special on R (see [5]), while in the terminology of [17] the operator on the
left-hand side of (22) is called critical on R in this case.

Now, if

(23)

∫ ∞

−∞

c(t) dt > 0,

i.e., we perturb one-term equation (22) (with r satisfying (21)) by a potential c with
a positive mean value over R, then equation (3) is conjugate in R, i.e., there is a
solution of (3) with at least two zeros in R, see [22].

As a main result of this section we show that a similar statement holds for pertur-
bations of the equation (r(t)x′)′ = 0 by the term c(t)f(x, rx′) with the potential c
having a positive mean value over R. This statement can be regarded as a “conjugacy
complement” of the oscillation criterion [13, p. 240].

Theorem 3. Suppose that

(24)

∫

−∞

r−1(t) dt = ∞ =

∫ ∞

r−1(t) dt

and that (23) holds. Then (1) is conjugate in R, i.e., there exists a solution of this
equation with at least two zeros in R.

Proof. Our proof is completely different from that of [22] (for (3)) which is based on
the so-called variational principle. It is an open problem whether this method can be
extended to (1), we discuss this topic in the last section of this paper.

Condition (23) implies that there exists T ∈ R such that

(25)

∫ ∞

T

c(t) dt > 0 and

∫ T

−∞

c(t) dt > 0.

Let x be the solution of (1) given by the initial condition x(T ) = 1, x′(T ) = 0 and
v = g(rx′/x) be the associated solution of (7), i.e., this solution satisfies the initial
condition v(T ) = 0. Integrating (7) from T to t we get

v(t) +

∫ t

T

c(s) ds +

∫ t

T

r−1(s)H(v(s)) ds = 0.

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 5, p. 8



Conditions (25) imply that there exist ε > 0 and T1 > T such that

(26) v(t) + ε +

∫ t

T

r−1(s)H(v(s)) ds ≤ 0 for t ≥ T1.

Let

(27) S(t) = −ε −

∫ t

T

r−1(s)H(v(s)) ds.

Then S ′ = −r−1H(v), i.e., H−1
− (−rS ′) = v, where H−1

− is the inverse function to H
for v ≤ 0. Inequality (26) can be written as v(t) ≤ S(t), i.e.,

H−1(−S ′(t)r(t)) ≤ S(t) < 0.

This implies, taking into account that H is decreasing for negative arguments,

−S ′(t)r(t) ≥ H(S(t)), t ≥ T1,

and therefore

−
S ′(t)

H(S(t)
≥

1

r(t)
.

Integrating the last inequality from T1 to t, t > T1, we obtain
∫ S(T1)

S(t)

dv

H(v)
≥

∫ t

T1

r−1(s) ds.

However, this inequality shows that the solution v cannot be defined on the whole
interval [T,∞) since the left-hand side is bounded in view the fact that the improper
integral

∫

−∞
dv

H(v)
is convergent, while the integral on the right-hand side tends to ∞

as t → ∞ by (24). Hence the solution x has a zero point at some t > T . In the same
way we prove that this solution must have a zero also for t < T , i.e., (1) possesses a
solution with at least two zeros in R. �

Remark 1. In the previous statement we have considered (1) as a perturbation of
the one-term equation (r(t)x′)′ = 0. Motivated by the linear case (2) and the classical
half-linear case (3), we conjecture that Theorem 3 can be formulated in the following
more general setting.

Conjecture 1. Suppose that the equation

(28)
(

r(t)x′
)′

+ c̃(t)f(x, r(t)x′) = 0,

with a continuous function c̃, is disconjugate in R and its principal solutions at ±∞
coincide (i.e., this equation is critical or 1-special in the above mentioned terminol-
ogy). Denote by x̃ this simultaneous principal solution at ±∞. If

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 5, p. 9



(29)

∫ ∞

−∞

[

c(t) − c̃(t)
]

h(x̃(t)) dt > 0,

then (1) is conjugate in R.

In (29), an unknown function h appears, which is h(x) = |x|p in the classical half-
linear case (3), see [8]. It is not clear at this moment which function is its appropriate
substitution in the general half-linear case (1). This problem is closely connected with
the Picone type identity which we discuss in the next section.

5. Comments and open problems

In this section we discuss some open problems associated with our investigation.
(i) The first problem concerns the so-called conditional oscillation. To explain it,

consider equation (1) with r(t) = 1, i.e., the equation

(30) x′′ + c(t)f(x, x′) = 0.

Following the linear and classical half-linear case, equation (30) is said to be condi-
tionally oscillatory if there exists a constant λ0 > 0 such that (30) with λc(t) instead
of c(t) is oscillatory for λ > λ0 and nonoscillatory for λ < λ0. The function c is
called conditionally oscillatory potential in this cases. Conditionally oscillatory po-
tentials play an important role in the oscillation theory since they represent, in a
certain sense, a borderline between oscillation and nonoscillation. In the linear case
f(x, x′) = x, and hence H(v) = v2 in the associated Riccati equation, it is known
that the conditionally oscillatory potential is c(t) = t−2 and the oscillation constant
is λ0 = 1

4
. In the classical half-linear case (3) we have H(v) = (p − 1)|v|q in the as-

sociated Riccati equation, q being the conjugate number to p. In this case c(t) = t−p

is the conditionally oscillatory potential with the oscillation constant λ0 =
(

p−1
p

)p

.

Finally, consider the equation

(31) v′ + d(t) + (p − 1)H(v) = 0, H(v) = |v + Γ|q − v − Γq

with a continuous function d. An equation of this form we get from (13) via the trans-
formation of independent variable t → log t. The conditionally oscillatory potential in
(31) is again t−2. Observe that in case of linear equation and equation (31) we have
H(v) ∼ Kv2 for v → 0 (for some K ∈ R), while in case of the Riccati equation (4)
associated with (3) we have H(v) = (p−1)|v|q. This suggests the following conjecture.

Conjecture 2. Suppose that

(32) lim
v→0

H(v)

|v|α
= L ∈ (0,∞)

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 5, p. 10



for some α > 1. Then the conditionally oscillatory potential of (30) is c(t) = t−β, β
being the conjugate number of α, i.e. 1

α
+ 1

β
= 1, and the oscillation constant can be

reconstructed from the value of the limit L in (32).

(ii) The second problem is associated with the integral characterization of the
principal solution of (1). In the linear case, it is known that a nonoscillatory solution
x of (2) is principal at ∞ if and only if

(33)

∫ ∞ dt

r(t)x2(t)
= ∞,

see [18, p. 355]. In the classical half-linear case (3), a similar equivalent character-
ization is missing, but several “candidates” for such a characterization have been
suggested, see [6, 7, 9, 16] and the references given therein. A typical result along
this line is the so-called Mirzov integral condition, see [20, 21]. It states that there
exist positive real numbers m∗ ≤ m∗ (defined as global extrema of a certain non-
linear function associated with the function H(v) = |v|q), such that the following
implications hold. If

∫ ∞
r1−q(t)|x(t)|−m∗dt = ∞ for a nonoscillatory solution of (3),

then this solution is principal. Conversely, if x is the principal solution of (3) then
∫ ∞

r1−q(t)|x(t)|−m∗

dt = ∞. We conjecture that a statement of this kind can be ex-
tended to (1) with the numbers m∗, m

∗ defined via the function H from (7) similarly as
in the classical half-linear case. Note that in the linear case (2) we have m∗ = m∗ = 2,
so Mirzov’s integrals reduce to (33).

(iii) Another problem associated with the principal solution of (1) is connected
with its definition. In [14], the principal solution of (3) is defined directly for this
equation and not indirectly, via the minimal solution of the associated Riccati equa-
tion, as presented in Section 3. This construction is based on the half-linear Prüfer
transformation where the so-called half-linear trigonometric functions appear. The
generalized Prüfer transformation for (1) is established in [12] and we hope to use it
to an alternative construction of the principal solution of (1) in a subsequent paper.

(iv) We finish this section with a problem which is connected with Picone’s identity
for linear and half-linear equations. If y is any differentiable function and w is a
solution of the Riccati equation (4) associated with (3), then by a direct computation
we have the identity

(34)
[

|y|pw
]′

= r|y′|p − c|y|p − (p − 1)r1−qP (r1/py′, wΦ(y)),

where

(35) P (u, v) =
|u|p

p
− uv +

|v|q

q
≥ 0
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with equality in (35) if and only if v = Φ(u). The fact that the function P is nonneg-
ative follows from the general Fenchel inequality

(36) f(u) − uv + f ∗(v) ≥ 0,

f ∗(v) = supu[uv − f(u)] being the Fenchel conjugate function to f , with the pair of
mutually conjugate functions f(u) = |u|p/p, f ∗(v) = |v|q/q. A natural question is
whether some analogical identity to (34) can be established with a solution of the
Riccati equation (7), where the conjugate function H∗ to H appears. In particular,
it is not clear at this moment which function in general case plays the role of the
function |y|p in (34), see also the remark below Theorem 3. Picone’s identity also
opens the problem under which additional assumptions on the function f in (1) this
equation has a variational structure, i.e., one can associate with this equation an
energy functional similarly as the functional involving the term r|y′|p − c|y|p which
appears in (34). A solution of this problem could show for which equations of the
form (1) one can use the so-called variational principle in their oscillation theory.
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Zĺın, Czech Republic

E-mail address : reznickova@fai.utb.cz

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 5, p. 13


