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Motto: Happiness=linearity (R. Bellman)

1 What is almost linear behavior?

“Almost linear behavior” was coined in some papers of I. Barbălat and A.
Halanay [1, 2, 3] on forced oscillations and dissipativeness, being concerned
with systems containing the so called sector restricted nonlinear functions.
We shall not insist here on the various motivations arising from electrical
and control engineering or from flight dynamics, but focus from the very
beginning on the mathematical aspects.

A. Consider the following linear system with time varying coefficients

ẋ = A(t)x+ f(t) (1)

for which the following properties are known: let A(t) define an exponentially
stable evolution i.e. the Cauchy (state transition) matrix XA(t, τ) defined by

d

dt
XA(t, τ) = A(t)XA(t, τ) , XA(τ, τ) = I (2)

satisfies |XA(t, τ)| ≤ β0 exp{−α(t − τ)} for some α > 0, β0 > 0. Then
x(t) ≡ 0 is the unique equilibrium of the free (for f(t) ≡ 0)

ẋ = A(t)x, (3)

it is exponentially stable (globally) and the forced system (1) has a unique
“global” solution (defined on R) which reads

x∞(t) =

∫ t

−∞

XA(t, θ)f(θ)dθ (4)

and has the following properties: i) it is bounded on R; ii) it is exponentially
stable (globally); iii) it “reproduces” some properties of the forcing term f
- if A(t) and f(t) are both T periodic or have rationally dependent periods
T1 and T2, then x∞(t) is periodic; if these periods are rationally independent
then x∞(t) is quasi-periodic; quasi-periodicity is ensured also if both A(t)
and f(t) are quasi-periodic; if A(t) and f(t) are almost periodic then x∞(t)
is also almost periodic.
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B. Consider now the following nonlinear system with time varying pa-
rameters

ẋ = A(t)x− bφ(t, c∗(t)x) + f(t) (5)

where the nonlinear function φ : R × R 7→ R is subject to the following

φ(t, 0) ≡ 0 , 0 ≤ φ(t, ν1) − φ(t, ν2)

ν1 − ν2
≤ L , ∀ν1 6= ν2. (6)

If f(t) ≡ 0 i.e. the system is free, then x(t) ≡ 0 is its unique equilibrium.
For this free system i.e. for

ẋ = A(t)x− bφ(t, c∗(t)x) (7)

the following is stated.

Problem 1. (Absolute stability problem): find conditions on (A, b, c, L)
for the equilibrium x(t) ≡ 0 to be globally asymptotically stable for all func-
tions (linear or nonlinear) subject to (6).

For the forced system (5) the following is stated.

Problem 2. (Forced oscillations problem): find conditions on (A, b, c, L)
- under the assumptions of absolute stability for the free system (7) - in
order that (5) should have a unique “global” solution x∞(t) (defined on R)
with the following properties: i) it is bounded on R; ii) it is asymptotically
stable (globally); iii) it “reproduces” some properties of the forcing term f : if
system’s coefficients are all T -periodic or have rationally dependent periods,
then x∞(t) is periodic; if these periods are rationally independent then x∞(t)
is quasi-periodic; quasi-periodicity is ensured also if all these functions are
quasi-periodic; if these functions are almost periodic then x∞(t) is also almost
periodic.

It becomes now clear that by almost linear behavior it is understood
the following gathering of qualitative properties: i) existence of a unique
equilibrium (e.g. at the origin) which is globally asymptotically stable; ii)
existence and global asymptotic stability of a unique limit regime of the
forced system, the corresponding solution being “of the same type” as the
forcing term, in the sense described above.

Summarizing this presentation, it appears that systems with sector re-
stricted nonlinearities are very suitable to be checked for an almost linear
behavior. This requires solving the two problems stated previously - the
absolute stability and forced nonlinear oscillations problems.
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2 Almost linear behavior for ordinary differ-

ential equations

The main mathematical object of this section will be the system

ẋ = Ax− bφ(c∗x) + f(t) , |f(t)| ≤M (8)

for which we define χ : C 7→ C by χ(σ) = c∗(σI−A)−1b, the transfer function
of its linear part.

A. We give below some of the most known results concerning its almost
linear behavior.

Theorem 1. Consider system (8) with f(t) ≡ 0 under the following as-
sumptions: i) A is a Hurwitz matrix; ii) the nonlinear function φ : R 7→ R

is subject to the following sector restriction

0 ≤ φ(ν)/ν ≤ L , φ(0) = 0. (9)

If there exists some θ ∈ R in order that the following frequency domain
inequality holds

1

L
+ ℜe(1 + ıωθ)χ(ıω) ≥ 0 ω ∈ R (10)

and the following alternative is true: either (10) is strict (including for ω →
∞) and (9) are non-strict or (10) is non-strict and (9) are strict, then the
free system (8) is absolutely stable i.e. its equilibrium at x = 0 is globally
asymptotically stable for all functions φ subject to (9).

This theorem is but too well known and we shall not insist on it. Con-
cerning the forced system (8) there is known the following result [4].

Theorem 2. Consider system (8) under the assumptions of Theorem 1 in
a relaxed form i.e. (9) hold only for “large deviations” of the form |ν| ≥ λ0

but with the additional condition

lim inf
|ν|→∞

θ

ν2

[
∫ ν

0

φ(λ)dλ− 1

2
νφ(ν)

]

≥ 0 (11)

Then (8) is uniformly dissipative in the sense of N. Levinson (uniformly
ultimately bounded) and, therefore, if f is T -periodic, (8) has a T -periodic
solution.
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One could be tempted to think that, were (9) valid for all ν ∈ R, Theorem
2 would express some kind of almost linear behavior while restricted to pe-
riodic regimes only. This assertion is not true because the periodic solution
whose existence is proved might not be unique and by no means is it a limit
regime: there exist solutions of (8) such that limt→∞ |x(t)−x∞(t)| 6= 0 where
x∞(t) denotes as previously the periodic solution and x(t) some perturbed
solution in the sense of Liapunov.

The stronger result, which is indeed a theorem on almost linear behavior,
reads as follows (in a slightly modified form with respect to the original
one [4])

Theorem 3. Consider system (8) under the following assumptions: i) A is
a Hurwitz matrix; ii) the nonlinear function φ : R 7→ R is subject to the
following conditions

φ(0) = 0 , 0 ≤ φ(ν1) − φ(ν2)

ν1 − ν2
≤ L , ∀ν1 6= ν2 (12)

iii) the frequency domain inequality holds

1

L
+ ℜeχ(ıω) > 0 , ω ≥ 0 (13)

Then system (8) displays an almost linear behavior - the free system (with
f(t) ≡ 0) is absolutely stable in the class of nonlinear functions defined by
(9) and the forced system has a limit regime x∞(t) which is bounded on R,
T -periodic if f is such and almost periodic if f is such; moreover x∞(t) is
globally exponentially stable.

This theorem has a counterpart in the class of the systems with periodic
coefficients [5] which was obtained from the more general results on systems
with periodic coefficients [6].

Theorem 4. Consider system (5) with A, b, c being continuous and T -
periodic. Let φ(t, ν) be subject to (6) and T -periodic for all ν ∈ R; suppose
|f(t)| ≤ M for all t ∈ R. Let also the following assumptions hold: i) the
multipliers of A(t) are inside the unit disk i.e. A(t) defines an exponentially
stable evolution; ii) the following linear Hamiltonian system

ẋ = (A(t) − 1

2L
b(t)c∗(t))x+

1

L
b(t)b∗(t)p

ṗ = − 4

L
c(t)c∗(t)x− (A(t) − 1

2L
b(t)c∗(t))∗p

(14)
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is exponentially dichotomic and strongly disconjugate. Then system (5) dis-
plays an almost linear behavior (in the sense of Theorem 3).

Since the significance of the exponential dichotomy is well known, we have
to explain strong disconjugacy. The multipliers of a periodic Hamiltonian
being located symmetrically with respect to the unit circle, system (14) has
n linearly independent real solutions (xj(t)

∗ pj(t)
∗)∗, j = 1, n, that tend

exponentially to 0 for t→ ∞. Introducing the matrix

X(t) = (x1(t) . . . xn(t)) (15)

the fulfilment of the condition

det X(t) 6= 0, ∀t ∈ [0, T ] (16)

is called strong disconjugacy (non-oscillatory behavior) of the Hamiltonian.
Theorems 3 and 4 correspond to a frequency domain inequality without

free parameters or with multiplier of the type P; if the Yakubovich Kalman
Popov lemma is taken into account, it appears that the main mathematical
tool for the study of the almost linear behavior is a quadratic Liapunov
function of the form

V (t, x) = x∗H(t)x (17)

where H(t) is T -periodic if the coefficients of (5) are such and H(t) ≡ H for
the case of (8).

If we are concerned with Theorems 1 and 2 (which account for an “almost”
almost linear behavior)), the frequency domain condition is of V.M. Popov
type with the stability multiplier 1+θσ, where σ is the complex variable and
θ is the free parameter, also called PD multiplier; if again the Yakubovich
Kalman Popov lemma is taken into account, a Liapunov function of the type
“quadratic form plus the integral of the nonlinearity” is obtained

V (x) = x∗Hx+ θ

∫ c∗x

0

φ(λ)dλ (18)

where θ ∈ R is the free parameter of the frequency domain inequality (10).
B. The further development of the absolute stability theory was directed

to the relaxation of the stability conditions: since all of them are only suffi-
cient conditions, this trend may be considered as aiming to reduce the gap
between sufficient and necessary conditions i.e. the “degree of conservatism”
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as is it called in the engineering world. The most natural way in this direc-
tion was that of making additional assumptions on the nonlinear functions
(monotone, slope restricted) and to obtain, as a consequence, new frequency
domain inequalities based on new stability multipliers.

Monotonicity, expressed by the first inequality in (12), possibly combined
with the global Lipschitz condition or with the even stronger slope restrictions
0 ≤ φ′(ν) ≤ ν̄ are the additional restrictions that generated most of the
stability multipliers other than the PD - Popov multiplier. In [7] there is
to be found an account concerning these multipliers; worth mentioning that
they are in close connection with the systems with augmented dynamics [8].

Here we shall discuss only the multiplier introduced by Yakubovich in
[9, 10] which has the form

ζ(σ) = 1 + θσ − βσ2 , θ ∈ R , β > 0. (19)

This special attention is due to the fact that, according to our knowledge,
this is the only one of these newer multipliers for which a dissipativeness
result exists [3]. It has the form below (adapted to the case considered in
this paper).

Theorem 5. Consider the system (8) under the following assumptions: i)
A is a Hurwitz matrix; ii) the nonlinear function φ : R 7→ R is subject to the
sector restriction (9) and to the slope restriction

0 ≤ φ′(ν) ≤ ν̄. (20)

If there exist some θ ∈ R, β > 0 in order that the following frequency domain
inequality holds

(

1

L
+
β

ν̄
ω2

)

+ ℜe(1 + ıωθ + βω2)χ(ıω) ≥ 0 , ω ∈ R (21)

and the following alternative is true: either the frequency domain inequality
is strict (including for ω → ∞) and the sector and slope restrictions are
non-strict or the frequency domain inequality is non-strict and the sector
and slope restrictions are strict then the free system (8) is absolutely stable
for all functions φ subject to (9) and (20).

If (9) and (20) hold only for “large deviations” of the form |ν| ≥ λ0

but with the additional condition (11), then (8) is dissipative in the sense of
Levinson and, therefore, if f is T -periodic then (8) has a T -periodic solution.
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We just mention, with reference to Theorem 4, that Theorem 5 might
also have its counterpart for systems with periodic coefficients. However, a
more interesting idea of extending the above results arises from [11]: it was
shown in this paper that, under the assumption (12) on φ, if f is T -periodic
and a T -periodic solution of (8) does exist, then fulfilment of the frequency
domain inequality

ℜe
(

1

L
+ χ(ıω)

)

ζ(ıω) > 0 , ω ∈ R, (22)

where ζ : C 7→ C is the Zames Falb multiplier, implies input output stability
of the periodic solution. The Zames Falb multiplier is defined by

ζ(σ) = 1 −
∞

∑

1

θnenσT , θn ≥ 0 ,

∞
∑

1

θn < 1 (23)

Since (22) is already a sufficient condition of absolute stability, one may ask
whether it is not also a sufficient condition for dissipativeness in the sense of
Levinson and, therefore, for the existence of a periodic solution. In this way
the frequency domain inequality with the Zames Falb multiplier might be a
condition for almost linear behavior.

3 A result of the Persidskii type

A classical result due to K. P. Persidskii states that in the case of the linear
systems uniform asymptotic stability is equivalent to exponential stability.
A generalization of this result to nonlinear systems is due to A. Halanay
(1960) [12, 13] and we reproduce it for the sake of completeness

Lemma 1. Consider the nonlinear system

ẋ = f(t, x) , dim x = n (24)

under the following assumptions: i) f is continuous with respect to both argu-
ments and f(t, 0) ≡ 0; ii)|f(t, x)| ≤ L(ρ)|x| for |x| ≤ ρ. Let the equilibrium
at the origin be uniformly asymptotically stable and satisfy the estimate

|x(t; t0, x0)| ≤ k0|x0|ψ(t− t0) (25)
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where ψ ∈ L (the class of the Kamke-Massera functions that are continuous,
monotone decreasing and such that limt→∞ ψ(t) = 0). Then the stability of
the equilibrium is exponential.

In the following we shall show that the absolute stability obtained from
the frequency domain inequality of V.M. Popov is exponential. For simplicity
we shall consider the stable case only. The result is as follows.

Proposition 1. Consider system (8) with f(t) ≡ 0 under the assumptions
of Theorem 1 with the special mention that L may be finite only. Then the
free system (8) is exponentially absolutely stable i.e. its equilibrium at x = 0
is globally exponentially stable.

Outline of proof We shall make use of some intermediate results of the
proof of Theorem 1. From the frequency domain inequality (10) and applying
the positiveness theorem of V.M. Popov [14] i.e. the Yakubovich-Kalman-
Popov lemma, we deduce existence of a Hermitian matrix P0 = P ∗

0 , a vector
w0 and a scalar γ0 such that the following holds

Vo(x(t)) = Vo(x0) −
∫ t

0

| − γ0φ(c∗x(λ)) + w∗
0x(λ)|2dλ−

−
∫ t

0

φ(c∗x(λ))(c∗x(λ) − φ(c∗x(λ))/L)dλ

(26)

where the candidate Liapunov function Vo(x) has the usual structure “quadratic
form plus integral of the nonlinear function”

Vo(x) = x∗P0x+ θ

∫ c∗x

0

φ(λ)dλ (27)

and θ ∈ R is the parameter for which (10) holds. If the strict frequency
domain inequality holds then for some ε > 0 the Yakubovich-Kalman-Popov
lemma allows existence of a Hermitian matrix Pε = P ∗

ε , a vector wε and a
scalar γε such that the following holds

Vε(x(t)) = Vε(x0) −
∫ t

0

| − γεφ(c∗x(λ)) + w∗
εx(λ)|2dλ−

−
∫ t

0

φ(c∗x(λ))(c∗x(λ) − φ(c∗x(λ))/L)dλ− ε

∫ t

0

|x(λ)|2dλ
(28)
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where

Vε(x) = x∗Pεx+ θ

∫ c∗x

0

φ(λ)dλ (29)

Worth mentioning that limε→0 Pε = P0, limε→0wε = w0, limε→0 γε = γ0 from
continuity reasons.

Equalities (26) and (28) give some information about the derivative along
system’s solutions. If (10) is strict we deduce from (28) that

d

dt
Vε(x(t)) ≤ −ε|x(t)|2 < 0 (30)

hence the derivative is negative definite. If (10) is non-strict but the sector
conditions are strict then

d

dt
Vo(x(t)) ≤ −φ(c∗x(t))(c∗x(t) − φ(c∗x(t))/L) ≤ 0 (31)

and the derivative vanishes on the set c∗x = 0 only. Since A is a Hurwitz
matrix, the pair (c∗, A) is detectable and the largest invariant set contained
in {x ∈ R|c∗x = 0} is the singleton {0}.

We need now some sign information for the Liapunov function itself. At
this point we consider the linear functions of the sector i.e. φ(ν) = hν,
0 ≤ h ≤ L. The free system (8) becomes

ẋ = (A− bhc∗)x (32)

and it is associated with the quadratic Liapunov function

V(x) = x∗(P +
1

2
θhcc∗)x (33)

with V accounting for both Vε and Vo and P for both Pε and P0. The
frequency domain inequality (10) and the sector inequality (9) ensure expo-
nential stability of the linear system for all h ∈ (0, L]. Consider first the case
of the strict inequality (10) and suppose there exists some h̃ ∈ (0, L] and
some ω0 ≥ 0 such that

det(ıω0I − A+ bh̃c∗) = 0 = det(ıω0I − A)(1 + h̃c∗(ıω0I − A)−1b)

Since A is a Hurwitz matrix, the second factor should be 0 hence c∗(ıω0I −
A)−1b = −1/h̃. Substituting in (10) it follows that

1

L
+ ℜe(1 + ıω0θ)(−

1

h̃
) =

1

L
− 1

h̃
> 0
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what contradicts 0 < h̃ ≤ L. Let now (10) be non-strict and (9) strict hence
0 < h̃ < L; proceeding as previously we obtain from (10) that 1/L−1/h̃ ≥ 0
again a contradiction.

In the first case this exponential stability of the linear system allows to
obtain from (30) and the properties of the Liapunov matrix equation that
the matrix P ε +(1/2)θhcc∗ is positive definite for all h̃ ∈ [0, L] and the θ ∈ R

ensuring (10). In particular P ε > 0.
In the second case the following Liapunov matrix inequality is obtained

(P o +
1

2
θhcc∗)(A− bhc∗) + (A− bhc∗)∗(P o +

1

2
θhcc∗) ≤ −h(1 − h/L)cc∗

(34)
Since (c∗, A) is detectable, (c∗, A − bhc∗) it is such; it follows from the fact
that A − bhc∗ is a Hurwitz that P o + (1/2)θhcc∗ is positive definite for all
h ∈ [0, L) and the θ ∈ R ensuring (10). In particular P o > 0. We deduce in
both cases

P +
1

2
θhcc∗ ≥ δ0I

with δ0 > 0 being independent of h ∈ [0, L].
We turn now to the nonlinear case and consider the Liapunov function

V(x) = x∗Px+ θ

∫ c∗x

0

φ(λ)dλ

If θ ≥ 0 then θhcc∗ ≥ 0 and since δ0 > 0 is independent of h we deduce
V(x) ≥ δ0|x|2, taking into account also that the integral is nonnegative. If
θ < 0 then we may write

V(x) = x∗(P +
1

2
θL(cc∗))x− θ

∫ c∗x

0

(Lλ− φ(λ))dλ ≥ δ0|x|2 (35)

A quadratic upper estimate for V(x) is even easier to obtain since L is finite.
We shall have

V(x) ≤ |x∗Px| + 1

2
|θ|L(c∗x)2 ≤ Λ0|x|2 , Λ0 > 0 (36)

We are now in position to obtain exponential stability. If (10) is strict
then we use (30) and (36) to obtain

d

dt
V(x(t)) ≤ − ε

Λ0
V(x(t))
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hence
V(x(t)) ≤ V(x0) exp{− ε

Λ0

t}

and finally, from the quadratic bounds of V it follows that

|x(t)| ≤
√

Λ0

δ0
e
− ε

2Λ0
t|x0| (37)

In the second case all we know is that limt→∞ x(t) = 0 hence

lim
t→∞

V(x(t)) = 0

from the continuity of V. There will exist ψ ∈ L - a Kamke-Massera function
mentioned in Lemma 1 such that V(x(t)) ≤ V(x0) ψ(t) hence

|x(t)| ≤
√

Λ0

δ0
|x0| ψ(t)

Application of Lemma 1 ends the proof.

4 Exponential stability for time lag systems

In the previous section we obtained a result of exponential stability for non-
linear time lag systems. This result represents a step ahead in the analysis
of the almost linear behavior of the time lag systems with sector restricted
nonlinearities. In the previous section we reproduced (Lemma 1) a gener-
alization of the classical Persidskii theorem stating that “for linear systems
uniform asymptotic stability is always exponential”. The theorem of K. P.
Persidskii as well as its generalization due to A. Halanay [12] concern ordi-
nary differential equations. For linear time delay systems the Persidskii type
result is also due to A. Halanay [12].

In the following we shall obtain the same Persidskii type theorem for
nonlinear functional differential equations of delayed type.

Theorem 6. Consider the system

ẋ(t) = f(t, xt) , f(t, 0) ≡ 0 (38)
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with the standard Krasovskii-Halanay-Hale notations. Here the vector func-
tional f : R×C(−τ, 0; Rn) 7→ Rn is continuous in both arguments and locally
Lipschitz, with constant L, with respect to the second one.

Let the equilibrium at x ≡ 0 be uniformly asymptotically stable i.e. be
subject to

|x(t; t0;φ)| ≤ χ(‖φ‖)ψ(t− t0) , ‖φ‖ ≤ ρ0 (39)

where ‖ · ‖ denotes the sup norm on the Banach space C(−τ, 0; Rn) - the
system’s state space. In (39) χ(·) is a K function i.e. a strictly increasing
Kamke-Massera function while ψ(·) is a L function i.e. a strictly decreasing
Kamke-Massera function approaching 0 asymptotically at ∞. If χ is linear
i.e. χ(ρ) = k0ρ, k0 > 0 then the stability is exponential.

Proof From (39) we deduce, using the fact that ψ is decreasing

‖xt(t0, φ)‖ = sup
−τ≤θ≤0

|x(t+ θ; t0, φ)| ≤ k0‖φ‖ψ(t− τ − t0) (40)

Consider now the Liapunov functional V : R×C(−τ, 0; Rn) → R+ defined
by

V(t, φ) =

∫ T

0

‖xt+λ(t, φ)‖2dλ + sup
λ≥0

‖xt+λ(t, φ)‖2 (41)

for some fixed T > 0 which is subject to choice. Taking into account (40)
and (41) the following inequalities are straightforward

‖φ‖2 ≤ V(t, φ) ≤ (1 + T )k2
0ψ(0)2‖φ‖2 (42)

Moreover, we may show that this Liapunov functional is Lipschitz in its
second argument. We shall have

|V(t, φ1) − V(t, φ2)| ≤
∣

∣

∣

∣

∫ T

0

‖xt+λ(t, φ1)‖2dλ−
∫ T

0

‖xt+λ(t, φ2)‖2dλ

∣

∣

∣

∣

+

+

∣

∣

∣

∣

sup
λ≥0

‖xt+λ(t, φ1)‖2 − sup
λ≥0

‖xt+λ(t, φ2)‖2

∣

∣

∣

∣

≤

≤
∫ T

0

(‖xt+λ(t, φ1)‖ + ‖xt+λ(t, φ2)‖)‖xt+λ(t, φ1) − xt+λ(t, φ2)‖dλ+

+ sup
λ≥0

(‖xt+λ(t, φ1)‖ + ‖xt+λ(t, φ2)‖) sup
λ≥0

‖xt+λ(t, φ1) − xt+λ(t, φ2)‖
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Making again use of (39) and (40) we find

‖xt+λ(t, φ1)‖ + ‖xt+λ(t, φ2)‖ ≤ k0ψ(0)(‖φ1‖ + ‖φ2‖)

Using the Lipschitz assumption on f(t, ·) the following estimate is obtained

‖xt+λ(t, φ1) − xt+λ(t, φ2)‖ ≤ e
R

λ

0
L(µ)dµ‖φ1 − φ2‖

Consequently the following is obtained

∫ T

0

(‖xt+λ(t, φ1)‖ + ‖xt+λ(t, φ2)‖)‖xt+λ(t, φ1) − xt+λ(t, φ2)‖dλ ≤

≤ k0ψ(0)

(
∫ T

0

e
R

λ

0
L(µ)dµdλ

)

(‖φ1‖ + ‖φ2‖)‖φ1 − φ2‖
(43)

It has been shown in [12], Section 4.2, that supλ≥0 ‖xλ+·(t, φ)‖ is monotone
decreasing. In the same way (and quite straightforward) it can be proved
that supλ≥0(‖xλ+·(t, φ1)‖+‖xλ+·(t, φ2)‖) and supλ≥0 ‖xλ+·(t, φ1)−xλ+·(t, φ2)‖
are also monotone decreasing. Therefore

sup
λ≥0

(‖xt+λ(t, φ1)‖ + ‖xt+λ(t, φ2)‖) sup
λ≥0

‖xt+λ(t, φ1) − xt+λ(t, φ2)‖ ≤

≤ k0ψ(0)(‖φ1‖ + ‖φ2‖)‖φ1 − φ2‖
(44)

Combining (43) and (44) we summarize

|V(t, φ1) − V(t, φ2)| ≤ k0ψ(0)

(

1 +

∫ T

0

e
R

λ

0
L(µ)dµdλ

)

(‖φ1‖ + ‖φ2‖)‖φ1 − φ2‖
(45)

i.e. the Lipschitz property.
We discuss now the behavior of the Liapunov functional (41) along the

solutions of (38). We shall have

V(t, xt(t0, φ)) =

∫ T

0

‖xt+λ(t, xt(t0, φ))‖2dλ + sup
λ≥0

‖xt+λ(t, xt(t0, φ))‖2 =

=

∫ t+T

t

‖xλ(t0, φ)‖2dλ + sup
λ≥0

‖xt+λ(t0, φ)‖2
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and, further

1

h
(V(t+ h, xt+h(t0, φ)) − V(t, xt(t0, φ))) =

=
1

h

∫ t+h

t

(‖xλ+T (t0, φ)‖2 − ‖xλ(t0, φ)‖2)dλ+

+
1

h
(sup

λ≥0
‖xt+h+λ(t0, φ)‖2 − sup

λ≥0
‖xt+λ(t0, φ)‖2) ≤

≤ 1

h

∫ t+h

t

(‖xλ+T (t0, φ)‖2 − ‖xλ(t0, φ)‖2)dλ

(We used again monotonicity of supλ≥0 ‖xλ+·(t0, φ)‖2). Further

‖xλ+T (t0, φ)‖2 − ‖xλ(t0, φ)‖2 =

= (‖xλ+T (t0, φ)‖ + ‖xλ(t0, φ)‖)(‖xλ+T (t0, φ)‖ − ‖xλ(t0, φ)‖) ≤

≤ ‖xλ(t0, φ)‖(‖xλ+T (λ, xλ(t0, φ)‖ − ‖xλ(t0, φ)‖) ≤

≤ (k0ψ(T ) − 1)‖xλ(t0, φ)‖2 ≤ −1

2
‖xλ(t0, φ)‖2

provided T > 0 is chosen sufficiently large in order to have k0ψ(T ) < 1/2.
We then deduce from (42) that

−1

2
‖xλ(t0, φ)‖2 ≤ − 1

2(1 + T )k2
0ψ(0)2

V(λ, xλ(t0, φ))

Denoting V⋆(λ) := V(λ, xλ(t0, φ)) we obtain

1

h
(V⋆(t+ h) − V⋆(t)) ≤ − 1

2(1 + T )k2
0ψ(0)2

(

1

h

∫ t+h

t

V⋆(λ)dλ

)

Since V⋆(t) is at least integrable, all its definition points are Lebesgue points
and we shall have

lim sup
h→0+

1

h
(V⋆(t+ h) − V⋆(t)) ≤ − 1

2(1 + T )k2
0ψ(0)2

V⋆(t)
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hence

V⋆(t) ≤ V⋆(t0) exp

{

− 1

2(1 + T )k2
0ψ(0)2

(t− t0)

}

(46)

Making use again of (42) we obtain finally

‖xt(t0, φ)‖ ≤ k0ψ(0)
√

1 + T exp

{

− 1

4(1 + T )k2
0ψ(0)2

(t− t0)

}

‖φ‖ (47)

and the proof is complete. This theorem offers the possibility to obtain
exponential absolute stability for time delay systems provided the necessary
estimates of the solutions may be obtained. However absolute stability of
time delay systems is obtained from Liapunov functionals as well as from
frequency domain inequalities applied to nonlinear integral equations; in this
last case the estimates of the solutions must be considered with additional
care since the method lacks, according to our opinion, the sharpness of the
Liapunov approach - at least in the case of the systems with time lags.

5 Conclusions and perspectives

We have discussed throughout the paper the concept of almost linear be-
havior and its implications for systems with sector restricted nonlinearities.
In the case of the systems described by ordinary differential equations with
constant coefficients we obtained a result of Persidskii type i.e. the expo-
nential absolute stability. For rather general time varying nonlinear systems
with time delay we were able, by slightly modifying a Liapunov functional
from [12] to obtain exponential stability from uniform asymptotic stability.
This opens the way to the exponential absolute stability of the time de-
lay systems with sector restricted nonlinearities provided “good” estimates
of the solutions are available. With respect to this we already mentioned
the “competition” between the Liapunov method and the frequency domain
(input/output) method - see [15].

The same choice between the two methods appears also in the problem
of the forced oscillations. It had been mentioned in [15] that the Liapunov
method appeared as more suitable for the problem of the forced oscillations
than the input/output method. This assertion turned to be particularly true
in the problem of the existence of forced periodic oscillations: only when
equivalence of the two methods was taken into account, it was possible to
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obtain frequency domain inequalities with free parameters ensuring this exis-
tence. For time delay systems the frequency domain inequalities without free
parameters only allowed to obtain both existence and exponential stability
of forced oscillations.

The problem of these criteria containing free parameters has been ap-
proached quite recently in [11] where stability of the forced periodic oscilla-
tions was obtained from a frequency domain inequality of the Zames Falb
type [16]; an existence theorem for periodic oscillations based on the Zames
Falb criterion is still missing.

To end this discussion we mention that all problems discussed throughout
the paper are significant for systems described by neutral functional differen-
tial equations also. And this sends to hyperbolic systems of the propagation
and of the conservation laws.
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