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Abstract. By utilizing the continuation theorem of coincidence degree theory, we shall prove that a Fox

production harvesting model with delay has at least one positive almost periodic solution. Some pre-

liminary assertions are provided prior to proving our main theorem. We construct a numerical example

along with graphical representations to illustrate feasibility of the theoretical result.
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1 Introduction

Consider the following equation of population dynamics [1, 2]

x′(t) = −xF (t, x) + xG(t, x), x′(t) =
dx

dt
, (1)

where x = x(t) is the size of the population, F (t, x) is the per–capita harvesting rate
and G(t, x) is the per–capita fecundity rate. Let G(t, x) and F (t, x) be defined in the
form

F (t, x) = α(t) and G(t, x) = β(t) lnγ
(K(t)

x(t)

)

, γ > 0

then equation (1) becomes

x′(t) = −α(t)x(t) + β(t)x(t) lnγ
(K(t)

x(t)

)

, (2)

where α(t) is a variable harvesting rate, β(t) is an intrinsic factor and K(t) is a varying
environmental carrying capacity. The positive parameter γ is referred to as an interac-
tion parameter [1, 3, 4]. Indeed, if γ > 1 then intra–specific competition is high whereas
if 0 < γ < 1 then the competition is low. For γ = 1, equation (2) reduces to a classical
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Gompertzian model with harvesting [2, 5]. Equation (2) is called a Fox surplus produc-
tion model that has been used to build up certain prediction models such as microbial
growth model, demographic model and fisheries model. This equation is considered to
be an efficient alternative to the well known γ–logistic model. Specifically, Fox model is
more appropriate upon describing lower population density; we refer the reader to the
papers [1, 3, 4, 6, 7, 8] for more informations.

One of the most important behaviors of solutions which has been a main object of
investigations among authors is the periodic behavior of solutions [9, 10, 11, 12, 13, 14,
15, 16]. To consider periodic environmental factors acting on a population model, it is
natural to study the model subject to periodic coefficients. Indeed, the assumption of
periodicity of the parameters in the model is a way of incorporating the time–dependent
variability of the environment (e.g. seasonal effects of weather, food supplies, mating
habits and harvesting). On the other hand, upon considering long–term dynamical
behavior, it has been found that the periodic parameters often turn out to experience
some perturbations that may lead to a changing in character. Thus, the investigation
of almost periodic behavior is considered to be in more accordance with reality; see the
remarkable monographs [17, 18, 19] for more details. In [20], the author has declared
that population models involving delayed argument provide better description for real
phenomena. For this reason, we shall consider system (2) in the form

x′(t) = −α(t)x(t) + β(t)x(t) lnγ
( K(t)

x(τ(t))

)

, (3)

where τ(t) < t and the parameters are to satisfy certain almost periodic assumptions
that will be specified later. System (3) has been rarely investigated in the literature; see
for instance the papers [21, 22] where the authors concentrated on studying the existence
of periodic solutions, stability, oscillation and the global attractivity of the solutions. It
is worth pointing out, however, that all the above mentioned papers are presented under
periodic assumptions and to the best of authors’ observation no paper has been published
regarding the almost periodicity of system (3).

Although it has more widespread applications in real life, the notion of almost peri-
odicity has been less considered among researchers. We mention here some recent works
[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] in which several methods
have been used to prove, in particular, the existence of almost periodic solutions. Fol-
lowing this trend, we shall utilize the continuation theorem of coincidence degree theory
to prove that system (3) has at least one positive almost periodic solution.

The remaining part of this paper is organized as follows: In Section 2, some prelimi-
nary assertions are provided prior to proving our main theorem. In section 3, sufficient
conditions are established to investigate the existence of almost periodic solutions of the
said system. Section 4 contains a numerical example along with graphical representations
to illustrate the feasibility of the theoretical result.
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2 Preliminary assertions

Through the change of variables x(t) = ey(t), we observe that (3) reduces to the equation

y′(t) = −α(t) + β(t) lnγ
( K(t)

ey(τ(t))

)

. (4)

We consider equation (4) together with the initial condition

y(t) = φ(t), y(0) = y0, t ∈ (−∞, 0). (5)

Equations (4) and (5) are considered under the following assumptions:

(I) α(t), β(t) ∈ C([0,+∞), [0,+∞)) and K(t) ∈ C([0,+∞), (0,+∞));

(II) τ(t) ∈ C([0,+∞), [0,+∞)) with τ(t) ≤ t and limt→∞ τ(t) = ∞;

(III) φ(t) ∈ C((−∞, 0), [0,+∞)) with φ(t) ≥ 0 and y0 > 0.

By a solution of (4) and (5) we mean an absolutely continuous function y(t) defined on
R satisfying (4) almost everywhere for t ≥ 0 and (5). Due to certain biological purposes,
we focus our discussion on the positive solutions of (4).

To prove the main results of this paper we shall utilize the continuation theorem of
coincidence degree theory [39, 40]. However, before proceeding to the main results we
set forth some basic concepts in the framework of this theory.

Let X,Y be normed vector spaces, L : DomL ⊂ X → Y be a linear mapping and
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm map-
ping of index zero if dimKerL = codimIm L < +∞ and ImL is closed in Y . If L is a
Fredholm mapping of index zero and there exists continuous projectors P : X → X and
Q : Y → Y such that Im P = Ker L, Ker Q = ImL = Im (I − Q), it follows that the
mapping L|Dom L∩KerP : (I − P )X → Im L is invertible. We denote the inverse of that
mapping by KP . If Ω is an open bounded subset of X, then the mapping N will be
called L−compact on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact.
Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q → Ker L.

We mention the statement of the continuation theorem.

Theorem 1. [40] Let Ω ⊂ X be an open bounded set and let N : X → Y be a continuous
operator which is L−compact on Ω. Assume

(1) Ly 6= λNy for every y ∈ ∂Ω ∩ DomL and λ ∈ (0, 1);

(2) QNy 6= 0 for every y ∈ ∂Ω ∩ KerL;

(3) The Brouwer degree deg
{

JQN, Ω ∩ KerL, 0
}

6= 0.

Then Ly = Ny has at least one solution in DomL ∩ Ω.
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Let AP (R) denote the set of all real valued almost periodic functions on R. For
f ∈ AP (R) we denote by

Λ(f) =
{

λ̃ ∈ R : lim
T→∞

1

T

∫ T

0
f(s)e−iλ̃s ds 6= 0

}

and

(mod f) =
{

m
∑

j=1

njλ̃j : nj ∈ Z,m ∈ N, λ̃j ∈ Λ(f), j = 1, 2, . . . ,m
}

the set of Fourier exponents and the module of f , respectively. Let K(f, ε, S) denote
the set of ε−almost periods for f with respect to S ⊂ C((−∞, 0], R) and l(ε) denote the
length of the inclusion interval.

Definition 1. [18] y(t) ∈ C(R, R) is said to be almost periodic on R if for any ε > 0
the set K(y, ε) = {δ : |y(t + δ) − y(t)| < ε, ∀ t ∈ R} is relatively dense, that is, for any
ε > 0 it is possible to find a real number l(ε) > 0 for any interval with length l(ε), there
exists a number δ = δ(ε) in this interval such that |y(t + δ) − y(t)| < ε for any t ∈ R.

Throughout the rest of the paper we assume the following condition

(H) α(t), β(t),K(t) ∈ AP (R) and inft∈[0,∞) ln K(t) > m(α(t))
γm(β(t)) , m(β(t)) 6= 0,

where m(f) = lim
T→∞

1

T

∫ T

0
f(s)ds.

In our case, we set
X = Y = V1 ⊕ V2,

where

V1 =
{

y ∈ AP (R) : (mod y(t)) ⊂ (mod F ), ∀ µ ∈ Λ(y(t)) satisfying |µ| > c
}

and
V2 = {y(t) ≡ k, k ∈ R},

where

F = F (t, φ) = −α(t) + β(t) lnγ
( K(t)

eφ(τ(0))

)

, φ ∈ C((−∞, 0], R)

and c is a given positive constant.

Remark 1. If f is T−periodic function, then
∫ t

f(s) ds is T−periodic if and only if
m(f) = 0. However, if f(t) ∈ AP (R), then f does not necessarily have an almost
periodic primitive though m(f) = 0. This is why we do not choose the space V1 as usual.
Stated another way, the choice of the space V 1 = {y(t) ∈ AP (R) : m(y(t)) = 0} is not
appropriate for our approach.

Define the norm
‖y‖ = sup

t∈R

|y(t)|, y ∈ X (or Y).
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Lemma 1. X and Y are Banach spaces equipped with the norm ‖ · ‖.
Proof. If {yn} ⊂ V1 and yn converges to y0, then it is easy to show that y0 ∈ AP (R)

with (mod y0) ⊂ (mod F ). Indeed, for all |λ̃| ≤ α we have

lim
T→∞

1

T

∫ T

0
yn(s)e−iλ̃s ds = 0.

Thus

lim
T→∞

1

T

∫ T

0
y0(s)e

−iλ̃s ds = 0,

which implies that y0 ∈ V1. One can easily see that V1 is a Banach space endowed with
the norm ‖·‖. The same can be concluded for the spaces X and Y. The proof is complete.
�

Lemma 2. Let L : X → Y such that Ly = −α(t)+β(t) lnγ
(

K(t)

ey(τ(t))

)

where Ly = y′ = dy
dt .

Then L is a Fredholm mapping of index zero.

Proof. It is obvious that L is a linear operator and KerL = V2. It remains to prove
that Im L = V1. Suppose that φ(t) ∈ Im L ⊂ Y. Then, there exists φ1 ∈ V1 and φ2 ∈ V2

such that
φ = φ1 + φ2.

From the definitions of φ(t) and φ1(t), one can deduce that
∫ t

φ(s) ds and
∫ t

φ1(s) ds
are almost periodic functions and thus φ2(t) ≡ 0 which implies that φ(t) ∈ V1. This tells
that

ImL ⊂ V1.

On the other hand, if ϕ(t) ∈ V1\{0} then we have
∫ t
0 ϕ(s) ds ∈ AP (R). Indeed, if λ̃ 6= 0

then we obtain

lim
T→∞

1

T

∫ T

0

[

∫ t

0
ϕ(s) ds

]

e−iλ̃t dt =
1

iλ̃
lim

T→∞

1

T

∫ T

0
ϕ(t)e−iλ̃t dt.

It follows that

Λ
[

∫ t

0
ϕ(s) ds − m

(

∫ t

0
ϕ(s) ds

)]

= Λ(ϕ(t)).

Thus
∫ t

0
ϕ(s) ds − m

(

∫ t

0
ϕ(s) ds

)

∈ V1 ⊂ X.

We note that
∫ t
0 ϕ(s) ds − m(

∫ t
0 ϕ(s) ds) is the primitive of ϕ(t) in X, therefore we have

ϕ(t) ∈ Im L. Hence, we deduce that

V1 ⊂ Im L

which completes the proof of our claim. Therefore, ImL = V1.
Furthermore, one can easily show that ImL is closed in Y and

dimKerL = 1 = codimImL.

Therefore, L is a Fredholm mapping of index zero. �
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Lemma 3. Let N : X → Y, P : X → X and Q : Y → Y such that

Ny = −α(t) + β(t) lnγ
( K(t)

ey(τ(t))

)

, y ∈ X

and

Py = m(y), y ∈ X, Qz = m(z), z ∈ Y.

Then, N is L−compact on Ω (Ω is an open and bounded subset of X).

Proof. The projections P and Q are continuous such that

ImP = Ker L and ImL = Ker Q.

It is clear that

(I − Q)V2 = {0} and (I − Q)V1 = V1.

Therefore

Im (I − Q) = V1 = Im L.

In view of

Im P = Ker L and ImL = KerQ = Im (I − Q)

we can conclude that the generalized inverse (of L) Kp : Im L → Ker P ∩ DomL exists
and is given by

Kp(z) =

∫ t

0
z(s) ds − m

(

∫ t

0
z(s) ds

)

.

Thus

QNy = m
(

− α(t) + β(t) lnγ K(t)

ey(τ(t))

)

and

Kp(I − Q)Ny = f [y(t)] − Qf [y(t)],

where f [y] is defined by

f [y(t)] =

∫ t

0

[

Ny(s) − QNy(s)
]

ds.

The integral form of the terms of both QN and (I−Q)N imply that they are continuous.
We claim that Kp is also continuous. By our hypothesis, for any ε < 1 and any compact
set S ⊂ C([−σ, 0], R), let l(ε, S) be the inclusion interval of K(F, ε, S). Suppose that
{zn(t)} ⊂ Im L = V1 and zn(t) uniformly converge to z0(t). Because

∫ t
0 zn(s) ds ∈ Y(n =

0, 1, 2, 3, . . .), there exists ρ (0 < ρ < ε) such that K(F, ρ, S) ⊂ K(
∫ t
0 zn(s) ds, ε). Let

l(ρ, S) be the inclusion interval of K(F, ρ, S) and

l = max{l(ρ, S), l(ε, S)}.
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It is easy to see that l is the inclusion interval of both K(F, ε, S) and K(F, ρ, S). Hence,
for all t /∈ [0, l], there exists µt ∈ K(F, ρ, S) ⊂ K(

∫ t
0 zn(s) ds, ε) such that t + µt ∈ [0, l].

Therefore, by the definition of almost periodic functions we observe that

∥

∥

∥

∫ t

0
zn(s) ds

∥

∥

∥
= sup

t∈R

∣

∣

∣

∫ t

0
zn(s) ds

∣

∣

∣
≤ sup

t∈[0,l]

∣

∣

∣

∫ t

0
zn(s) ds

∣

∣

∣

+ sup
t/∈[0,l]

∣

∣

∣

(

∫ t

0
zn(s) ds −

∫ t+µt

0
zn(s) ds

)

+

∫ t+µt

0
zn(s) ds

∣

∣

∣

≤ 2 sup
t∈[0,l]

∣

∣

∣

∫ t

0
zn(s) ds

∣

∣

∣
+ sup

t/∈[0,l]

∣

∣

∣

(

∫ t

0
zn(s) ds −

∫ t+µt

0
zn(s) ds

)∣

∣

∣

≤ 2

∫ l

0
|zn(s)|ds + ε. (6)

By applying (6), we conclude that
∫ t
0 z(s) ds (z ∈ Im L) is continuous and consequently

Kp and Kp(I − Q)Ny are also continuous.

From (6), we also have
∫ t
0 z(s) ds and Kp(I − Q)Ny are uniformly bounded in Ω.

In addition, it is not difficult to verify that QN(Ω) is bounded and Kp(I − Q)Ny is
equicontinuous in Ω. Hence by the Arzela–Ascoli theorem, we can immediately conclude
that Kp(I − Q)N(Ω) is compact. Thus N is L−compact on Ω. �

3 The main result

One immediate observation is that if equation (4) has one almost periodic solution y,
then x = ey is a positive almost periodic solution of (3). Therefore, in the proof of
Theorem 2 it suffices to show that (4) has one almost periodic solution.

Theorem 2. Let condition (H) holds. Then, equation (4) has at least one positive almost
periodic solution.

Proof. In order to use the continuation theorem of coincidence degree theory, we set
the Banach spaces X and Y the same as those in Lemma 1 and the mappings L,N,P,Q
the same as those defined in Lemma 2 and Lemma 3, respectively. Thus, we can deduce
that L is a Fredholm mapping of index zero and N is a continuous operator which is
L–compact on Ω. It remains to search for an appropriate open and bounded subset Ω.

Corresponding to the operator equation

Ly = λNy, λ ∈ (0, 1)

we may write
dy(t)

dt
= λ

[

− α(t) + β(t) lnγ
( K(t)

ey(τ(t))

)]

. (7)

Let y = y(t) ∈ X be an arbitrary solution of (7) for a certain λ ∈ (0, 1). Define

y(η) = sup
t∈R

y(t) and y(ζ) = inf
t∈R

y(t).
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In view of (7), we have

m(α(t)) = m
(

β(t) lnγ
( K(t)

ey(τ(t))

))

.

It follows that

y(τ(t)) = ln K(t) − 1

γ

m(α(t))

m(β(t))
.

Therefore, we may write

y(ζ) ≤ ln K(t) − 1

γ

m(α(t))

m(β(t))
. (8)

Similarly, we can get

y(η) ≥ lnK(t) − 1

γ

m(α(t))

m(β(t))
. (9)

By inequalities (8) and (9), we can find that there exists t0 ∈ R such that

|y(t0)| ≤ M1,

where

M1 =
∣

∣

∣
ln K(t) − 1

γ

m(α(t))

m(β(t))

∣

∣

∣
.

By virtue of (6), we get

‖y(t)‖ ≤ |y(t0)| + sup
t∈R

∣

∣

∣

∫ t

t0

y′(s)ds
∣

∣

∣
≤ M1 + 2 sup

t∈[t0,t0+l]

∣

∣

∣

∫ t

t0

y′(s)ds
∣

∣

∣
+ ε

or

‖y(t)‖ ≤ M1 + 2

∫ t0+l

t0

|y′(s)|ds + 1. (10)

Choose a point ν − t0 ∈ [l, 2l] ∩ K(F, ρ, S) where ρ (0 < ρ < ε) satisfies K(F, ρ, S) ⊂
K(z, ε). Integrating (7) from t0 to ν, we get

λ

∫ ν

t0

[

β(s) lnγ
( K(s)

ey(τ(s))

)]

ds = λ

∫ ν

t0

|α(s)|ds +

∫ ν

t0

y′(s) ds

≤ λ

∫ ν

t0

|α(s)|ds + ε. (11)

However, from (7) and (11), we obtain

∫ ν

t0

|y′(s)|ds ≤ λ

∫ ν

t0

|α(s)|ds + λ

∫ ν

t0

[

β(s) lnγ
( K(s)

ey(τ(s))

)]

ds

≤ 2

∫ ν

t0

|α(s)|ds + ε ≤ 2

∫ ν

t0

|α(s)|ds + 1. (12)

Substituting back in (10) and for ν ≥ t0 + l, we have

‖y(t)‖ ≤ M2,
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where

M2 = M1 + 4

∫ ν

0
|α(s)|ds + 3.

Let M = M1 + M2. Obviously, it is independent of λ. Take

Ω = {y ∈ X : ‖y‖ < M}.

It is clear that Ω satisfies assumption (1) of Theorem 1. If y ∈ ∂Ω ∩ KerL, then y is a
constant with ‖y‖ = M . It follows that

QNy = m
(

− α(t) + β(t) lnγ
( K(t)

ey(τ(t))

))

6= 0,

which implies that assumption (2) of Theorem 1 is satisfied. The isomorphism J : ImQ →
KerL is defined by J(z) = z for z ∈ R. Thus, JQNy 6= 0. In order to compute the
Brouwer degree, we consider the homotopy

H(y, s) = −sy + (1 − s)JQNy, 0 ≤ s ≤ 1.

For any y ∈ ∂Ω ∩ KerL, s ∈ [0, 1], we have H(y, s) 6= 0. By the homotopic invariance of
topological degree, we get

deg
{

JQN, Ω ∩ KerL, 0
}

= deg
{

− y, Ω ∩ KerL, 0
}

6= 0.

Therefore, assumption (3) of Theorem 1 holds. Hence, Ly = Ny has at least one solution
in DomL ∩ Ω. In other words, equation (4) has at least one positive almost periodic
solution y(t). The proof is complete. �

4 A Numerical example

Here we give an example that illustrates the almost periodic behavior of Fox production
harvesting model with delay.

Example 1. Let α(t) = e−π(2 + sin
√

3 t), β(t) = e−π(3 + cos 2 t) and K(t) = 3 + sin t.
Then, equation (4) becomes

y′(t) = −e−π(2 + sin
√

3 t) + e−π(3 + cos 2 t) lnγ
(3 + sin t

ey(t−τ)

)

. (13)

One can easily realize that inft∈[0,∞) ln(3 + sin t) = ln 2, m(α(t)) = 2e−π and m(β(t)) =
3e−π 6= 0. Thus, it is clear that

ln 2 >
2

3γ
(14)

and therefore condition (H) is satisfied when γ > 2
3ln2 ≈ 0.96. Therefore, by the con-

sequence of Theorem 1, equation (13) has at least one positive almost periodic solution
y(t). The following graphs illustrate the almost periodic behavior for equation (13).
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Figure 1: A Matlab simulation shows that the solution y(t) of (13) converges to an
almost periodic solution.
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